/* * sigsegv.cpp - SIGSEGV signals support * * Derived from Bruno Haible's work on his SIGSEGV library for clisp * * * MacOS X support derived from the post by Timothy J. Wood to the * omnigroup macosx-dev list: * Mach Exception Handlers 101 (Was Re: ptrace, gdb) * tjw@omnigroup.com Sun, 4 Jun 2000 * www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html * * Basilisk II (C) 1997-2008 Christian Bauer * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #ifdef HAVE_UNISTD_H #include #endif #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include #include #include "sigsegv.h" #ifndef NO_STD_NAMESPACE using std::list; #endif // Return value type of a signal handler (standard type if not defined) #ifndef RETSIGTYPE #define RETSIGTYPE void #endif // Size of an unsigned integer large enough to hold all bits of a pointer // NOTE: this can be different than SIGSEGV_REGISTER_TYPE. In // particular, on ILP32 systems with a 64-bit kernel (HP-UX/ia64?) #if defined(HAVE_WIN32_VM) // Windows is either ILP32 or LLP64 #include typedef UINT_PTR sigsegv_uintptr_t; #else // Other systems are sane enough to follow ILP32 or LP64 models typedef unsigned long sigsegv_uintptr_t; #endif // Type of the system signal handler typedef RETSIGTYPE (*signal_handler)(int); // User's SIGSEGV handler static sigsegv_fault_handler_t sigsegv_fault_handler = 0; // Function called to dump state if we can't handle the fault static sigsegv_state_dumper_t sigsegv_state_dumper = 0; #if defined(HAVE_SIGINFO_T) || defined(HAVE_SIGCONTEXT_SUBTERFUGE) // Actual SIGSEGV handler installer static bool sigsegv_do_install_handler(int sig); #endif /* * Instruction decoding aids */ // Transfer type enum transfer_type_t { SIGSEGV_TRANSFER_UNKNOWN = 0, SIGSEGV_TRANSFER_LOAD = 1, SIGSEGV_TRANSFER_STORE = 2 }; // Transfer size enum transfer_size_t { SIZE_UNKNOWN, SIZE_BYTE, SIZE_WORD, // 2 bytes SIZE_LONG, // 4 bytes SIZE_QUAD // 8 bytes }; #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__) || defined(__ppc64__)) // Addressing mode enum addressing_mode_t { MODE_UNKNOWN, MODE_NORM, MODE_U, MODE_X, MODE_UX }; // Decoded instruction struct instruction_t { transfer_type_t transfer_type; transfer_size_t transfer_size; addressing_mode_t addr_mode; unsigned int addr; char ra, rd; }; static void powerpc_decode_instruction(instruction_t *instruction, unsigned int nip, unsigned long * gpr) { // Get opcode and divide into fields unsigned int opcode = *((unsigned int *)(unsigned long)nip); unsigned int primop = opcode >> 26; unsigned int exop = (opcode >> 1) & 0x3ff; unsigned int ra = (opcode >> 16) & 0x1f; unsigned int rb = (opcode >> 11) & 0x1f; unsigned int rd = (opcode >> 21) & 0x1f; signed int imm = (signed short)(opcode & 0xffff); // Analyze opcode transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN; transfer_size_t transfer_size = SIZE_UNKNOWN; addressing_mode_t addr_mode = MODE_UNKNOWN; switch (primop) { case 31: switch (exop) { case 23: // lwzx transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_X; break; case 55: // lwzux transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break; case 87: // lbzx transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break; case 119: // lbzux transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break; case 151: // stwx transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_X; break; case 183: // stwux transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break; case 215: // stbx transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break; case 247: // stbux transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break; case 279: // lhzx transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break; case 311: // lhzux transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break; case 343: // lhax transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break; case 375: // lhaux transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break; case 407: // sthx transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break; case 439: // sthux transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break; } break; case 32: // lwz transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break; case 33: // lwzu transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_U; break; case 34: // lbz transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break; case 35: // lbzu transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break; case 36: // stw transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break; case 37: // stwu transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_U; break; case 38: // stb transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break; case 39: // stbu transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break; case 40: // lhz transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break; case 41: // lhzu transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break; case 42: // lha transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break; case 43: // lhau transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break; case 44: // sth transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break; case 45: // sthu transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break; case 58: // ld, ldu, lwa transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_QUAD; addr_mode = ((opcode & 3) == 1) ? MODE_U : MODE_NORM; imm &= ~3; break; case 62: // std, stdu, stq transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_QUAD; addr_mode = ((opcode & 3) == 1) ? MODE_U : MODE_NORM; imm &= ~3; break; } // Calculate effective address unsigned int addr = 0; switch (addr_mode) { case MODE_X: case MODE_UX: if (ra == 0) addr = gpr[rb]; else addr = gpr[ra] + gpr[rb]; break; case MODE_NORM: case MODE_U: if (ra == 0) addr = (signed int)(signed short)imm; else addr = gpr[ra] + (signed int)(signed short)imm; break; default: break; } // Commit decoded instruction instruction->addr = addr; instruction->addr_mode = addr_mode; instruction->transfer_type = transfer_type; instruction->transfer_size = transfer_size; instruction->ra = ra; instruction->rd = rd; } #endif /* * OS-dependant SIGSEGV signals support section */ #if HAVE_SIGINFO_T // Generic extended signal handler #if defined(__hpux) #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV) FAULT_HANDLER(SIGBUS) #else #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV) #endif #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, siginfo_t *sip, void *scp #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 siginfo_t *sip, void *scp #define SIGSEGV_FAULT_HANDLER_ARGS sip, scp #define SIGSEGV_FAULT_ADDRESS sip->si_addr #if (defined(sgi) || defined(__sgi)) #include #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.gregs) #define SIGSEGV_FAULT_INSTRUCTION (unsigned long)SIGSEGV_CONTEXT_REGS[CTX_EPC] #if (defined(mips) || defined(__mips)) #define SIGSEGV_REGISTER_FILE &SIGSEGV_CONTEXT_REGS[CTX_EPC], &SIGSEGV_CONTEXT_REGS[CTX_R0] #define SIGSEGV_SKIP_INSTRUCTION mips_skip_instruction #endif #endif #if defined(__sun__) #if (defined(sparc) || defined(__sparc__)) #include #include #include #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.gregs) #define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS[REG_PC] #define SIGSEGV_SPARC_GWINDOWS (((ucontext_t *)scp)->uc_mcontext.gwins) #define SIGSEGV_SPARC_RWINDOW (struct rwindow *)((char *)SIGSEGV_CONTEXT_REGS[REG_SP] + STACK_BIAS) #define SIGSEGV_REGISTER_FILE ((unsigned long *)SIGSEGV_CONTEXT_REGS), SIGSEGV_SPARC_GWINDOWS, SIGSEGV_SPARC_RWINDOW #define SIGSEGV_SKIP_INSTRUCTION sparc_skip_instruction #endif #if defined(__i386__) #include #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.gregs) #define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS[EIP] #define SIGSEGV_REGISTER_FILE (SIGSEGV_REGISTER_TYPE *)SIGSEGV_CONTEXT_REGS #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction #endif #endif #if defined(__FreeBSD__) || defined(__OpenBSD__) #if (defined(i386) || defined(__i386__)) #undef SIGSEGV_ALL_SIGNALS #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGBUS) #define SIGSEGV_FAULT_INSTRUCTION (((struct sigcontext *)scp)->sc_eip) #define SIGSEGV_REGISTER_FILE ((SIGSEGV_REGISTER_TYPE *)&(((struct sigcontext *)scp)->sc_edi)) /* EDI is the first GPR (even below EIP) in sigcontext */ #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction #elif (defined(x86_64) || defined(__x86_64__)) #define SIGSEGV_FAULT_INSTRUCTION (((struct sigcontext *)scp)->sc_rip) #define SIGSEGV_REGISTER_FILE ((SIGSEGV_REGISTER_TYPE *)&(((struct sigcontext *)scp)->sc_rdi)) #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction #endif #endif #if defined(__NetBSD__) #if (defined(i386) || defined(__i386__)) #include #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.