/* * sheepshaver_glue.cpp - Glue Kheperix CPU to SheepShaver CPU engine interface * * SheepShaver (C) 1997-2008 Christian Bauer and Marc Hellwig * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "sysdeps.h" #include "cpu_emulation.h" #include "main.h" #include "prefs.h" #include "xlowmem.h" #include "emul_op.h" #include "rom_patches.h" #include "macos_util.h" #include "block-alloc.hpp" #include "sigsegv.h" #include "cpu/ppc/ppc-cpu.hpp" #include "cpu/ppc/ppc-operations.hpp" #include "cpu/ppc/ppc-instructions.hpp" #include "thunks.h" // Used for NativeOp trampolines #include "video.h" #include "name_registry.h" #include "serial.h" #include "ether.h" #include "timer.h" #include #include #ifdef HAVE_MALLOC_H #include #endif #ifdef USE_SDL_VIDEO #include #endif #if ENABLE_MON #include "mon.h" #include "mon_disass.h" #endif #define DEBUG 0 #include "debug.h" extern "C" { #include "dis-asm.h" } // Emulation time statistics #ifndef EMUL_TIME_STATS #define EMUL_TIME_STATS 0 #endif #if EMUL_TIME_STATS static clock_t emul_start_time; static uint32 interrupt_count = 0, ppc_interrupt_count = 0; static clock_t interrupt_time = 0; static uint32 exec68k_count = 0; static clock_t exec68k_time = 0; static uint32 native_exec_count = 0; static clock_t native_exec_time = 0; static uint32 macos_exec_count = 0; static clock_t macos_exec_time = 0; #endif static void enter_mon(void) { // Start up mon in real-mode #if ENABLE_MON const char *arg[4] = {"mon", "-m", "-r", NULL}; mon(3, arg); #endif } // From main_*.cpp extern uintptr SignalStackBase(); // From rsrc_patches.cpp extern "C" void check_load_invoc(uint32 type, int16 id, uint32 h); extern "C" void named_check_load_invoc(uint32 type, uint32 name, uint32 h); // PowerPC EmulOp to exit from emulation looop const uint32 POWERPC_EXEC_RETURN = POWERPC_EMUL_OP | 1; // Enable Execute68k() safety checks? #define SAFE_EXEC_68K 1 // Save FP state in Execute68k()? #define SAVE_FP_EXEC_68K 1 // Interrupts in EMUL_OP mode? #define INTERRUPTS_IN_EMUL_OP_MODE 1 // Interrupts in native mode? #define INTERRUPTS_IN_NATIVE_MODE 1 // Pointer to Kernel Data static KernelData * kernel_data; // SIGSEGV handler sigsegv_return_t sigsegv_handler(sigsegv_address_t, sigsegv_address_t); #if PPC_ENABLE_JIT && PPC_REENTRANT_JIT // Special trampolines for EmulOp and NativeOp static uint8 *emul_op_trampoline; static uint8 *native_op_trampoline; #endif /** * PowerPC emulator glue with special 'sheep' opcodes **/ enum { PPC_I(SHEEP) = PPC_I(MAX), PPC_I(SHEEP_MAX) }; class sheepshaver_cpu : public powerpc_cpu { void init_decoder(); void execute_sheep(uint32 opcode); public: // Constructor sheepshaver_cpu(); // CR & XER accessors uint32 get_cr() const { return cr().get(); } void set_cr(uint32 v) { cr().set(v); } uint32 get_xer() const { return xer().get(); } void set_xer(uint32 v) { xer().set(v); } // Execute NATIVE_OP routine void execute_native_op(uint32 native_op); // Execute EMUL_OP routine void execute_emul_op(uint32 emul_op); // Execute 68k routine void execute_68k(uint32 entry, M68kRegisters *r); // Execute ppc routine void execute_ppc(uint32 entry); // Execute MacOS/PPC code uint32 execute_macos_code(uint32 tvect, int nargs, uint32 const *args); #if PPC_ENABLE_JIT // Compile one instruction virtual int compile1(codegen_context_t & cg_context); #endif // Resource manager thunk void get_resource(uint32 old_get_resource); // Handle MacOS interrupt void interrupt(uint32 entry); // Make sure the SIGSEGV handler can access CPU registers friend sigsegv_return_t sigsegv_handler(sigsegv_info_t *sip); }; sheepshaver_cpu::sheepshaver_cpu() { init_decoder(); #if PPC_ENABLE_JIT if (PrefsFindBool("jit")) enable_jit(); #endif } void sheepshaver_cpu::init_decoder() { static const instr_info_t sheep_ii_table[] = { { "sheep", (execute_pmf)&sheepshaver_cpu::execute_sheep, PPC_I(SHEEP), D_form, 