Optimized pointers to non virtual member functions. This reduces space

and overhead since runtime checks are eliminated. Actually, it yields
up to 10% performance improvement with specialized decoders.
This commit is contained in:
gbeauche 2003-11-02 14:48:20 +00:00
parent d956d3c4ca
commit f0ea192460
5 changed files with 165 additions and 17 deletions

View File

@ -0,0 +1,144 @@
/*
* nvmemfun.hpp - Non-virtual member function wrappers
*
* Kheperix (C) 2003 Gwenole Beauchesne
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifndef NVMEMFUN_H
#define NVMEMFUN_H
#include <functional>
#if (defined(__GNUC__) || defined(__ICC))
template< class PMF, class PF >
inline PF nv_mem_fun_of(PMF pmf) {
union { PMF pmf; uintptr p[2]; } x;
x.pmf = pmf;
#if defined(__GXX_ABI_VERSION) /* GCC >= 3.0 */
const int N = 0;
#else
const int N = 1;
#endif
return (PF)x.p[N];
}
template< class R, class T >
class nv_mem_fun_t : public std::unary_function<T, R> {
typedef R (T::*pmf_t)();
typedef R (*pf_t)(T *);
pf_t pf;
public:
nv_mem_fun_t(pmf_t pmf) : pf(nv_mem_fun_of<pmf_t, pf_t>(pmf)) {}
R operator()(T *p) const { return (*pf)(p); }
operator bool () const { return pf; }
};
template< class R, class T >
class const_nv_mem_fun_t : public std::unary_function<T, R> {
typedef R (T::*pmf_t)();
typedef R (*pf_t)(T *);
pf_t const pf;
public:
const_nv_mem_fun_t(pmf_t const pmf) : pf(nv_mem_fun_of<pmf_t, pf_t>(pmf)) {}
R operator()(const T *p) const { return (*pf)(p); }
operator bool () const { return pf; }
};
template< class R, class T, class A >
class nv_mem_fun1_t : public std::binary_function<T, A, R> {
typedef R (T::*pmf_t)(A);
typedef R (*pf_t)(T *, A x);
pf_t pf;
public:
nv_mem_fun1_t(pmf_t pmf) : pf(nv_mem_fun_of<pmf_t, pf_t>(pmf)) {}
R operator()(T *p, A x) const { return (*pf)(p, x); }
operator bool () const { return pf; }
};
template< class R, class T, class A >
class const_nv_mem_fun1_t : public std::binary_function<T, A, R> {
typedef R (T::*pmf_t)(A);
typedef R (*pf_t)(T *, A x);
pf_t const pf;
public:
const_nv_mem_fun1_t(pmf_t const pmf) : pf(nv_mem_fun_of<pmf_t, pf_t>(pmf)) {}
R operator()(const T *p, A x) const { return (*pf)(p, x); }
operator bool () const { return pf; }
};
#else
template< class R, class T >
class nv_mem_fun_t : public std::unary_function<T, R> {
R (T::*pf)();
public:
nv_mem_fun_t(R (T::*pmf)()) : pf(pmf) {}
R operator()(T *p) const { return (p->*pf)(); }
operator bool () const { return pf; }
};
template< class R, class T >
class const_nv_mem_fun_t : public std::unary_function<T, R> {
R (T::*pf)() const;
public:
const_nv_mem_fun_t(R (T::*pmf)() const) : pf(pmf) {}
R operator()(const T *p) const { return (p->*pf)(); }
operator bool () const { return pf; }
};
template< class R, class T, class A >
class nv_mem_fun1_t : public std::binary_function<T, A, R> {
R (T::*pf)(A);
public:
nv_mem_fun1_t(R (T::*pmf)(A)) : pf(pmf) {}
R operator()(T *p, A x) const { return (p->*pf)(x); }
operator bool () const { return pf; }
};
template< class R, class T, class A >
class const_nv_mem_fun1_t : public std::binary_function<T, A, R> {
R (T::*pf)(A) const;
public:
const_nv_mem_fun1_t(R (T::*pmf)(A) const) : pf(pmf) {}
R operator()(const T *p, A x) const { return (p->*pf)(x); }
operator bool () const { return pf; }
};
#endif
template< class R, class T >
inline nv_mem_fun_t<R, T> nv_mem_fun(R (T::*pmf)()) {
return nv_mem_fun_t<R, T>(pmf);
}
template< class R, class T >
inline const_nv_mem_fun_t<R, T> nv_mem_fun(R (T::*pmf)() const) {
return const_nv_mem_fun_t<R, T>(pmf);
}
template< class R, class T, class A >
inline nv_mem_fun1_t<R, T, A> nv_mem_fun(R (T::*pmf)(A)) {
return nv_mem_fun1_t<R, T, A>(pmf);
}
template< class R, class T, class A >
inline const_nv_mem_fun1_t<R, T, A> nv_mem_fun(R (T::*pmf)(A) const) {
return const_nv_mem_fun1_t<R, T, A>(pmf);
}
#endif /* NVMEMFUN_H */