__gregs) #define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS[_REG_EIP] #define SIGSEGV_REGISTER_FILE (SIGSEGV_REGISTER_TYPE *)SIGSEGV_CONTEXT_REGS #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction #endif #if (defined(powerpc) || defined(__powerpc__)) #include #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.__gregs) #define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS[_REG_PC] #define SIGSEGV_REGISTER_FILE (unsigned long *)&SIGSEGV_CONTEXT_REGS[_REG_PC], (unsigned long *)&SIGSEGV_CONTEXT_REGS[_REG_R0] #define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction #endif #endif #if defined(__linux__) #if HAVE_ASM_UCONTEXT #include /* use kernel structure, glibc may not be in sync */ #else #include #endif #if (defined(hppa) || defined(__hppa__)) #undef SIGSEGV_FAULT_ADDRESS #define SIGSEGV_FAULT_ADDRESS sip->si_ptr #endif #if (defined(i386) || defined(__i386__)) #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.gregs) #define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS[14] /* should use REG_EIP instead */ #define SIGSEGV_REGISTER_FILE (SIGSEGV_REGISTER_TYPE *)SIGSEGV_CONTEXT_REGS #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction #elif (defined(x86_64) || defined(__x86_64__)) #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.gregs) #define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS[16] /* should use REG_RIP instead */ #define SIGSEGV_REGISTER_FILE (SIGSEGV_REGISTER_TYPE *)SIGSEGV_CONTEXT_REGS #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction #elif (defined(ia64) || defined(__ia64__)) #define SIGSEGV_CONTEXT_REGS ((struct sigcontext *)scp) #define SIGSEGV_FAULT_INSTRUCTION (SIGSEGV_CONTEXT_REGS->sc_ip & ~0x3ULL) /* slot number is in bits 0 and 1 */ #define SIGSEGV_REGISTER_FILE SIGSEGV_CONTEXT_REGS #define SIGSEGV_SKIP_INSTRUCTION ia64_skip_instruction #elif (defined(powerpc) || defined(__powerpc__)) #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.regs) #define SIGSEGV_FAULT_INSTRUCTION (SIGSEGV_CONTEXT_REGS->nip) #define SIGSEGV_REGISTER_FILE (unsigned long *)&SIGSEGV_CONTEXT_REGS->nip, (unsigned long *)(SIGSEGV_CONTEXT_REGS->gpr) #define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction #elif (defined(arm) || defined(__arm__)) #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext) #define SIGSEGV_FAULT_INSTRUCTION (SIGSEGV_CONTEXT_REGS.arm_pc) #define SIGSEGV_REGISTER_FILE (&SIGSEGV_CONTEXT_REGS.arm_r0) #define SIGSEGV_SKIP_INSTRUCTION arm_skip_instruction #elif (defined(aarch64) || defined(__aarch64__)) #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext) #define SIGSEGV_FAULT_INSTRUCTION (SIGSEGV_CONTEXT_REGS.pc) #define SIGSEGV_REGISTER_FILE ((unsigned long *)&SIGSEGV_CONTEXT_REGS.regs) #define SIGSEGV_SKIP_INSTRUCTION aarch64_skip_instruction #elif (defined(mips) || defined(__mips__)) #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext) #define SIGSEGV_FAULT_INSTRUCTION (SIGSEGV_CONTEXT_REGS.pc) #define SIGSEGV_REGISTER_FILE &SIGSEGV_CONTEXT_REGS.pc, &SIGSEGV_CONTEXT_REGS.gregs[0] #define SIGSEGV_SKIP_INSTRUCTION mips_skip_instruction #endif #endif // defined(__linux__) #if (defined(__hpux) || defined(__hpux__)) #if (defined(__hppa) || defined(__hppa__)) #define SIGSEGV_CONTEXT_REGS (&((ucontext_t *)scp)->uc_mcontext) #define SIGSEGV_FAULT_INSTRUCTION_32 (SIGSEGV_CONTEXT_REGS->ss_narrow.ss_pcoq_head & ~3ul) #define SIGSEGV_FAULT_INSTRUCTION_64 (SIGSEGV_CONTEXT_REGS->ss_wide.ss_64.ss_pcoq_head & ~3ull) #if defined(__LP64__) #define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_FAULT_INSTRUCTION_64 #else #define SIGSEGV_FAULT_INSTRUCTION ((SIGSEGV_CONTEXT_REGS->ss_flags & SS_WIDEREGS) ? \ (uint32_t)SIGSEGV_FAULT_INSTRUCTION_64 : \ SIGSEGV_FAULT_INSTRUCTION_32) #endif #endif #if (defined(__ia64) || defined(__ia64__)) #include #define SIGSEGV_CONTEXT_REGS ((ucontext_t *)scp) #define SIGSEGV_FAULT_INSTRUCTION get_fault_instruction(SIGSEGV_CONTEXT_REGS) #define SIGSEGV_REGISTER_FILE SIGSEGV_CONTEXT_REGS #define SIGSEGV_SKIP_INSTRUCTION ia64_skip_instruction #include static inline sigsegv_address_t get_fault_instruction(const ucontext_t *ucp) { uint64_t ip; if (__uc_get_ip(ucp, &ip) != 0) return SIGSEGV_INVALID_ADDRESS; return (sigsegv_address_t)(ip & ~3ULL); } #endif #endif #endif #if HAVE_SIGCONTEXT_SUBTERFUGE // Linux kernels prior to 2.4 ? #if defined(__linux__) #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV) #if (defined(i386) || defined(__i386__)) #include #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, struct sigcontext scs #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp #define SIGSEGV_FAULT_HANDLER_ARGS &scs #define SIGSEGV_FAULT_ADDRESS scp->cr2 #define SIGSEGV_FAULT_INSTRUCTION scp->eip #define SIGSEGV_REGISTER_FILE (SIGSEGV_REGISTER_TYPE *)scp #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction #endif #if (defined(sparc) || defined(__sparc__)) #include #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp, char *addr #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp, addr #define SIGSEGV_FAULT_ADDRESS addr #endif #if (defined(powerpc) || defined(__powerpc__)) #include #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, struct sigcontext *scp #define SIGSEGV_FAULT_HANDLER_ARGS sig, scp #define SIGSEGV_FAULT_ADDRESS scp->regs->dar #define SIGSEGV_FAULT_INSTRUCTION scp->regs->nip #define SIGSEGV_REGISTER_FILE (unsigned long *)&scp->regs->nip, (unsigned long *)(scp->regs->gpr) #define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction #endif #if (defined(alpha) || defined(__alpha__)) #include #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp #define SIGSEGV_FAULT_ADDRESS get_fault_address(scp) #define SIGSEGV_FAULT_INSTRUCTION scp->sc_pc #endif #if (defined(arm) || defined(__arm__)) #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int r1, int r2, int r3, struct sigcontext sc #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp #define SIGSEGV_FAULT_HANDLER_ARGS &sc #define SIGSEGV_FAULT_ADDRESS scp->fault_address #define SIGSEGV_FAULT_INSTRUCTION scp->arm_pc #define SIGSEGV_REGISTER_FILE &scp->arm_r0 #define SIGSEGV_SKIP_INSTRUCTION arm_skip_instruction #endif #endif // Irix 5 or 6 on MIPS #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(_SYSTYPE_SVR4)) #include #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp #define SIGSEGV_FAULT_ADDRESS (unsigned long)scp->sc_badvaddr #define SIGSEGV_FAULT_INSTRUCTION (unsigned long)scp->sc_pc #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV) #endif // HP-UX #if (defined(hpux) || defined(__hpux__)) #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp #define SIGSEGV_FAULT_ADDRESS scp->sc_sl.sl_ss.ss_narrow.ss_cr21 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV) FAULT_HANDLER(SIGBUS) #endif // OSF/1 on Alpha #if defined(__osf__) #include #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp #define SIGSEGV_FAULT_ADDRESS scp->sc_traparg_a0 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV) #endif // AIX #if defined(_AIX) #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp #define SIGSEGV_FAULT_ADDRESS scp->sc_jmpbuf.jmp_context.o_vaddr #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV) #endif // NetBSD #if defined(__NetBSD__) #if (defined(m68k) || defined(__m68k__)) #include #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp #define SIGSEGV_FAULT_ADDRESS get_fault_address(scp) #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV) // Use decoding scheme from BasiliskII/m68k native static sigsegv_address_t get_fault_address(struct sigcontext *scp) { struct sigstate { int ss_flags; struct frame ss_frame; }; struct sigstate *state = (struct sigstate *)scp->sc_ap; char *fault_addr; switch (state->ss_frame.f_format) { case 7: /* 68040 access error */ /* "code" is sometimes unreliable (i.e. contains NULL or a bogus address), reason unknown */ fault_addr = state->ss_frame.f_fmt7.f_fa; break; default: fault_addr = (char *)code; break; } return (sigsegv_address_t)fault_addr; } #endif #if (defined(alpha) || defined(__alpha__)) #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp #define SIGSEGV_FAULT_ADDRESS get_fault_address(scp) #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGBUS) #endif #if (defined(i386) || defined(__i386__)) #error "FIXME: need to decode instruction and compute EA" #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV) #endif #endif #if defined(__FreeBSD__) #if (defined(i386) || defined(__i386__)) #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGBUS) #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp, char *addr #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp, addr #define SIGSEGV_FAULT_ADDRESS addr #define SIGSEGV_FAULT_INSTRUCTION scp->sc_eip #define SIGSEGV_REGISTER_FILE ((SIGSEGV_REGISTER_TYPE *)&scp->sc_edi) #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction #endif #if (defined(alpha) || defined(__alpha__)) #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV) #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, char *addr, struct sigcontext *scp #define SIGSEGV_FAULT_HANDLER_ARGS sig, addr, scp #define SIGSEGV_FAULT_ADDRESS addr #define SIGSEGV_FAULT_INSTRUCTION scp->sc_pc #endif #endif // Extract fault address out of a sigcontext #if (defined(alpha) || defined(__alpha__)) // From Boehm's GC 6.0alpha8 static sigsegv_address_t get_fault_address(struct sigcontext *scp) { unsigned int instruction = *((unsigned int *)(scp->sc_pc)); unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f]; fault_address += (signed long)(signed short)(instruction & 0xffff); return (sigsegv_address_t)fault_address; } #endif // MacOS X, not sure which version this works in. Under 10.1 // vm_protect does not appear to work from a signal handler. Under // 10.2 signal handlers get siginfo type arguments but the si_addr // field is the address of the faulting instruction and not the // address that caused the SIGBUS. Maybe this works in 10.0? In any // case with Mach exception handlers there is a way to do what this // was meant to do. #ifndef HAVE_MACH_EXCEPTIONS #if defined(__APPLE__) && defined(__MACH__) #if (defined(ppc) || defined(__ppc__)) #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct __darwin_sigcontext *scp #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp #define SIGSEGV_FAULT_ADDRESS get_fault_address(scp) #define SIGSEGV_FAULT_INSTRUCTION scp->MACH_FIELD_NAME(sc_ir) #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGBUS) #define SIGSEGV_REGISTER_FILE (unsigned int *)&scp->sc_ir, &((unsigned int *) scp->sc_regs)[2] #define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction // Use decoding scheme from SheepShaver static sigsegv_address_t get_fault_address(struct sigcontext *scp) { unsigned int nip = (unsigned int) scp->MACH_FIELD_NAME(sc_ir); unsigned int * gpr = &((unsigned int *) scp->MACH_FIELD_NAME(sc_regs))[2]; instruction_t instr; powerpc_decode_instruction(&instr, nip, (long unsigned int*)gpr); return (sigsegv_address_t)instr.addr; } #endif #endif #endif #endif #if HAVE_WIN32_EXCEPTIONS #define WIN32_LEAN_AND_MEAN /* avoid including junk */ #include #include #define SIGSEGV_FAULT_HANDLER_ARGLIST EXCEPTION_POINTERS *ExceptionInfo #define SIGSEGV_FAULT_HANDLER_ARGS ExceptionInfo #define SIGSEGV_FAULT_ADDRESS ExceptionInfo->ExceptionRecord->ExceptionInformation[1] #define SIGSEGV_CONTEXT_REGS ExceptionInfo->ContextRecord #if defined(_M_IX86) #define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS->Eip #define SIGSEGV_REGISTER_FILE ((SIGSEGV_REGISTER_TYPE *)&SIGSEGV_CONTEXT_REGS->Edi) #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction #endif #if defined(_M_X64) #define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS->Rip #define SIGSEGV_REGISTER_FILE ((SIGSEGV_REGISTER_TYPE *)&SIGSEGV_CONTEXT_REGS->Rax) #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction #endif #if defined(_M_IA64) #define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS->StIIP #endif #endif #if HAVE_MACH_EXCEPTIONS // This can easily be extended to other Mach systems, but really who // uses HURD (oops GNU/HURD), Darwin/x86, NextStep, Rhapsody, or CMU // Mach 2.5/3.0? #if defined(__APPLE__) && defined(__MACH__) #include #include #include #include /* * If you are familiar with MIG then you will understand the frustration * that was necessary to get these embedded into C++ code by hand. */ extern "C" { #include #include #ifndef HAVE_MACH64_VM // Undefine this to prevent a preprocessor warning when compiling on a // 32-bit machine with Mac OS X 10.5. #undef MACH_EXCEPTION_CODES #define MACH_EXCEPTION_CODES 0 #define mach_exception_data_t exception_data_t #define mach_exception_data_type_t exception_data_type_t #define mach_exc_server exc_server #define catch_mach_exception_raise catch_exception_raise #define mach_exception_raise exception_raise #define mach_exception_raise_state exception_raise_state #define mach_exception_raise_state_identity exception_raise_state_identity #endif extern boolean_t mach_exc_server(mach_msg_header_t *, mach_msg_header_t *); extern kern_return_t catch_mach_exception_raise(mach_port_t, mach_port_t, mach_port_t, exception_type_t, mach_exception_data_t, mach_msg_type_number_t); extern kern_return_t catch_mach_exception_raise_state(mach_port_t exception_port, exception_type_t exception, mach_exception_data_t code, mach_msg_type_number_t code_count, int *flavor, thread_state_t old_state, mach_msg_type_number_t old_state_count, thread_state_t new_state, mach_msg_type_number_t *new_state_count); extern kern_return_t catch_mach_exception_raise_state_identity(mach_port_t exception_port, mach_port_t thread_port, mach_port_t task_port, exception_type_t exception, mach_exception_data_t code, mach_msg_type_number_t code_count, int *flavor, thread_state_t old_state, mach_msg_type_number_t old_state_count, thread_state_t new_state, mach_msg_type_number_t *new_state_count); extern kern_return_t mach_exception_raise(mach_port_t, mach_port_t, mach_port_t, exception_type_t, mach_exception_data_t, mach_msg_type_number_t); extern kern_return_t mach_exception_raise_state(mach_port_t, exception_type_t, mach_exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *, thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *); extern kern_return_t mach_exception_raise_state_identity(mach_port_t, mach_port_t, mach_port_t, exception_type_t, mach_exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *, thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *); } // Could make this dynamic by looking for a result of MIG_ARRAY_TOO_LARGE #define HANDLER_COUNT 64 // structure to tuck away existing exception handlers typedef struct _ExceptionPorts { mach_msg_type_number_t maskCount; exception_mask_t masks[HANDLER_COUNT]; exception_handler_t handlers[HANDLER_COUNT]; exception_behavior_t behaviors[HANDLER_COUNT]; thread_state_flavor_t flavors[HANDLER_COUNT]; } ExceptionPorts; // exception handler thread static pthread_t exc_thread; // place where old exception handler info is stored static ExceptionPorts ports; // our exception port static mach_port_t _exceptionPort = MACH_PORT_NULL; #define MACH_CHECK_ERROR(name,ret) \ if (ret != KERN_SUCCESS) { \ mach_error(#name, ret); \ exit (1); \ } #ifndef MACH_FIELD_NAME #define MACH_FIELD_NAME(X) X #endif // Since there can only be one exception thread running at any time // this is not a problem. #define MSG_SIZE 512 static char msgbuf[MSG_SIZE]; static char replybuf[MSG_SIZE]; /* * This is the entry point for the exception handler thread. The job * of this thread is to wait for exception messages on the exception * port that was setup beforehand and to pass them on to exc_server. * exc_server is a MIG generated function that is a part of Mach. * Its job is to decide what to do with the exception message. In our * case exc_server calls catch_exception_raise on our behalf. After * exc_server returns, it is our responsibility to send the reply. */ static void * handleExceptions(void *priv) { mach_msg_header_t *msg, *reply; kern_return_t krc; msg = (mach_msg_header_t *)msgbuf; reply = (mach_msg_header_t *)replybuf; for (;;) { krc = mach_msg(msg, MACH_RCV_MSG, MSG_SIZE, MSG_SIZE, _exceptionPort, 0, MACH_PORT_NULL); MACH_CHECK_ERROR(mach_msg, krc); if (!mach_exc_server(msg, reply)) { fprintf(stderr, "exc_server hated the message\n"); exit(1); } krc = mach_msg(reply, MACH_SEND_MSG, reply->msgh_size, 0, msg->msgh_local_port, 0, MACH_PORT_NULL); if (krc != KERN_SUCCESS) { fprintf(stderr, "Error sending message to original reply port, krc = %d, %s", krc, mach_error_string(krc)); exit(1); } } } #endif #endif /* * Instruction skipping */ #ifndef SIGSEGV_REGISTER_TYPE #define SIGSEGV_REGISTER_TYPE sigsegv_uintptr_t #endif #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION // Decode