6, 0, CFLOW_JUMP | CFLOW_TRAP } }; const int ii_count = sizeof(sheep_ii_table)/sizeof(sheep_ii_table[0]); D(bug("SheepShaver extra decode table has %d entries\n", ii_count)); for (int i = 0; i < ii_count; i++) { const instr_info_t * ii = &sheep_ii_table[i]; init_decoder_entry(ii); } } /* NativeOp instruction format: +------------+-------------------------+--+-----------+------------+ | 6 | |FN| OP | 2 | +------------+-------------------------+--+-----------+------------+ 0 5 |6 18 19 20 25 26 31 */ typedef bit_field< 19, 19 > FN_field; typedef bit_field< 20, 25 > NATIVE_OP_field; typedef bit_field< 26, 31 > EMUL_OP_field; // Execute EMUL_OP routine void sheepshaver_cpu::execute_emul_op(uint32 emul_op) { M68kRegisters r68; WriteMacInt32(XLM_68K_R25, gpr(25)); WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP); for (int i = 0; i < 8; i++) r68.d[i] = gpr(8 + i); for (int i = 0; i < 7; i++) r68.a[i] = gpr(16 + i); r68.a[7] = gpr(1); uint32 saved_cr = get_cr() & 0xff9fffff; // mask_operand::compute(11, 8) uint32 saved_xer = get_xer(); EmulOp(&r68, gpr(24), emul_op); set_cr(saved_cr); set_xer(saved_xer); for (int i = 0; i < 8; i++) gpr(8 + i) = r68.d[i]; for (int i = 0; i < 7; i++) gpr(16 + i) = r68.a[i]; gpr(1) = r68.a[7]; WriteMacInt32(XLM_RUN_MODE, MODE_68K); } // Execute SheepShaver instruction void sheepshaver_cpu::execute_sheep(uint32 opcode) { // D(bug("Extended opcode %08x at %08x (68k pc %08x)\n", opcode, pc(), gpr(24))); assert((((opcode >> 26) & 0x3f) == 6) && OP_MAX <= 64 + 3); switch (opcode & 0x3f) { case 0: // EMUL_RETURN QuitEmulator(); break; case 1: // EXEC_RETURN spcflags().set(SPCFLAG_CPU_EXEC_RETURN); break; case 2: // EXEC_NATIVE execute_native_op(NATIVE_OP_field::extract(opcode)); if (FN_field::test(opcode)) pc() = lr(); else pc() += 4; break; default: // EMUL_OP execute_emul_op(EMUL_OP_field::extract(opcode) - 3); pc() += 4; break; } } // Compile one instruction #if PPC_ENABLE_JIT int sheepshaver_cpu::compile1(codegen_context_t & cg_context) { const instr_info_t *ii = cg_context.instr_info; if (ii->mnemo != PPC_I(SHEEP)) return COMPILE_FAILURE; int status = COMPILE_FAILURE; powerpc_dyngen & dg = cg_context.codegen; uint32 opcode = cg_context.opcode; switch (opcode & 0x3f) { case 0: // EMUL_RETURN dg.gen_invoke(QuitEmulator); status = COMPILE_CODE_OK; break; case 1: // EXEC_RETURN dg.gen_spcflags_set(SPCFLAG_CPU_EXEC_RETURN); // Don't check for pending interrupts, we do know we have to // get out of this block ASAP dg.gen_exec_return(); status = COMPILE_EPILOGUE_OK; break; case 2: { // EXEC_NATIVE uint32 selector = NATIVE_OP_field::extract(opcode); switch (selector) { #if !PPC_REENTRANT_JIT // Filter out functions that may invoke Execute68k() or // CallMacOS(), this would break reentrancy as they could // invalidate the translation cache and even overwrite // continuation code when we are done with them. case NATIVE_PATCH_NAME_REGISTRY: dg.gen_invoke(DoPatchNameRegistry); status = COMPILE_CODE_OK; break; case NATIVE_VIDEO_INSTALL_ACCEL: dg.gen_invoke(VideoInstallAccel); status = COMPILE_CODE_OK; break; case NATIVE_VIDEO_VBL: dg.gen_invoke(VideoVBL); status = COMPILE_CODE_OK; break; case NATIVE_GET_RESOURCE: case NATIVE_GET_1_RESOURCE: case NATIVE_GET_IND_RESOURCE: case NATIVE_GET_1_IND_RESOURCE: case NATIVE_R_GET_RESOURCE: { static const uint32 get_resource_ptr[] = { XLM_GET_RESOURCE, XLM_GET_1_RESOURCE, XLM_GET_IND_RESOURCE, XLM_GET_1_IND_RESOURCE, XLM_R_GET_RESOURCE }; uint32 old_get_resource = ReadMacInt32(get_resource_ptr[selector - NATIVE_GET_RESOURCE]); typedef void (*func_t)(dyngen_cpu_base, uint32); func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::get_resource).ptr(); dg.gen_invoke_CPU_im(func, old_get_resource); status = COMPILE_CODE_OK; break; } #endif case NATIVE_CHECK_LOAD_INVOC: dg.gen_load_T0_GPR(3); dg.gen_load_T1_GPR(4); dg.gen_se_16_32_T1(); dg.gen_load_T2_GPR(5); dg.gen_invoke_T0_T1_T2((void (*)(uint32, uint32, uint32))check_load_invoc); status = COMPILE_CODE_OK; break; case NATIVE_NAMED_CHECK_LOAD_INVOC: dg.gen_load_T0_GPR(3); dg.gen_load_T1_GPR(4); dg.gen_load_T2_GPR(5); dg.gen_invoke_T0_T1_T2((void (*)(uint32, uint32, uint32))named_check_load_invoc); status = COMPILE_CODE_OK; break; case NATIVE_NQD_SYNC_HOOK: dg.gen_load_T0_GPR(3); dg.gen_invoke_T0_ret_T0((uint32 (*)(uint32))NQD_sync_hook); dg.gen_store_T0_GPR(3); status = COMPILE_CODE_OK; break; case NATIVE_NQD_BITBLT_HOOK: dg.gen_load_T0_GPR(3); dg.gen_invoke_T0_ret_T0((uint32 (*)(uint32))NQD_bitblt_hook); dg.gen_store_T0_GPR(3); status = COMPILE_CODE_OK; break; case NATIVE_NQD_FILLRECT_HOOK: dg.gen_load_T0_GPR(3); dg.gen_invoke_T0_ret_T0((uint32 (*)(uint32))NQD_fillrect_hook); dg.gen_store_T0_GPR(3); status = COMPILE_CODE_OK; break; case NATIVE_NQD_UNKNOWN_HOOK: dg.gen_load_T0_GPR(3); dg.gen_invoke_T0_ret_T0((uint32 (*)(uint32))NQD_unknown_hook); dg.gen_store_T0_GPR(3); status = COMPILE_CODE_OK; break; case NATIVE_NQD_BITBLT: dg.gen_load_T0_GPR(3); dg.gen_invoke_T0((void (*)(uint32))NQD_bitblt); status = COMPILE_CODE_OK; break; case NATIVE_NQD_INVRECT: dg.gen_load_T0_GPR(3); dg.gen_invoke_T0((void (*)(uint32))NQD_invrect); status = COMPILE_CODE_OK; break; case NATIVE_NQD_FILLRECT: dg.gen_load_T0_GPR(3); dg.gen_invoke_T0((void (*)(uint32))NQD_fillrect); status = COMPILE_CODE_OK; break; } // Could we fully translate this NativeOp? if (status == COMPILE_CODE_OK) { if (!FN_field::test(opcode)) cg_context.done_compile = false; else { dg.gen_load_T0_LR_aligned(); dg.gen_set_PC_T0(); cg_context.done_compile = true; } break; } #if PPC_REENTRANT_JIT // Try to execute NativeOp trampoline if (!FN_field::test(opcode)) dg.gen_set_PC_im(cg_context.pc + 4); else { dg.gen_load_T0_LR_aligned(); dg.gen_set_PC_T0(); } dg.gen_mov_32_T0_im(selector); dg.gen_jmp(native_op_trampoline); cg_context.done_compile = true; status = COMPILE_EPILOGUE_OK; break; #else // Invoke NativeOp handler if (!FN_field::test(opcode)) { typedef void (*func_t)(dyngen_cpu_base, uint32); func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_native_op).ptr(); dg.gen_invoke_CPU_im(func, selector); cg_context.done_compile = false; status = COMPILE_CODE_OK; } // Otherwise, let it generate a call to execute_sheep() which // will cause necessary updates to the program counter break; #endif } default: { // EMUL_OP uint32 emul_op = EMUL_OP_field::extract(opcode) - 3; #if PPC_REENTRANT_JIT // Try to execute EmulOp trampoline dg.gen_set_PC_im(cg_context.pc + 4); dg.gen_mov_32_T0_im(emul_op); dg.gen_jmp(emul_op_trampoline); cg_context.done_compile = true; status = COMPILE_EPILOGUE_OK; break; #else // Invoke EmulOp handler typedef void (*func_t)(dyngen_cpu_base, uint32); func_t func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr(); dg.gen_invoke_CPU_im(func, emul_op); cg_context.done_compile = false; status = COMPILE_CODE_OK; break; #endif } } return status; } #endif // Handle MacOS interrupt void sheepshaver_cpu::interrupt(uint32 entry) { #if EMUL_TIME_STATS ppc_interrupt_count++; const clock_t interrupt_start = clock(); #endif // Save program counters and branch registers uint32 saved_pc = pc(); uint32 saved_lr = lr(); uint32 saved_ctr= ctr(); uint32 saved_sp = gpr(1); // Initialize stack pointer to SheepShaver alternate stack base gpr(1) = SignalStackBase() - 64; // Build trampoline to return from interrupt SheepVar32 trampoline = POWERPC_EXEC_RETURN; // Prepare registers for nanokernel interrupt routine kernel_data->v[0x004 >> 2] = htonl(gpr(1)); kernel_data->v[0x018 >> 2] = htonl(gpr(6)); gpr(6) = ntohl(kernel_data->v[0x65c >> 2]); assert(gpr(6) != 0); WriteMacInt32(gpr(6) + 0x13c, gpr(7)); WriteMacInt32(gpr(6) + 