View File

@ -141,7 +141,7 @@ void sheepshaver_cpu::init_decoder()
static const instr_info_t sheep_ii_table[] = {
{ "sheep",
(execute_fn)&sheepshaver_cpu::execute_sheep,
(execute_pmf)&sheepshaver_cpu::execute_sheep,
NULL,
D_form, 6, 0, CFLOW_JUMP | CFLOW_TRAP
}

View File

@ -21,6 +21,7 @@
#ifndef PPC_BLOCKINFO_H
#define PPC_BLOCKINFO_H
#include "nvmemfun.hpp"
#include "basic-blockinfo.hpp"
class powerpc_cpu;
@ -28,7 +29,7 @@ class powerpc_cpu;
struct powerpc_block_info
: public basic_block_info
{
typedef void (powerpc_cpu::*execute_fn)(uint32 opcode);
typedef nv_mem_fun1_t< void, powerpc_cpu, uint32 > execute_fn;
struct decode_info
{

View File

@ -331,23 +331,23 @@ void powerpc_cpu::execute(uint32 entry, bool enable_cache)
#ifdef PPC_EXECUTE_DUMP_STATE
if (dump_state) {
di->opcode = opcode;
di->execute = &powerpc_cpu::dump_instruction;
di->execute = nv_mem_fun(&powerpc_cpu::dump_instruction);
}
#endif
#if PPC_FLIGHT_RECORDER
if (is_logging()) {
di->opcode = opcode;
di->execute = &powerpc_cpu::record_step;
di->execute = nv_mem_fun(&powerpc_cpu::record_step);
di++;
}
#endif
di->opcode = opcode;
di->execute = ii->decode ? (this->*(ii->decode))(opcode) : ii->execute;
di->execute = ii->decode ? ii->decode(this, opcode) : ii->execute;
di++;
#ifdef PPC_EXECUTE_DUMP_STATE
if (dump_state) {
di->opcode = 0;
di->execute = &powerpc_cpu::fake_dump_registers;
di->execute = nv_mem_fun(&powerpc_cpu::fake_dump_registers);
di++;
}
#endif
@ -376,21 +376,21 @@ void powerpc_cpu::execute(uint32 entry, bool enable_cache)
di = bi->di;
#ifdef PPC_NO_DECODE_CACHE_UNROLL_EXECUTE
for (int i = 0; i < bi->size; i++)
(this->*(di[i].execute))(di[i].opcode);
di[i].execute(this, di[i].opcode);
#else
const int r = bi->size % 4;
switch (r) {
case 3: (this->*(di->execute))(di->opcode); di++;
case 2: (this->*(di->execute))(di->opcode); di++;
case 1: (this->*(di->execute))(di->opcode); di++;
case 3: di->execute(this, di->opcode); di++;
case 2: di->execute(this, di->opcode); di++;
case 1: di->execute(this, di->opcode); di++;
case 0: break;
}
const int n = bi->size / 4;
for (int i = 0; i < n; i++) {
(this->*(di[0].execute))(di[0].opcode);
(this->*(di[1].execute))(di[1].opcode);
(this->*(di[2].execute))(di[2].opcode);
(this->*(di[3].execute))(di[3].opcode);
di[0].execute(this, di[0].opcode);
di[1].execute(this, di[1].opcode);
di[2].execute(this, di[2].opcode);
di[3].execute(this, di[3].opcode);
di += 4;
}
#endif
@ -424,7 +424,7 @@ void powerpc_cpu::execute(uint32 entry, bool enable_cache)
record_step(opcode);
#endif
assert(ii->execute != 0);
(this->*(ii->execute))(opcode);
ii->execute(this, opcode);
#ifdef PPC_EXECUTE_DUMP_STATE
if (dump_state)
dump_registers();

View File

@ -22,6 +22,7 @@
#define PPC_CPU_H
#include "basic-cpu.hpp"
#include "nvmemfun.hpp"
#include "cpu/vm.hpp"
#include "cpu/block-cache.hpp"
#include "cpu/ppc/ppc-config.hpp"
@ -139,10 +140,12 @@ protected:
};
// Callbacks associated with each instruction
typedef void (powerpc_cpu::*execute_fn)(uint32 opcode);
typedef void (powerpc_cpu::*execute_pmf)(uint32 opcode);
typedef nv_mem_fun1_t< void, powerpc_cpu, uint32 > execute_fn;
// Specialzed instruction decoders type
typedef execute_fn (powerpc_cpu::*decode_fn)(uint32 opcode);
typedef execute_fn (powerpc_cpu::*decode_pmf)(uint32 opcode);
typedef nv_mem_fun1_t< execute_fn, powerpc_cpu, uint32 > decode_fn;
// Instruction information structure
struct instr_info_t {