and skip X86 instruction #if (defined(i386) || defined(__i386__) || defined(_M_IX86)) || (defined(__x86_64__) || defined(_M_X64)) #if defined(__linux__) enum { #if (defined(i386) || defined(__i386__)) X86_REG_EIP = 14, X86_REG_EAX = 11, X86_REG_ECX = 10, X86_REG_EDX = 9, X86_REG_EBX = 8, X86_REG_ESP = 7, X86_REG_EBP = 6, X86_REG_ESI = 5, X86_REG_EDI = 4 #endif #if defined(__x86_64__) X86_REG_R8 = 0, X86_REG_R9 = 1, X86_REG_R10 = 2, X86_REG_R11 = 3, X86_REG_R12 = 4, X86_REG_R13 = 5, X86_REG_R14 = 6, X86_REG_R15 = 7, X86_REG_EDI = 8, X86_REG_ESI = 9, X86_REG_EBP = 10, X86_REG_EBX = 11, X86_REG_EDX = 12, X86_REG_EAX = 13, X86_REG_ECX = 14, X86_REG_ESP = 15, X86_REG_EIP = 16 #endif }; #endif #if defined(__NetBSD__) enum { #if (defined(i386) || defined(__i386__)) X86_REG_EIP = _REG_EIP, X86_REG_EAX = _REG_EAX, X86_REG_ECX = _REG_ECX, X86_REG_EDX = _REG_EDX, X86_REG_EBX = _REG_EBX, X86_REG_ESP = _REG_ESP, X86_REG_EBP = _REG_EBP, X86_REG_ESI = _REG_ESI, X86_REG_EDI = _REG_EDI #endif }; #endif #if defined(__FreeBSD__) enum { #if (defined(i386) || defined(__i386__)) X86_REG_EIP = 10, X86_REG_EAX = 7, X86_REG_ECX = 6, X86_REG_EDX = 5, X86_REG_EBX = 4, X86_REG_ESP = 13, X86_REG_EBP = 2, X86_REG_ESI = 1, X86_REG_EDI = 0 #endif #if (defined(x86_64) || defined(__x86_64__)) X86_REG_EDI = 0, X86_REG_ESI = 1, X86_REG_EDX = 2, X86_REG_ECX = 3, X86_REG_R8 = 4, X86_REG_R9 = 5, X86_REG_EAX = 6, X86_REG_EBX = 7, X86_REG_EBP = 8, X86_REG_R10 = 9, X86_REG_R11 = 10, X86_REG_R12 = 11, X86_REG_R13 = 12, X86_REG_R14 = 13, X86_REG_R15 = 14, X86_REG_EIP = 19, X86_REG_ESP = 22, #endif }; #endif #if defined(__OpenBSD__) enum { #if defined(__i386__) // EDI is the first register we consider #define OREG(REG) offsetof(struct sigcontext, sc_##REG) #define DREG(REG) ((OREG(REG) - OREG(edi)) / 4) X86_REG_EIP = DREG(eip), // 7 X86_REG_EAX = DREG(eax), // 6 X86_REG_ECX = DREG(ecx), // 5 X86_REG_EDX = DREG(edx), // 4 X86_REG_EBX = DREG(ebx), // 3 X86_REG_ESP = DREG(esp), // 10 X86_REG_EBP = DREG(ebp), // 2 X86_REG_ESI = DREG(esi), // 1 X86_REG_EDI = DREG(edi) // 0 #undef DREG #undef OREG #endif }; #endif #if defined(__sun__) // Same as for Linux, need to check for x86-64 enum { #if defined(__i386__) X86_REG_EIP = EIP, X86_REG_EAX = EAX, X86_REG_ECX = ECX, X86_REG_EDX = EDX, X86_REG_EBX = EBX, X86_REG_ESP = ESP, X86_REG_EBP = EBP, X86_REG_ESI = ESI, X86_REG_EDI = EDI #endif }; #endif #if defined(__APPLE__) && defined(__MACH__) enum { #if (defined(i386) || defined(__i386__)) #ifdef i386_SAVED_STATE // same as FreeBSD (in Open Darwin 8.0.1) X86_REG_EIP = 10, X86_REG_EAX = 7, X86_REG_ECX = 6, X86_REG_EDX = 5, X86_REG_EBX = 4, X86_REG_ESP = 13, X86_REG_EBP = 2, X86_REG_ESI = 1, X86_REG_EDI = 0 #else // new layout (MacOS X 10.4.4 for x86) X86_REG_EIP = 10, X86_REG_EAX = 0, X86_REG_ECX = 2, X86_REG_EDX = 3, X86_REG_EBX = 1, X86_REG_ESP = 7, X86_REG_EBP = 6, X86_REG_ESI = 5, X86_REG_EDI = 4 #endif #endif #if defined(__x86_64__) X86_REG_R8 = 8, X86_REG_R9 = 9, X86_REG_R10 = 10, X86_REG_R11 = 11, X86_REG_R12 = 12, X86_REG_R13 = 13, X86_REG_R14 = 14, X86_REG_R15 = 15, X86_REG_EDI = 4, X86_REG_ESI = 5, X86_REG_EBP = 6, X86_REG_EBX = 1, X86_REG_EDX = 3, X86_REG_EAX = 0, X86_REG_ECX = 2, X86_REG_ESP = 7, X86_REG_EIP = 16 #endif }; #endif #if defined(_WIN32) enum { #if defined(_M_IX86) X86_REG_EIP = 7, X86_REG_EAX = 5, X86_REG_ECX = 4, X86_REG_EDX = 3, X86_REG_EBX = 2, X86_REG_ESP = 10, X86_REG_EBP = 6, X86_REG_ESI = 1, X86_REG_EDI = 0 #endif #if defined(_M_X64) X86_REG_EAX = 0, X86_REG_ECX = 1, X86_REG_EDX = 2, X86_REG_EBX = 3, X86_REG_ESP = 4, X86_REG_EBP = 5, X86_REG_ESI = 6, X86_REG_EDI = 7, X86_REG_R8 = 8, X86_REG_R9 = 9, X86_REG_R10 = 10, X86_REG_R11 = 11, X86_REG_R12 = 12, X86_REG_R13 = 13, X86_REG_R14 = 14, X86_REG_R15 = 15, X86_REG_EIP = 16 #endif }; #endif // FIXME: this is partly redundant with the instruction decoding phase // to discover transfer type and register number static inline int ix86_step_over_modrm(unsigned char * p) { int mod = (p[0] >> 6) & 3; int rm = p[0] & 7; int offset = 0; // ModR/M Byte switch (mod) { case 0: // [reg] if (rm == 5) return 4; // disp32 break; case 1: // disp8[reg] offset = 1; break; case 2: // disp32[reg] offset = 4; break; case 3: // register return 0; } // SIB Byte if (rm == 4) { if (mod == 0 && (p[1] & 7) == 5) offset = 5; // disp32[index] else offset++; } return offset; } static bool ix86_skip_instruction(SIGSEGV_REGISTER_TYPE * regs) { unsigned char * eip = (unsigned char *)regs[X86_REG_EIP]; if (eip == 0) return false; #ifdef _WIN32 if (IsBadCodePtr((FARPROC)eip)) return false; #endif enum instruction_type_t { i_MOV, i_ADD }; transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN; transfer_size_t transfer_size = SIZE_LONG; instruction_type_t instruction_type = i_MOV; int reg = -1; int len = 0; #if DEBUG printf("IP: %p [%02x %02x %02x %02x...]\n", eip, eip[0], eip[1], eip[2], eip[3]); #endif // Operand size prefix if (*eip == 0x66) { eip++; len++; transfer_size = SIZE_WORD; } #if defined(__x86_64__) || defined(_M_X64) // Address size override if (*eip == 0x67) { // 32-bit address eip++; len++; } #endif // REX prefix #if defined(__x86_64__) || defined(_M_X64) struct rex_t { unsigned char W; unsigned char R; unsigned char X; unsigned char B; }; rex_t rex = { 0, 0, 0, 0 }; bool has_rex = false; if ((*eip & 0xf0) == 0x40) { has_rex = true; const unsigned char b = *eip; rex.W = b & (1 << 3); rex.R = b & (1 << 2); rex.X = b & (1 << 1); rex.B = b & (1 << 0); #if DEBUG printf("REX: %c,%c,%c,%c\n", rex.W ? 'W' : '_', rex.R ? 'R' : '_', rex.X ? 'X' : '_', rex.B ? 'B' : '_'); #endif eip++; len++; if (rex.W) transfer_size = SIZE_QUAD; } #else const bool has_rex = false; #endif // Decode instruction int op_len = 1; int target_size = SIZE_UNKNOWN; switch (eip[0]) { case 0x0f: target_size = transfer_size; switch (eip[1]) { case 0xbe: // MOVSX r32, r/m8 case 0xb6: // MOVZX r32, r/m8 transfer_size = SIZE_BYTE; goto do_mov_extend; case 0xbf: // MOVSX r32, r/m16 case 0xb7: // MOVZX r32, r/m16 transfer_size = SIZE_WORD; goto do_mov_extend; do_mov_extend: op_len = 2; goto do_transfer_load; } break; #if defined(__x86_64__) || defined(_M_X64) case 0x63: // MOVSXD r64, r/m32 if (has_rex && rex.W) { transfer_size = SIZE_LONG; target_size = SIZE_QUAD; } else if (transfer_size != SIZE_WORD) { transfer_size = SIZE_LONG; target_size = SIZE_QUAD; } goto do_transfer_load; #endif case 0x02: // ADD r8, r/m8 transfer_size = SIZE_BYTE; // fall through case 0x03: // ADD r32, r/m32 instruction_type = i_ADD; goto do_transfer_load; case 0x8a: // MOV r8, r/m8 transfer_size = SIZE_BYTE; // fall through case 0x8b: // MOV r32, r/m32 (or 16-bit operation) do_transfer_load: switch (eip[op_len] & 0xc0) { case 0x80: reg = (eip[op_len] >> 3) & 7; transfer_type = SIGSEGV_TRANSFER_LOAD; break; case 0x40: reg = (eip[op_len] >> 3) & 7; transfer_type = SIGSEGV_TRANSFER_LOAD; break; case 0x00: reg = (eip[op_len] >> 3) & 7; transfer_type = SIGSEGV_TRANSFER_LOAD; break; } len += 1 + op_len + ix86_step_over_modrm(eip + op_len); break; case 0x00: // ADD r/m8, r8 transfer_size = SIZE_BYTE; // fall through case 0x01: // ADD r/m32, r32 instruction_type = i_ADD; goto do_transfer_store; case 0x88: // MOV r/m8, r8 transfer_size = SIZE_BYTE; // fall through case 0x89: // MOV r/m32, r32 (or 16-bit operation) do_transfer_store: switch (eip[op_len] & 0xc0) { case 0x80: reg = (eip[op_len] >> 3) & 7; transfer_type = SIGSEGV_TRANSFER_STORE; break; case 0x40: reg = (eip[op_len] >> 3) & 7; transfer_type = SIGSEGV_TRANSFER_STORE; break; case 0x00: reg = (eip[op_len] >> 3) & 7; transfer_type = SIGSEGV_TRANSFER_STORE; break; } len += 1 + op_len + ix86_step_over_modrm(eip + op_len); break; } if (target_size == SIZE_UNKNOWN) target_size = transfer_size; if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) { // Unknown machine code, let it crash. Then patch the decoder return false; } #if defined(__x86_64__) || defined(_M_X64) if (rex.R) reg += 8; #endif if (instruction_type == i_MOV && transfer_type == SIGSEGV_TRANSFER_LOAD && reg != -1) { static const int x86_reg_map[] = { X86_REG_EAX, X86_REG_ECX, X86_REG_EDX, X86_REG_EBX, X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI, #if defined(__x86_64__) || defined(_M_X64) X86_REG_R8, X86_REG_R9, X86_REG_R10, X86_REG_R11, X86_REG_R12, X86_REG_R13, X86_REG_R14, X86_REG_R15, #endif }; if (reg < 0 || reg >= (sizeof(x86_reg_map)/sizeof(x86_reg_map[0]) - 1)) return false; // Set 0 to the relevant register part // NOTE: this is only valid for MOV alike instructions int rloc = x86_reg_map[reg]; switch (target_size) { case SIZE_BYTE: if (has_rex || reg < 4) regs[rloc] = (regs[rloc] & ~0x00ffL); else { rloc = x86_reg_map[reg - 4]; regs[rloc] = (regs[rloc] & ~0xff00L); } break; case SIZE_WORD: regs[rloc] = (regs[rloc] & ~0xffffL); break; case SIZE_LONG: case SIZE_QUAD: // zero-extension regs[rloc] = 0; break; } } #if DEBUG printf("%p: %s %s access", (void *)regs[X86_REG_EIP], transfer_size == SIZE_BYTE ? "byte" : transfer_size == SIZE_WORD ? "word" : transfer_size == SIZE_LONG ? "long" : transfer_size == SIZE_QUAD ? "quad" : "unknown", transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write"); if (reg != -1) { static const char * x86_byte_reg_str_map[] = { "al", "cl", "dl", "bl", "spl", "bpl", "sil", "dil", "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b", "r15b", "ah", "ch", "dh", "bh", }; static const char * x86_word_reg_str_map[] = { "ax", "cx", "dx", "bx", "sp", "bp", "si", "di", "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w", }; static const char *x86_long_reg_str_map[] = { "eax", "ecx", "edx", "ebx", "esp", "ebp", "esi", "edi", "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d", }; static const char *x86_quad_reg_str_map[] = { "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", }; const char * reg_str = NULL; switch (target_size) { case SIZE_BYTE: reg_str = x86_byte_reg_str_map[(!has_rex && reg >= 4 ? 12 : 0) + reg]; break; case SIZE_WORD: reg_str = x86_word_reg_str_map[reg]; break; case SIZE_LONG: reg_str = x86_long_reg_str_map[reg]; break; case SIZE_QUAD: reg_str = x86_quad_reg_str_map[reg]; break; } if (reg_str) printf(" %s register %%%s", transfer_type == SIGSEGV_TRANSFER_LOAD ? "to" : "from", reg_str); } printf(", %d bytes instruction\n", len); #endif regs[X86_REG_EIP] += len; return true; } #endif // Decode and skip IA-64 instruction #if defined(__ia64) || defined(__ia64__) typedef uint64_t ia64_bundle_t[2]; #if defined(__linux__) // We can directly patch the slot number #define IA64_CAN_PATCH_IP_SLOT 1 // Helper macros to access the machine context #define IA64_CONTEXT_TYPE struct sigcontext * #define IA64_CONTEXT scp #define IA64_GET_IP() (IA64_CONTEXT->sc_ip) #define IA64_SET_IP(V) (IA64_CONTEXT->sc_ip = (V)) #define IA64_GET_PR(P) ((IA64_CONTEXT->sc_pr >> (P)) & 1) #define IA64_GET_NAT(I) ((IA64_CONTEXT->sc_nat >> (I)) & 1) #define IA64_GET_GR(R) (IA64_CONTEXT->sc_gr[(R)]) #define _IA64_SET_GR(R,V) (IA64_CONTEXT->sc_gr[(R)] = (V)) #define _IA64_SET_NAT(I,V) (IA64_CONTEXT->sc_nat = (IA64_CONTEXT->sc_nat & ~(1ull << (I))) | (((uint64_t)!!(V)) << (I))) #define IA64_SET_GR(R,V,N) (_IA64_SET_GR(R,V), _IA64_SET_NAT(R,N)) // Load bundle (in little-endian) static inline void ia64_load_bundle(ia64_bundle_t bundle, uint64_t raw_ip) { uint64_t *ip = (uint64_t *)(raw_ip & ~3ull); bundle[0] = ip[0]; bundle[1] = ip[1]; } #endif #if defined(__hpux) || defined(__hpux__) // We can directly patch the slot number #define IA64_CAN_PATCH_IP_SLOT 1 // Helper macros to access the machine context #define IA64_CONTEXT_TYPE ucontext_t * #define IA64_CONTEXT ucp #define IA64_GET_IP() ia64_get_ip(IA64_CONTEXT) #define IA64_SET_IP(V) ia64_set_ip(IA64_CONTEXT, V) #define IA64_GET_PR(P) ia64_get_pr(IA64_CONTEXT, P) #define IA64_GET_NAT(I) ia64_get_nat(IA64_CONTEXT, I) #define IA64_GET_GR(R) ia64_get_gr(IA64_CONTEXT, R) #define IA64_SET_GR(R,V,N) ia64_set_gr(IA64_CONTEXT, R, V, N) #define UC_ACCESS(FUNC,ARGS) do { if (__uc_##FUNC ARGS != 0) abort(); } while (0) static inline uint64_t ia64_get_ip(IA64_CONTEXT_TYPE IA64_CONTEXT) { uint64_t v; UC_ACCESS(get_ip,(IA64_CONTEXT, &v)); return v; } static inline void ia64_set_ip(IA64_CONTEXT_TYPE IA64_CONTEXT, uint64_t v) { UC_ACCESS(set_ip,(IA64_CONTEXT, v)); } static inline unsigned int ia64_get_pr(IA64_CONTEXT_TYPE IA64_CONTEXT, int pr) { uint64_t v; UC_ACCESS(get_prs,(IA64_CONTEXT, &v)); return (v >> pr) & 1; } static inline unsigned int ia64_get_nat(IA64_CONTEXT_TYPE IA64_CONTEXT, int r) { uint64_t v; unsigned int nat; UC_ACCESS(get_grs,(IA64_CONTEXT, r, 1, &v, &nat)); return (nat >> r) & 1; } static inline uint64_t ia64_get_gr(IA64_CONTEXT_TYPE IA64_CONTEXT, int r) { uint64_t v; unsigned int nat; UC_ACCESS(get_grs,(IA64_CONTEXT, r, 1, &v, &nat)); return v; } static void ia64_set_gr(IA64_CONTEXT_TYPE IA64_CONTEXT, int r, uint64_t v, unsigned int nat) { if (r == 0) return; if (r > 0 && r < 32) UC_ACCESS(set_grs,(IA64_CONTEXT, r, 1, &v, (!!nat) << r)); else { uint64_t bsp, bspstore; UC_ACCESS(get_ar_bsp,(IA64_CONTEXT, &bsp)); UC_ACCESS(get_ar_bspstore,(IA64_CONTEXT, &bspstore)); abort(); /* XXX: use libunwind, this is not fun... */ } } // Byte-swapping #if defined(__GNUC__) #define BSWAP64(V) ({ uint64_t r; __asm__ __volatile__("mux1 %0=%1,@rev;;" : "=r" (r) : "r" (V)); r; }) #elif defined (__HP_aCC) #define BSWAP64(V) _Asm_mux1(_MBTYPE_REV, V) #else #error "Define byte-swap instruction" #endif // Load bundle (in little-endian) static inline void ia64_load_bundle(ia64_bundle_t bundle, uint64_t raw_ip) { uint64_t *ip = (uint64_t *)(raw_ip & ~3ull); bundle[0] = BSWAP64(ip[0]); bundle[1] = BSWAP64(ip[1]); } #endif // Instruction operations enum { IA64_INST_UNKNOWN = 0, IA64_INST_LD1, // ld1 op0=[op1] IA64_INST_LD1_UPDATE, // ld1 op0=[op1],op2 IA64_INST_LD2, // ld2 op0=[op1] IA64_INST_LD2_UPDATE, // ld2 op0=[op1],op2 IA64_INST_LD4, // ld4 op0=[op1] IA64_INST_LD4_UPDATE, // ld4 op0=[op1],op2 IA64_INST_LD8, // ld8 op0=[op1] IA64_INST_LD8_UPDATE, // ld8 op0=[op1],op2 IA64_INST_ST1, // st1 [op0]=op1 IA64_INST_ST1_UPDATE, // st1 [op0]=op1,op2 IA64_INST_ST2, // st2 [op0]=op1 IA64_INST_ST2_UPDATE, // st2 [op0]=op1,op2 IA64_INST_ST4, // st4 [op0]=op1 IA64_INST_ST4_UPDATE, // st4 [op0]=op1,op2 IA64_INST_ST8, // st8 [op0]=op1 IA64_INST_ST8_UPDATE, // st8 [op0]=op1,op2 IA64_INST_ADD, // add op0=op1,op2,op3 IA64_INST_SUB, // sub op0=op1,op2,op3 IA64_INST_SHLADD, // shladd op0=op1,op3,op2 IA64_INST_AND, // and op0=op1,op2 IA64_INST_ANDCM, // andcm op0=op1,op2 IA64_INST_OR, // or op0=op1,op2 IA64_INST_XOR, // xor op0=op1,op2 IA64_INST_SXT1, // sxt1 op0=op1 IA64_INST_SXT2, // sxt2 op0=op1 IA64_INST_SXT4, // sxt4 op0=op1 IA64_INST_ZXT1, // zxt1 op0=op1 IA64_INST_ZXT2, // zxt2 op0=op1 IA64_INST_ZXT4, // zxt4 op0=op1 IA64_INST_NOP // nop op0 }; const int IA64_N_OPERANDS = 4; // Decoded operand type struct ia64_operand_t { uint8_t commit; // commit result of operation to register file? uint8_t valid; // XXX: not really used, can be removed (debug) int8_t index; // index of GPR, or -1 if immediate value uint8_t nat; // NaT state before operation uint64_t value; // register contents or immediate value }; // Decoded instruction type struct ia64_instruction_t { uint8_t mnemo; // operation to perform uint8_t pred; // predicate register to check uint8_t no_memory; // used to emulated main fault instruction uint64_t inst; // the raw instruction bits (41-bit wide) ia64_operand_t operands[IA64_N_OPERANDS]; }; // Get immediate sign-bit static inline int ia64_inst_get_sbit(uint64_t inst) { return (inst >> 36) & 1; } // Get 8-bit immediate value (A3, A8, I27, M30) static inline uint64_t ia64_inst_get_imm8(uint64_t inst) { uint64_t value = (inst >> 13) & 0x7full; if (ia64_inst_get_sbit(inst)) value |= ~0x7full; return value; } // Get 9-bit immediate value (M3) static inline uint64_t ia64_inst_get_imm9b(uint64_t inst) { uint64_t value = (((inst >> 27) & 1) << 7) | ((inst >> 13) & 0x7f); if (ia64_inst_get_sbit(inst)) value |= ~0xffull; return value; } // Get 9-bit immediate value (M5) static inline uint64_t ia64_inst_get_imm9a(uint64_t inst) { uint64_t value = (((inst >> 27) & 1) << 7) | ((inst >> 6) & 0x7f); if (ia64_inst_get_sbit(inst)) value |= ~0xffull; return value; } // Get 14-bit immediate value (A4) static inline uint64_t ia64_inst_get_imm14(uint64_t inst) { uint64_t value = (((inst >> 27) & 0x3f) << 7) | (inst & 0x7f); if (ia64_inst_get_sbit(inst)) value |= ~0x1ffull; return value; } // Get 22-bit immediate value (A5) static inline uint64_t ia64_inst_get_imm22(uint64_t inst) { uint64_t value = ((((inst >> 22) & 0x1f) << 16) | (((inst >> 27) & 0x1ff) << 7) | (inst & 0x7f)); if (ia64_inst_get_sbit(inst)) value |= ~0x1fffffull; return value; } // Get 21-bit immediate value (I19) static inline uint64_t ia64_inst_get_imm21(uint64_t inst) { return (((inst >> 36) & 1) << 20) | ((inst >> 6) & 0xfffff); } // Get 2-bit count value (A2) static inline int ia64_inst_get_count2(uint64_t inst) { return (inst >> 27) & 0x3; } // Get bundle template static inline unsigned int ia64_get_template(uint64_t ip) { ia64_bundle_t bundle; ia64_load_bundle(bundle, ip); return bundle[0] & 