0x144, gpr(8)); WriteMacInt32(gpr(6) + 0x14c, gpr(9)); WriteMacInt32(gpr(6) + 0x154, gpr(10)); WriteMacInt32(gpr(6) + 0x15c, gpr(11)); WriteMacInt32(gpr(6) + 0x164, gpr(12)); WriteMacInt32(gpr(6) + 0x16c, gpr(13)); gpr(1) = KernelDataAddr; gpr(7) = ntohl(kernel_data->v[0x660 >> 2]); gpr(8) = 0; gpr(10) = trampoline.addr(); gpr(12) = trampoline.addr(); gpr(13) = get_cr(); // rlwimi. r7,r7,8,0,0 uint32 result = op_ppc_rlwimi::apply(gpr(7), 8, 0x80000000, gpr(7)); record_cr0(result); gpr(7) = result; gpr(11) = 0xf072; // MSR (SRR1) cr().set((gpr(11) & 0x0fff0000) | (get_cr() & ~0x0fff0000)); // Enter nanokernel execute(entry); // Restore program counters and branch registers pc() = saved_pc; lr() = saved_lr; ctr()= saved_ctr; gpr(1) = saved_sp; #if EMUL_TIME_STATS interrupt_time += (clock() - interrupt_start); #endif } // Execute 68k routine void sheepshaver_cpu::execute_68k(uint32 entry, M68kRegisters *r) { #if EMUL_TIME_STATS exec68k_count++; const clock_t exec68k_start = clock(); #endif #if SAFE_EXEC_68K if (ReadMacInt32(XLM_RUN_MODE) != MODE_EMUL_OP) printf("FATAL: Execute68k() not called from EMUL_OP mode\n"); #endif // Save program counters and branch registers uint32 saved_pc = pc(); uint32 saved_lr = lr(); uint32 saved_ctr= ctr(); uint32 saved_cr = get_cr(); // Create MacOS stack frame // FIXME: make sure MacOS doesn't expect PPC registers to live on top uint32 sp = gpr(1); gpr(1) -= 56; WriteMacInt32(gpr(1), sp); // Save PowerPC registers uint32 saved_GPRs[19]; memcpy(&saved_GPRs[0], &gpr(13), sizeof(uint32)*(32-13)); #if SAVE_FP_EXEC_68K double saved_FPRs[18]; memcpy(&saved_FPRs[0], &fpr(14), sizeof(double)*(32-14)); #endif // Setup registers for 68k emulator cr().set(CR_SO_field<2>::mask()); // Supervisor mode for (int i = 0; i < 8; i++) // d[0]..d[7] gpr(8 + i) = r->d[i]; for (int i = 0; i < 7; i++) // a[0]..a[6] gpr(16 + i) = r->a[i]; gpr(23) = 0; gpr(24) = entry; gpr(25) = ReadMacInt32(XLM_68K_R25); // MSB of SR gpr(26) = 0; gpr(28) = 0; // VBR gpr(29) = ntohl(kernel_data->ed.v[0x74 >> 2]); // Pointer to opcode table gpr(30) = ntohl(kernel_data->ed.v[0x78 >> 2]); // Address of emulator gpr(31) = KernelDataAddr + 0x1000; // Push return address (points to EXEC_RETURN opcode) on stack gpr(1) -= 4; WriteMacInt32(gpr(1), XLM_EXEC_RETURN_OPCODE); // Rentering 68k emulator WriteMacInt32(XLM_RUN_MODE, MODE_68K); // Set r0 to 0 for 68k emulator gpr(0) = 0; // Execute 68k opcode uint32 opcode = ReadMacInt16(gpr(24)); gpr(27) = (int32)(int16)ReadMacInt16(gpr(24) += 2); gpr(29) += opcode * 8; execute(gpr(29)); // Save r25 (contains current 68k interrupt level) WriteMacInt32(XLM_68K_R25, gpr(25)); // Reentering EMUL_OP mode WriteMacInt32(XLM_RUN_MODE, MODE_EMUL_OP); // Save 68k registers for (int i = 0; i < 8; i++) // d[0]..d[7] r->d[i] = gpr(8 + i); for (int i = 0; i < 7; i++) // a[0]..a[6] r->a[i] = gpr(16 + i); // Restore PowerPC registers memcpy(&gpr(13), &saved_GPRs[0], sizeof(uint32)*(32-13)); #if SAVE_FP_EXEC_68K memcpy(&fpr(14), &saved_FPRs[0], sizeof(double)*(32-14)); #endif // Cleanup stack gpr(1) += 56; // Restore program counters and branch registers pc() = saved_pc; lr() = saved_lr; ctr()= saved_ctr; set_cr(saved_cr); #if EMUL_TIME_STATS exec68k_time += (clock() - exec68k_start); #endif } // Call MacOS PPC code uint32 sheepshaver_cpu::execute_macos_code(uint32 tvect, int nargs, uint32 const *args) { #if EMUL_TIME_STATS macos_exec_count++; const clock_t macos_exec_start = clock(); #endif // Save program counters and branch registers uint32 saved_pc = pc(); uint32 saved_lr = lr(); uint32 saved_ctr= ctr(); // Build trampoline with EXEC_RETURN SheepVar32 trampoline = POWERPC_EXEC_RETURN; lr() = trampoline.addr(); gpr(1) -= 64; // Create stack frame uint32 proc = ReadMacInt32(tvect); // Get routine address uint32 toc = ReadMacInt32(tvect + 4); // Get