0x1f; } // Get specified instruction in bundle static uint64_t ia64_get_instruction(uint64_t ip, int slot) { uint64_t inst; ia64_bundle_t bundle; ia64_load_bundle(bundle, ip); #if DEBUG printf("Bundle: %016llx%016llx\n", bundle[1], bundle[0]); #endif switch (slot) { case 0: inst = (bundle[0] >> 5) & 0x1ffffffffffull; break; case 1: inst = ((bundle[1] & 0x7fffffull) << 18) | ((bundle[0] >> 46) & 0x3ffffull); break; case 2: inst = (bundle[1] >> 23) & 0x1ffffffffffull; break; case 3: fprintf(stderr, "ERROR: ia64_get_instruction(), invalid slot number %d\n", slot); abort(); break; } #if DEBUG printf(" Instruction %d: 0x%016llx\n", slot, inst); #endif return inst; } // Decode group 0 instructions static bool ia64_decode_instruction_0(ia64_instruction_t *inst, IA64_CONTEXT_TYPE IA64_CONTEXT) { const int r1 = (inst->inst >> 6) & 0x7f; const int r3 = (inst->inst >> 20) & 0x7f; const int x3 = (inst->inst >> 33) & 0x07; const int x6 = (inst->inst >> 27) & 0x3f; const int x2 = (inst->inst >> 31) & 0x03; const int x4 = (inst->inst >> 27) & 0x0f; if (x3 == 0) { switch (x6) { case 0x01: // nop.i (I19) inst->mnemo = IA64_INST_NOP; inst->operands[0].valid = true; inst->operands[0].index = -1; inst->operands[0].value = ia64_inst_get_imm21(inst->inst); return true; case 0x14: // sxt1 (I29) case 0x15: // sxt2 (I29) case 0x16: // sxt4 (I29) case 0x10: // zxt1 (I29) case 0x11: // zxt2 (I29) case 0x12: // zxt4 (I29) switch (x6) { case 0x14: inst->mnemo = IA64_INST_SXT1; break; case 0x15: inst->mnemo = IA64_INST_SXT2; break; case 0x16: inst->mnemo = IA64_INST_SXT4; break; case 0x10: inst->mnemo = IA64_INST_ZXT1; break; case 0x11: inst->mnemo = IA64_INST_ZXT2; break; case 0x12: inst->mnemo = IA64_INST_ZXT4; break; default: abort(); } inst->operands[0].valid = true; inst->operands[0].index = r1; inst->operands[1].valid = true; inst->operands[1].index = r3; inst->operands[1].value = IA64_GET_GR(r3); inst->operands[1].nat = IA64_GET_NAT(r3); return true; } } return false; } // Decode group 4 instructions (load/store instructions) static bool ia64_decode_instruction_4(ia64_instruction_t *inst, IA64_CONTEXT_TYPE IA64_CONTEXT) { const int r1 = (inst->inst >> 6) & 0x7f; const int r2 = (inst->inst >> 13) & 0x7f; const int r3 = (inst->inst >> 20) & 0x7f; const int m = (inst->inst >> 36) & 1; const int x = (inst->inst >> 27) & 1; const int x6 = (inst->inst >> 30) & 0x3f; switch (x6) { case 0x00: case 0x01: case 0x02: case 0x03: if (x == 0) { inst->operands[0].valid = true; inst->operands[0].index = r1; inst->operands[1].valid = true; inst->operands[1].index = r3; inst->operands[1].value = IA64_GET_GR(r3); inst->operands[1].nat = IA64_GET_NAT(r3); if (m == 0) { switch (x6) { case 0x00: inst->mnemo = IA64_INST_LD1; break; case 0x01: inst->mnemo = IA64_INST_LD2; break; case 0x02: inst->mnemo = IA64_INST_LD4; break; case 0x03: inst->mnemo = IA64_INST_LD8; break; } } else { inst->operands[2].valid = true; inst->operands[2].index = r2; inst->operands[2].value = IA64_GET_GR(r2); inst->operands[2].nat = IA64_GET_NAT(r2); switch (x6) { case 0x00: inst->mnemo = IA64_INST_LD1_UPDATE; break; case 0x01: inst->mnemo = IA64_INST_LD2_UPDATE; break; case 0x02: inst->mnemo = IA64_INST_LD4_UPDATE; break; case 0x03: inst->mnemo = IA64_INST_LD8_UPDATE; break; } } return true; } break; case 0x30: case 0x31: case 0x32: case 0x33: if (m == 0 && x == 0) { inst->operands[0].valid = true; inst->operands[0].index = r3; inst->operands[0].value = IA64_GET_GR(r3); inst->operands[0].nat = IA64_GET_NAT(r3); inst->operands[1].valid = true; inst->operands[1].index = r2; inst->operands[1].value = IA64_GET_GR(r2); inst->operands[1].nat = IA64_GET_NAT(r2); switch (x6) { case 0x30: inst->mnemo = IA64_INST_ST1; break; case 0x31: inst->mnemo = IA64_INST_ST2; break; case 0x32: inst->mnemo = IA64_INST_ST4; break; case 0x33: inst->mnemo = IA64_INST_ST8; break; } return true; } break; } return false; } // Decode group 5 instructions (load/store instructions) static bool ia64_decode_instruction_5(ia64_instruction_t *inst, IA64_CONTEXT_TYPE IA64_CONTEXT) { const int r1 = (inst->inst >> 6) & 0x7f; const int r2 = (inst->inst >> 13) & 0x7f; const int r3 = (inst->inst >> 20) & 0x7f; const int x6 = (inst->inst >> 30) & 0x3f; switch (x6) { case 0x00: case 0x01: case 0x02: case 0x03: inst->operands[0].valid = true; inst->operands[0].index = r1; inst->operands[1].valid = true; inst->operands[1].index = r3; inst->operands[1].value = IA64_GET_GR(r3); inst->operands[1].nat = IA64_GET_NAT(r3); inst->operands[2].valid = true; inst->operands[2].index = -1; inst->operands[2].value = ia64_inst_get_imm9b(inst->inst); inst->operands[2].nat = 0; switch (x6) { case 0x00: inst->mnemo = IA64_INST_LD1_UPDATE; break; case 0x01: inst->mnemo = IA64_INST_LD2_UPDATE; break; case 0x02: inst->mnemo = IA64_INST_LD4_UPDATE; break; case 0x03: inst->mnemo = IA64_INST_LD8_UPDATE; break; } return true; case 0x30: case 0x31: case 0x32: case 0x33: inst->operands[0].valid = true; inst->operands[0].index = r3; inst->operands[0].value = IA64_GET_GR(r3); inst->operands[0].nat = IA64_GET_NAT(r3); inst->operands[1].valid = true; inst->operands[1].index = r2; inst->operands[1].value = IA64_GET_GR(r2); inst->operands[1].nat = IA64_GET_NAT(r2); inst->operands[2].valid = true; inst->operands[2].index = -1; inst->operands[2].value = ia64_inst_get_imm9a(inst->inst); inst->operands[2].nat = 0; switch (x6) { case 0x30: inst->mnemo = IA64_INST_ST1_UPDATE; break; case 0x31: inst->mnemo = IA64_INST_ST2_UPDATE; break; case 0x32: inst->mnemo = IA64_INST_ST4_UPDATE; break; case 0x33: inst->mnemo = IA64_INST_ST8_UPDATE; break; } return true; } return false; } // Decode group 8 instructions (ALU integer) static bool ia64_decode_instruction_8(ia64_instruction_t *inst, IA64_CONTEXT_TYPE IA64_CONTEXT) { const int r1 = (inst->inst >> 6) & 0x7f; const int r2 = (inst->inst >> 13) & 0x7f; const int r3 = (inst->inst >> 20) & 0x7f; const int x2a = (inst->inst >> 34) & 0x3; const int x2b = (inst->inst >> 27) & 0x3; const int x4 = (inst->inst >> 29) & 0xf; const int ve = (inst->inst >> 33) & 0x1; // destination register (r1) is always valid in this group inst->operands[0].valid = true; inst->operands[0].index = r1; // source register (r3) is always valid in this group inst->operands[2].valid = true; inst->operands[2].index = r3; inst->operands[2].value = IA64_GET_GR(r3); inst->operands[2].nat = IA64_GET_NAT(r3); if (x2a == 0 && ve == 0) { inst->operands[1].valid = true; inst->operands[1].index = r2; inst->operands[1].value = IA64_GET_GR(r2); inst->operands[1].nat = IA64_GET_NAT(r2); switch (x4) { case 0x0: // add (A1) inst->mnemo = IA64_INST_ADD; inst->operands[3].valid = true; inst->operands[3].index = -1; inst->operands[3].value = x2b == 1; return true; case 0x1: // add (A1) inst->mnemo = IA64_INST_SUB; inst->operands[3].valid = true; inst->operands[3].index = -1; inst->operands[3].value = x2b == 0; return true; case 0x4: // shladd (A2) inst->mnemo = IA64_INST_SHLADD; inst->operands[3].valid = true; inst->operands[3].index = -1; inst->operands[3].value = ia64_inst_get_count2(inst->inst); return true; case 0x9: if (x2b == 1) { inst->mnemo = IA64_INST_SUB; inst->operands[1].index = -1; inst->operands[1].value = ia64_inst_get_imm8(inst->inst); inst->operands[1].nat = 0; return true; } break; case 0xb: inst->operands[1].index = -1; inst->operands[1].value = ia64_inst_get_imm8(inst->inst); inst->operands[1].nat = 0; // fall-through case 0x3: switch (x2b) { case 0: inst->mnemo = IA64_INST_AND; break; case 1: inst->mnemo = IA64_INST_ANDCM; break; case 2: inst->mnemo = IA64_INST_OR; break; case 3: inst->mnemo = IA64_INST_XOR; break; } return true; } } return false; } // Decode instruction static bool ia64_decode_instruction(ia64_instruction_t *inst, IA64_CONTEXT_TYPE IA64_CONTEXT) { const int major = (inst->inst >> 37) & 0xf; inst->mnemo = IA64_INST_UNKNOWN; inst->pred = inst->inst & 0x3f; memset(&inst->operands[0], 0, sizeof(inst->operands)); switch (major) { case 0x0: return ia64_decode_instruction_0(inst, IA64_CONTEXT); case 0x4: return ia64_decode_instruction_4(inst, IA64_CONTEXT); case 0x5: return ia64_decode_instruction_5(inst, IA64_CONTEXT); case 0x8: return ia64_decode_instruction_8(inst, IA64_CONTEXT); } return false; } static bool ia64_emulate_instruction(ia64_instruction_t *inst, IA64_CONTEXT_TYPE IA64_CONTEXT) { // XXX: handle Register NaT Consumption fault? // XXX: this simple emulator assumes instructions in a bundle // don't depend on effects of other instructions in the same // bundle. It probably would be simpler