TOC pointer // Save PowerPC registers uint32 regs[8]; regs[0] = gpr(2); for (int i = 0; i < nargs; i++) regs[i + 1] = gpr(i + 3); // Prepare and call MacOS routine gpr(2) = toc; for (int i = 0; i < nargs; i++) gpr(i + 3) = args[i]; execute(proc); uint32 retval = gpr(3); // Restore PowerPC registers for (int i = 0; i <= nargs; i++) gpr(i + 2) = regs[i]; // Cleanup stack gpr(1) += 64; // Restore program counters and branch registers pc() = saved_pc; lr() = saved_lr; ctr()= saved_ctr; #if EMUL_TIME_STATS macos_exec_time += (clock() - macos_exec_start); #endif return retval; } // Execute ppc routine inline void sheepshaver_cpu::execute_ppc(uint32 entry) { // Save branch registers uint32 saved_lr = lr(); SheepVar32 trampoline = POWERPC_EXEC_RETURN; WriteMacInt32(trampoline.addr(), POWERPC_EXEC_RETURN); lr() = trampoline.addr(); execute(entry); // Restore branch registers lr() = saved_lr; } // Resource Manager thunk inline void sheepshaver_cpu::get_resource(uint32 old_get_resource) { uint32 type = gpr(3); int16 id = gpr(4); // Create stack frame gpr(1) -= 56; // Call old routine execute_ppc(old_get_resource); // Call CheckLoad() uint32 handle = gpr(3); check_load_invoc(type, id, handle); gpr(3) = handle; // Cleanup stack gpr(1) += 56; } /** * SheepShaver CPU engine interface **/ // PowerPC CPU emulator static sheepshaver_cpu *ppc_cpu = NULL; void FlushCodeCache(uintptr start, uintptr end) { D(bug("FlushCodeCache(%08x, %08x)\n", start, end)); ppc_cpu->invalidate_cache_range(start, end); } // Dump PPC registers static void dump_registers(void) { ppc_cpu->dump_registers(); } // Dump log static void dump_log(void) { ppc_cpu->dump_log(); } static int read_mem(bfd_vma memaddr, bfd_byte *myaddr, int length, struct disassemble_info *info) { Mac2Host_memcpy(myaddr, memaddr, length); return 0; } static void dump_disassembly(const uint32 pc, const int prefix_count, const int suffix_count) { struct disassemble_info info; INIT_DISASSEMBLE_INFO(info, stderr, fprintf); info.read_memory_func = read_mem; const int count = prefix_count + suffix_count + 1; const uint32 base_addr = pc - prefix_count * 4; for (int i = 0; i < count; i++) { const bfd_vma addr = base_addr + i * 4; fprintf(stderr, "%s0x%8llx: ", addr == pc ? " >" : " ", addr); print_insn_ppc(addr, &info); fprintf(stderr, "\n"); } } sigsegv_return_t sigsegv_handler(sigsegv_info_t *sip) { #if ENABLE_VOSF // Handle screen fault extern bool Screen_fault_handler(sigsegv_info_t *sip); if (Screen_fault_handler(sip)) return SIGSEGV_RETURN_SUCCESS; #endif const uintptr addr = (uintptr)sigsegv_get_fault_address(sip); #if HAVE_SIGSEGV_SKIP_INSTRUCTION // Ignore writes to ROM if ((addr - (uintptr)ROMBaseHost) < ROM_SIZE) return SIGSEGV_RETURN_SKIP_INSTRUCTION; // Get program counter of target CPU sheepshaver_cpu * const cpu = ppc_cpu; const uint32 pc = cpu->pc(); // Fault in Mac ROM or RAM? bool mac_fault = (pc >= ROMBase && pc < (ROMBase + ROM_AREA_SIZE)) || (pc >= RAMBase && pc < (RAMBase + RAMSize)) || (pc >= DR_CACHE_BASE && pc < (DR_CACHE_BASE + DR_CACHE_SIZE)); if (mac_fault) { // "VM settings" during MacOS 8 installation if (pc == ROMBase + 0x488160 && cpu->gpr(20) == 0xf8000000) return SIGSEGV_RETURN_SKIP_INSTRUCTION; // MacOS 8.5 installation else if (pc == ROMBase + 0x488140 && cpu->gpr(16) == 0xf8000000) return SIGSEGV_RETURN_SKIP_INSTRUCTION; // MacOS 8 serial drivers on startup else if (pc == ROMBase + 0x48e080 && (cpu->gpr(8) == 0xf3012002 || cpu->gpr(8) == 0xf3012000)) return SIGSEGV_RETURN_SKIP_INSTRUCTION; // MacOS 8.1 serial drivers on startup else if (pc == ROMBase + 0x48c5e0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000)) return SIGSEGV_RETURN_SKIP_INSTRUCTION; else if (pc == ROMBase + 0x4a10a0 && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000)) return SIGSEGV_RETURN_SKIP_INSTRUCTION; // MacOS 8.6 serial drivers on startup (with DR Cache and OldWorld ROM) else if ((pc - DR_CACHE_BASE) < DR_CACHE_SIZE && (cpu->gpr(16) == 0xf3012002 || cpu->gpr(16) == 0xf3012000)) return SIGSEGV_RETURN_SKIP_INSTRUCTION; else if ((pc - DR_CACHE_BASE) < DR_CACHE_SIZE && (cpu->gpr(20) == 0xf3012002 || cpu->gpr(20) == 0xf3012000)) return SIGSEGV_RETURN_SKIP_INSTRUCTION; // Ignore writes to the zero page else if ((uint32)(addr - SheepMem::ZeroPage()) < (uint32)SheepMem::PageSize()) return SIGSEGV_RETURN_SKIP_INSTRUCTION; // Ignore all other faults, if requested if (PrefsFindBool("ignoresegv")) return SIGSEGV_RETURN_SKIP_INSTRUCTION; } #else #error "FIXME: You don't have the capability to skip instruction within signal handlers" #endif fprintf(stderr, "SIGSEGV\n"); fprintf(stderr, " pc %p\n", sigsegv_get_fault_instruction_address(sip)); fprintf(stderr, " ea %p\n", sigsegv_get_fault_address(sip)); dump_registers(); dump_log(); dump_disassembly(pc, 8, 8); enter_mon(); QuitEmulator(); return SIGSEGV_RETURN_FAILURE; } /* * Initialize CPU emulation */ void init_emul_ppc(void) { // Get pointer to KernelData in host address space kernel_data = (KernelData *)Mac2HostAddr(KERNEL_DATA_BASE); // Initialize main CPU emulator ppc_cpu = new sheepshaver_cpu(); ppc_cpu->set_register(powerpc_registers::GPR(3), any_register((uint32)ROMBase + 0x30d000)); ppc_cpu->set_register(powerpc_registers::GPR(4), any_register(KernelDataAddr + 0x1000)); WriteMacInt32(XLM_RUN_MODE, MODE_68K); #if ENABLE_MON // Install "regs" command in cxmon mon_add_command("regs", dump_registers, "regs Dump PowerPC registers\n"); mon_add_command("log", dump_log, "log Dump PowerPC emulation log\n"); #endif #if EMUL_TIME_STATS emul_start_time = clock(); #endif } /* * Deinitialize emulation */ void exit_emul_ppc(void) { #if EMUL_TIME_STATS clock_t emul_end_time = clock(); printf("### Statistics for SheepShaver emulation parts\n"); const clock_t emul_time = emul_end_time - emul_start_time; printf("Total emulation time : %.1f sec\n", double(emul_time) / double(CLOCKS_PER_SEC)); printf("Total interrupt count: %d (%2.1f Hz)\n", interrupt_count, (double(interrupt_count) * CLOCKS_PER_SEC) / double(emul_time)); printf("Total ppc interrupt count: %d (%2.1f %%)\n", ppc_interrupt_count, (double(ppc_interrupt_count) * 100.0) / double(interrupt_count)); #define PRINT_STATS(LABEL, VAR_PREFIX) do { \ printf("Total " LABEL " count : %d\n", VAR_PREFIX##_count); \ printf("Total " LABEL " time : %.1f sec (%.1f%%)\n", \ double(VAR_PREFIX##_time) / double(CLOCKS_PER_SEC), \ 100.0 * double(VAR_PREFIX##_time) / double(emul_time)); \ } while (0) PRINT_STATS("Execute68k[Trap] execution", exec68k); PRINT_STATS("NativeOp execution", native_exec); PRINT_STATS("MacOS routine execution", macos_exec); #undef PRINT_STATS printf("\n"); #endif delete ppc_cpu; ppc_cpu = NULL; } #if PPC_ENABLE_JIT && PPC_REENTRANT_JIT // Initialize EmulOp trampolines void init_emul_op_trampolines(basic_dyngen & dg) { typedef void (*func_t)(dyngen_cpu_base, uint32); func_t func; // EmulOp emul_op_trampoline = dg.gen_start(); func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_emul_op).ptr(); dg.gen_invoke_CPU_T0(func); dg.gen_exec_return(); dg.gen_end(); // NativeOp native_op_trampoline = dg.gen_start(); func = (func_t)nv_mem_fun(&sheepshaver_cpu::execute_native_op).ptr(); dg.gen_invoke_CPU_T0(func); dg.gen_exec_return(); dg.gen_end(); D(bug("EmulOp trampoline: %p\n", emul_op_trampoline)); D(bug("NativeOp trampoline: %p\n", native_op_trampoline)); } #endif /* * Emulation loop */ void emul_ppc(uint32 entry) { #if 0 ppc_cpu->start_log(); #endif // start emulation loop and enable code translation or caching ppc_cpu->execute(entry); } /* * Handle PowerPC interrupt */ void TriggerInterrupt(void) { idle_resume(); #if 0 WriteMacInt32(0x16a, ReadMacInt32(0x16a) + 