to JIT-generate code to be // executed natively but probably more costly (inject/extract CPU state) if (inst->mnemo == IA64_INST_UNKNOWN) return false; if (inst->pred && !IA64_GET_PR(inst->pred)) return true; uint8_t nat, nat2; uint64_t dst, dst2, src1, src2, src3; switch (inst->mnemo) { case IA64_INST_NOP: break; case IA64_INST_ADD: case IA64_INST_SUB: case IA64_INST_SHLADD: src3 = inst->operands[3].value; // fall-through case IA64_INST_AND: case IA64_INST_ANDCM: case IA64_INST_OR: case IA64_INST_XOR: src1 = inst->operands[1].value; src2 = inst->operands[2].value; switch (inst->mnemo) { case IA64_INST_ADD: dst = src1 + src2 + src3; break; case IA64_INST_SUB: dst = src1 - src2 - src3; break; case IA64_INST_SHLADD: dst = (src1 << src3) + src2; break; case IA64_INST_AND: dst = src1 & src2; break; case IA64_INST_ANDCM: dst = src1 &~ src2; break; case IA64_INST_OR: dst = src1 | src2; break; case IA64_INST_XOR: dst = src1 ^ src2; break; } inst->operands[0].commit = true; inst->operands[0].value = dst; inst->operands[0].nat = inst->operands[1].nat | inst->operands[2].nat; break; case IA64_INST_SXT1: case IA64_INST_SXT2: case IA64_INST_SXT4: case IA64_INST_ZXT1: case IA64_INST_ZXT2: case IA64_INST_ZXT4: src1 = inst->operands[1].value; switch (inst->mnemo) { case IA64_INST_SXT1: dst = (int64_t)(int8_t)src1; break; case IA64_INST_SXT2: dst = (int64_t)(int16_t)src1; break; case IA64_INST_SXT4: dst = (int64_t)(int32_t)src1; break; case IA64_INST_ZXT1: dst = (uint8_t)src1; break; case IA64_INST_ZXT2: dst = (uint16_t)src1; break; case IA64_INST_ZXT4: dst = (uint32_t)src1; break; } inst->operands[0].commit = true; inst->operands[0].value = dst; inst->operands[0].nat = inst->operands[1].nat; break; case IA64_INST_LD1_UPDATE: case IA64_INST_LD2_UPDATE: case IA64_INST_LD4_UPDATE: case IA64_INST_LD8_UPDATE: inst->operands[1].commit = true; dst2 = inst->operands[1].value + inst->operands[2].value; nat2 = inst->operands[2].nat ? inst->operands[2].nat : 0; // fall-through case IA64_INST_LD1: case IA64_INST_LD2: case IA64_INST_LD4: case IA64_INST_LD8: src1 = inst->operands[1].value; if (inst->no_memory) dst = 0; else { switch (inst->mnemo) { case IA64_INST_LD1: case IA64_INST_LD1_UPDATE: dst = *((uint8_t *)src1); break; case IA64_INST_LD2: case IA64_INST_LD2_UPDATE: dst = *((uint16_t *)src1); break; case IA64_INST_LD4: case IA64_INST_LD4_UPDATE: dst = *((uint32_t *)src1); break; case IA64_INST_LD8: case IA64_INST_LD8_UPDATE: dst = *((uint64_t *)src1); break; } } inst->operands[0].commit = true; inst->operands[0].value = dst; inst->operands[0].nat = 0; inst->operands[1].value = dst2; inst->operands[1].nat = nat2; break; case IA64_INST_ST1_UPDATE: case IA64_INST_ST2_UPDATE: case IA64_INST_ST4_UPDATE: case IA64_INST_ST8_UPDATE: inst->operands[0].commit = 0; dst2 = inst->operands[0].value + inst->operands[2].value; nat2 = inst->operands[2].nat ? inst->operands[2].nat : 0; // fall-through case IA64_INST_ST1: case IA64_INST_ST2: case IA64_INST_ST4: case IA64_INST_ST8: dst = inst->operands[0].value; src1 = inst->operands[1].value; if (!inst->no_memory) { switch (inst->mnemo) { case IA64_INST_ST1: case IA64_INST_ST1_UPDATE: *((uint8_t *)dst) = src1; break; case IA64_INST_ST2: case IA64_INST_ST2_UPDATE: *((uint16_t *)dst) = src1; break; case IA64_INST_ST4: case IA64_INST_ST4_UPDATE: *((uint32_t *)dst) = src1; break; case IA64_INST_ST8: case IA64_INST_ST8_UPDATE: *((uint64_t *)dst) = src1; break; } } inst->operands[0].value = dst2; inst->operands[0].nat = nat2; break; default: return false; } for (int i = 0; i < IA64_N_OPERANDS; i++) { ia64_operand_t const & op = inst->operands[i]; if (!op.commit) continue; if (op.index == -1) return false; // XXX: internal error IA64_SET_GR(op.index, op.value, op.nat); } return true; } static bool ia64_emulate_instruction(uint64_t raw_inst, IA64_CONTEXT_TYPE IA64_CONTEXT) { ia64_instruction_t inst; memset(&inst, 0, sizeof(inst)); inst.inst = raw_inst; if (!ia64_decode_instruction(&inst, IA64_CONTEXT)) return false; return ia64_emulate_instruction(&inst, IA64_CONTEXT); } static bool ia64_skip_instruction(IA64_CONTEXT_TYPE IA64_CONTEXT) { uint64_t ip = IA64_GET_IP(); #if DEBUG printf("IP: 0x%016llx\n", ip); #if 0 printf(" Template 0x%02x\n", ia64_get_template(ip)); ia64_get_instruction(ip, 0); ia64_get_instruction(ip, 1); ia64_get_instruction(ip, 2); #endif #endif // Select which decode switch to use ia64_instruction_t inst; inst.inst = ia64_get_instruction(ip, ip & 3); if (!ia64_decode_instruction(&inst, IA64_CONTEXT)) { fprintf(stderr, "ERROR: ia64_skip_instruction(): could not decode instruction\n"); return false; } transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN; transfer_size_t transfer_size = SIZE_UNKNOWN; switch (inst.mnemo) { case IA64_INST_LD1: case IA64_INST_LD2: case IA64_INST_LD4: case IA64_INST_LD8: case IA64_INST_LD1_UPDATE: case IA64_INST_LD2_UPDATE: case IA64_INST_LD4_UPDATE: case IA64_INST_LD8_UPDATE: transfer_type = SIGSEGV_TRANSFER_LOAD; break; case IA64_INST_ST1: case IA64_INST_ST2: case IA64_INST_ST4: case IA64_INST_ST8: case IA64_INST_ST1_UPDATE: case IA64_INST_ST2_UPDATE: case IA64_INST_ST4_UPDATE: case IA64_INST_ST8_UPDATE: transfer_type = SIGSEGV_TRANSFER_STORE; break; } if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) { // Unknown machine code, let it crash. Then patch the decoder fprintf(stderr, "ERROR: ia64_skip_instruction(): not a load/store instruction\n"); return false; } switch (inst.mnemo) { case IA64_INST_LD1: case IA64_INST_LD1_UPDATE: case IA64_INST_ST1: case IA64_INST_ST1_UPDATE: transfer_size = SIZE_BYTE; break; case IA64_INST_LD2: case IA64_INST_LD2_UPDATE: case IA64_INST_ST2: case IA64_INST_ST2_UPDATE: transfer_size = SIZE_WORD; break; case IA64_INST_LD4: case IA64_INST_LD4_UPDATE: case IA64_INST_ST4: case IA64_INST_ST4_UPDATE: transfer_size = SIZE_LONG; break; case IA64_INST_LD8: case IA64_INST_LD8_UPDATE: case IA64_INST_ST8: case IA64_INST_ST8_UPDATE: transfer_size = SIZE_QUAD; break; } if (transfer_size == SIZE_UNKNOWN) { // Unknown machine code, let it crash. Then patch the decoder fprintf(stderr, "ERROR: ia64_skip_instruction(): unknown transfer size\n"); return false; } inst.no_memory = true; if (!ia64_emulate_instruction(&inst, IA64_CONTEXT)) { fprintf(stderr, "ERROR: ia64_skip_instruction(): could not emulate fault instruction\n"); return false; } int slot = ip & 3; bool emulate_next = false; switch (slot) { case 0: switch (ia64_get_template(ip)) { case 0x2: // MI;I case 0x3: // MI;I; emulate_next = true; slot = 2; break; case 0xa: // M;MI case 0xb: // M;MI; emulate_next = true; slot = 1; break; } break; } if (emulate_next && !IA64_CAN_PATCH_IP_SLOT) { while (slot < 3) { if (!ia64_emulate_instruction(ia64_get_instruction(ip, slot), IA64_CONTEXT)) { fprintf(stderr, "ERROR: ia64_skip_instruction(): could not emulate instruction\n"); return false; } ++slot; } } #if IA64_CAN_PATCH_IP_SLOT if ((slot = ip & 3) < 2) IA64_SET_IP((ip & ~3ull) + (slot + 1)); else #endif IA64_SET_IP((ip & ~3ull) + 16); #if DEBUG printf("IP: 0x%016llx\n", IA64_GET_IP()); #endif return true; } #endif // Decode and skip PPC instruction #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__) || defined(__ppc64__)) static bool powerpc_skip_instruction(unsigned long * nip_p, unsigned long * regs) { instruction_t instr; powerpc_decode_instruction(&instr, *nip_p, regs); if (instr.transfer_type == SIGSEGV_TRANSFER_UNKNOWN) { // Unknown machine code, let it crash. Then patch the decoder return false; } #if DEBUG printf("%08x: %s %s access", *nip_p, instr.transfer_size == SIZE_BYTE ? "byte" : instr.transfer_size == SIZE_WORD ? "word" : instr.transfer_size == SIZE_LONG ? "long" : "quad", instr.transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write"); if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX) printf(" r%d (ra = %08x)\n", instr.ra, instr.addr); if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD) printf(" r%d (rd = 0)\n", instr.rd); #endif if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX) regs[instr.ra] = instr.addr; if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD) regs[instr.rd] = 0; *nip_p += 4; return true; } #endif // Decode and skip MIPS instruction #if (defined(mips) || defined(__mips)) static bool mips_skip_instruction(greg_t * pc_p, greg_t * regs) { unsigned int * epc = (unsigned int *)(unsigned long)*pc_p; if (epc == 0) return false; #if DEBUG printf("IP: %p [%08x]\n", epc, epc[0]); #endif transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN; transfer_size_t transfer_size = SIZE_LONG; int