1); #else // Trigger interrupt to main cpu only if (ppc_cpu) ppc_cpu->trigger_interrupt(); #endif } void HandleInterrupt(powerpc_registers *r) { #ifdef USE_SDL_VIDEO // We must fill in the events queue in the same thread that did call SDL_SetVideoMode() SDL_PumpEvents(); #endif // Do nothing if interrupts are disabled if (int32(ReadMacInt32(XLM_IRQ_NEST)) > 0) return; // Update interrupt count #if EMUL_TIME_STATS interrupt_count++; #endif // Interrupt action depends on current run mode switch (ReadMacInt32(XLM_RUN_MODE)) { case MODE_68K: // 68k emulator active, trigger 68k interrupt level 1 WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1); r->cr.set(r->cr.get() | tswap32(kernel_data->v[0x674 >> 2])); break; #if INTERRUPTS_IN_NATIVE_MODE case MODE_NATIVE: // 68k emulator inactive, in nanokernel? if (r->gpr[1] != KernelDataAddr) { // Prepare for 68k interrupt level 1 WriteMacInt16(tswap32(kernel_data->v[0x67c >> 2]), 1); WriteMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc, ReadMacInt32(tswap32(kernel_data->v[0x658 >> 2]) + 0xdc) | tswap32(kernel_data->v[0x674 >> 2])); // Execute nanokernel interrupt routine (this will activate the 68k emulator) DisableInterrupt(); if (ROMType == ROMTYPE_NEWWORLD) ppc_cpu->interrupt(ROMBase + 0x312b1c); else ppc_cpu->interrupt(ROMBase + 0x312a3c); } break; #endif #if INTERRUPTS_IN_EMUL_OP_MODE case MODE_EMUL_OP: // 68k emulator active, within EMUL_OP routine, execute 68k interrupt routine directly when interrupt level is 0 if ((ReadMacInt32(XLM_68K_R25) & 7) == 0) { #if EMUL_TIME_STATS const clock_t interrupt_start = clock(); #endif #if 1 // Execute full 68k interrupt routine M68kRegisters r; uint32 old_r25 = ReadMacInt32(XLM_68K_R25); // Save interrupt level WriteMacInt32(XLM_68K_R25, 0x21); // Execute with interrupt level 1 static const uint8 proc_template[] = { 0x3f, 0x3c, 0x00, 0x00, // move.w #$0000,-(sp) (fake format word) 0x48, 0x7a, 0x00, 0x0a, // pea @1(pc) (return address) 0x40, 0xe7, // move sr,-(sp) (saved SR) 0x20, 0x78, 0x00, 0x064, // move.l $64,a0 0x4e, 0xd0, // jmp (a0) M68K_RTS >> 8, M68K_RTS & 0xff // @1 }; BUILD_SHEEPSHAVER_PROCEDURE(proc); Execute68k(proc, &r); WriteMacInt32(XLM_68K_R25, old_r25); // Restore interrupt level #else // Only update cursor if (HasMacStarted()) { if (InterruptFlags & INTFLAG_VIA) { ClearInterruptFlag(INTFLAG_VIA); ADBInterrupt(); ExecuteNative(NATIVE_VIDEO_VBL); } } #endif #if EMUL_TIME_STATS interrupt_time += (clock() - interrupt_start); #endif } break; #endif } } // Execute NATIVE_OP routine void sheepshaver_cpu::execute_native_op(uint32 selector) { #if EMUL_TIME_STATS native_exec_count++; const clock_t native_exec_start = clock(); #endif switch (selector) { case NATIVE_PATCH_NAME_REGISTRY: DoPatchNameRegistry(); break; case NATIVE_VIDEO_INSTALL_ACCEL: VideoInstallAccel(); break; case NATIVE_VIDEO_VBL: VideoVBL(); break; case NATIVE_VIDEO_DO_DRIVER_IO: gpr(3) = (int32)(int16)VideoDoDriverIO(gpr(3), gpr(4), gpr(5), gpr(6), gpr(7)); break; case NATIVE_ETHER_AO_GET_HWADDR: AO_get_ethernet_address(gpr(3)); break; case NATIVE_ETHER_AO_ADD_MULTI: AO_enable_multicast(gpr(3)); break; case NATIVE_ETHER_AO_DEL_MULTI: AO_disable_multicast(gpr(3)); break; case NATIVE_ETHER_AO_SEND_PACKET: AO_transmit_packet(gpr(3)); break; case NATIVE_ETHER_IRQ: EtherIRQ(); break; case NATIVE_ETHER_INIT: gpr(3) = InitStreamModule((void *)gpr(3)); break; case NATIVE_ETHER_TERM: TerminateStreamModule(); break; case NATIVE_ETHER_OPEN: gpr(3) = ether_open((queue_t *)gpr(3), (void *)gpr(4), gpr(5), gpr(6), (void*)gpr(7)); break; case NATIVE_ETHER_CLOSE: gpr(3) = ether_close((queue_t *)gpr(3), gpr(4), (void *)gpr(5)); break; case NATIVE_ETHER_WPUT: gpr(3) = ether_wput((queue_t *)gpr(3), (mblk_t *)gpr(4)); break; case NATIVE_ETHER_RSRV: gpr(3) = ether_rsrv((queue_t *)gpr(3)); break; case NATIVE_NQD_SYNC_HOOK: gpr(3) = NQD_sync_hook(gpr(3)); break; case NATIVE_NQD_UNKNOWN_HOOK: gpr(3) = NQD_unknown_hook(gpr(3)); break; case NATIVE_NQD_BITBLT_HOOK: gpr(3) = NQD_bitblt_hook(gpr(3)); break; case NATIVE_NQD_BITBLT: NQD_bitblt(gpr(3)); break; case NATIVE_NQD_FILLRECT_HOOK: gpr(3) = NQD_fillrect_hook(gpr(3)); break; case NATIVE_NQD_INVRECT: NQD_invrect(gpr(3)); break; case NATIVE_NQD_FILLRECT: NQD_fillrect(gpr(3)); break; case NATIVE_SERIAL_NOTHING: case NATIVE_SERIAL_OPEN: case NATIVE_SERIAL_PRIME_IN: case NATIVE_SERIAL_PRIME_OUT: case NATIVE_SERIAL_CONTROL: case NATIVE_SERIAL_STATUS: case NATIVE_SERIAL_CLOSE: { typedef int16 (*SerialCallback)(uint32, uint32); static const SerialCallback serial_callbacks[] = { SerialNothing, SerialOpen, SerialPrimeIn, SerialPrimeOut, SerialControl, SerialStatus, SerialClose }; gpr(3) = serial_callbacks[selector - NATIVE_SERIAL_NOTHING](gpr(3), gpr(4)); break; } case NATIVE_GET_RESOURCE: get_resource(ReadMacInt32(XLM_GET_RESOURCE)); break; case NATIVE_GET_1_RESOURCE: get_resource(ReadMacInt32(XLM_GET_1_RESOURCE)); break; case NATIVE_GET_IND_RESOURCE: get_resource(ReadMacInt32(XLM_GET_IND_RESOURCE)); break; case NATIVE_GET_1_IND_RESOURCE: get_resource(ReadMacInt32(XLM_GET_1_IND_RESOURCE)); break; case NATIVE_R_GET_RESOURCE: get_resource(ReadMacInt32(XLM_R_GET_RESOURCE)); break; case NATIVE_MAKE_EXECUTABLE: MakeExecutable(0, gpr(4), gpr(5)); break; case NATIVE_CHECK_LOAD_INVOC: check_load_invoc(gpr(3), gpr(4), gpr(5)); break; case NATIVE_NAMED_CHECK_LOAD_INVOC: named_check_load_invoc(gpr(3), gpr(4), gpr(5)); break; default: printf("FATAL: NATIVE_OP called with bogus selector %d\n", selector); QuitEmulator(); break; } #if EMUL_TIME_STATS native_exec_time += (clock() - native_exec_start); #endif } /* * Execute 68k subroutine (must be ended with EXEC_RETURN) * This must only be called by the emul_thread when in EMUL_OP mode * r->a[7] is unused, the routine runs on the caller's stack */ void Execute68k(uint32 pc, M68kRegisters *r) { ppc_cpu->execute_68k(pc, r); } /* * Execute 68k A-Trap from EMUL_OP routine * r->a[7] is unused, the routine runs on the caller's stack */ void Execute68kTrap(uint16 trap, M68kRegisters *r) { SheepVar proc_var(4); uint32 proc = proc_var.addr(); WriteMacInt16(proc, trap); WriteMacInt16(proc + 2, M68K_RTS); Execute68k(proc, r); } /* * Call MacOS PPC code */ uint32 call_macos(uint32 tvect) { return ppc_cpu->execute_macos_code(tvect, 0, NULL); } uint32 call_macos1(uint32 tvect, uint32 arg1) { const uint32 args[] = { arg1 }; return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args); } uint32 call_macos2(uint32 tvect, uint32 arg1, uint32 arg2) { const uint32 args[] = { arg1, arg2 }; return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args); } uint32 call_macos3(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3) { const uint32 args[] = { arg1, arg2, arg3 }; return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args); } uint32 call_macos4(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4) { const uint32 args[] = { arg1, arg2, arg3, arg4 }; return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args); } uint32 call_macos5(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5) { const uint32 args[] = { arg1, arg2, arg3, arg4, arg5 }; return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args); } uint32 call_macos6(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6) { const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6 }; return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args); } uint32 call_macos7(uint32 tvect, uint32 arg1, uint32 arg2, uint32 arg3, uint32 arg4, uint32 arg5, uint32 arg6, uint32 arg7) { const uint32 args[] = { arg1, arg2, arg3, arg4, arg5, arg6, arg7 }; return ppc_cpu->execute_macos_code(tvect, sizeof(args)/sizeof(args[0]), args); }