direction = 0; const unsigned int opcode = epc[0]; switch (opcode >> 26) { case 32: // Load Byte case 36: // Load Byte Unsigned transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; break; case 33: // Load Halfword case 37: // Load Halfword Unsigned transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; break; case 35: // Load Word case 39: // Load Word Unsigned transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; break; case 34: // Load Word Left transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; direction = -1; break; case 38: // Load Word Right transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; direction = 1; break; case 55: // Load Doubleword transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_QUAD; break; case 26: // Load Doubleword Left transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_QUAD; direction = -1; break; case 27: // Load Doubleword Right transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_QUAD; direction = 1; break; case 40: // Store Byte transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; break; case 41: // Store Halfword transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; break; case 43: // Store Word case 42: // Store Word Left case 46: // Store Word Right transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; break; case 63: // Store Doubleword case 44: // Store Doubleword Left case 45: // Store Doubleword Right transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_QUAD; break; /* Misc instructions unlikely to be used within CPU emulators */ case 48: // Load Linked Word transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; break; case 52: // Load Linked Doubleword transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_QUAD; break; case 56: // Store Conditional Word transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; break; case 60: // Store Conditional Doubleword transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_QUAD; break; } if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) { // Unknown machine code, let it crash. Then patch the decoder return false; } // Zero target register in case of a load operation const int reg = (opcode >> 16) & 0x1f; if (transfer_type == SIGSEGV_TRANSFER_LOAD) { if (direction == 0) regs[reg] = 0; else { // FIXME: untested code unsigned long ea = regs[(opcode >> 21) & 0x1f]; ea += (signed long)(signed int)(signed short)(opcode & 0xffff); const int offset = ea & (transfer_size == SIZE_LONG ? 3 : 7); unsigned long value; if (direction > 0) { const unsigned long rmask = ~((1L << ((offset + 1) * 8)) - 1); value = regs[reg] & rmask; } else { const unsigned long lmask = (1L << (offset * 8)) - 1; value = regs[reg] & lmask; } // restore most significant bits if (transfer_size == SIZE_LONG) value = (signed long)(signed int)value; regs[reg] = value; } } #if DEBUG #if (defined(_ABIN32) || defined(_ABI64)) static const char * mips_gpr_names[32] = { "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra" }; #else static const char * mips_gpr_names[32] = { "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3", "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra" }; #endif printf("%s %s register %s\n", transfer_size == SIZE_BYTE ? "byte" : transfer_size == SIZE_WORD ? "word" : transfer_size == SIZE_LONG ? "long" : transfer_size == SIZE_QUAD ? "quad" : "unknown", transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from", mips_gpr_names[reg]); #endif *pc_p += 4; return true; } #endif // Decode and skip SPARC instruction #if (defined(sparc) || defined(__sparc__)) enum { #if (defined(__sun__)) SPARC_REG_G1 = REG_G1, SPARC_REG_O0 = REG_O0, SPARC_REG_PC = REG_PC, SPARC_REG_nPC = REG_nPC #endif }; static bool sparc_skip_instruction(unsigned long * regs, gwindows_t * gwins, struct rwindow * rwin) { unsigned int * pc = (unsigned int *)regs[SPARC_REG_PC]; if (pc == 0) return false; #if DEBUG printf("IP: %p [%08x]\n", pc, pc[0]); #endif transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN; transfer_size_t transfer_size = SIZE_LONG; bool register_pair = false; const unsigned int opcode = pc[0]; if ((opcode >> 30) != 3) return false; switch ((opcode >> 19) & 0x3f) { case 9: // Load Signed Byte case 1: // Load Unsigned Byte transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; break; case 10:// Load Signed Halfword case 2: // Load Unsigned Word transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; break; case 8: // Load Word case 0: // Load Unsigned Word transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; break; case 11:// Load Extended Word transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_QUAD; break; case 3: // Load Doubleword transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; register_pair = true; break; case 5: // Store Byte transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; break; case 6: // Store Halfword transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; break; case 4: // Store Word transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; break; case 14:// Store Extended Word transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_QUAD; break; case 7: // Store Doubleword transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; register_pair = true; break; } if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) { // Unknown machine code, let it crash. Then patch the decoder return false; } const int reg = (opcode >> 25) & 0x1f; #if DEBUG static const char * reg_names[] = { "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7", "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7", "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7", "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7" }; printf("%s %s register %s\n", transfer_size == SIZE_BYTE ? "byte" : transfer_size == SIZE_WORD ? "word" : transfer_size == SIZE_LONG ? "long" : transfer_size == SIZE_QUAD ? "quad" : "unknown", transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from", reg_names[reg]); #endif // Zero target register in case of a load operation if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != 0) { // FIXME: code to handle local & input registers is not tested if (reg >= 1 && reg < 8) { // global registers regs[reg - 1 + SPARC_REG_G1] = 0; } else if (reg >= 8 && reg < 16) { // output registers regs[reg - 8 + SPARC_REG_O0] = 0; } else if (reg >= 16 && reg < 24) { // local registers (in register windows) if (gwins) gwins->wbuf->rw_local[reg - 16] = 0; else rwin->rw_local[reg - 16] = 0; } else { // input registers (in register windows) if (gwins) gwins->wbuf->rw_in[reg - 24] = 0; else rwin->rw_in[reg - 24] = 0; } } regs[SPARC_REG_PC] += 4; regs[SPARC_REG_nPC] += 4; return true; } #endif #endif // Decode and skip ARM instruction #if (defined(arm) || defined(__arm__)) enum { #if (defined(__linux__)) ARM_REG_PC = 15, ARM_REG_CPSR = 16 #endif }; static bool arm_skip_instruction(unsigned long * regs) { unsigned int * pc = (unsigned int *)regs[ARM_REG_PC]; if (pc == 0) return false; #if DEBUG printf("IP: %p [%08x]\n", pc, pc[0]); #endif transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN; transfer_size_t transfer_size = SIZE_UNKNOWN; enum { op_sdt = 1, op_sdth = 2 }; int op = 0; // Handle load/store instructions only const unsigned int opcode = pc[0]; switch ((opcode >> 25) & 7) { case 0: // Halfword and Signed Data Transfer (LDRH, STRH, LDRSB, LDRSH) op = op_sdth; // Determine transfer size (S/H bits) switch ((opcode >> 5) & 3) { case 0: // SWP instruction break; case 1: // Unsigned halfwords case 3: // Signed halfwords transfer_size = SIZE_WORD; break; case 2: // Signed byte transfer_size = SIZE_BYTE; break; } break; case 2: case 3: // Single Data Transfer (LDR, STR) op = op_sdt; // Determine transfer size (B bit) if (((opcode >> 22) & 1) == 1) transfer_size = SIZE_BYTE; else transfer_size = SIZE_LONG; break; default: // FIXME: support load/store mutliple? return false; } // Check for invalid transfer size (SWP instruction?) if (transfer_size == SIZE_UNKNOWN) return false; // Determine transfer type (L bit) if (((opcode >> 20) & 1) == 1) transfer_type = SIGSEGV_TRANSFER_LOAD; else transfer_type = SIGSEGV_TRANSFER_STORE; // Compute offset int offset; if (((opcode >> 25) & 1) == 0) { if (op == op_sdt) offset = opcode & 0xfff; else if (op == op_sdth) { int rm = opcode & 0xf; if (((opcode >> 22) & 1) == 0) { // register offset offset = regs[rm]; } else { // immediate offset offset = ((opcode >> 4) & 0xf0) | (opcode & 0x0f); } } } else { const int rm = opcode & 0xf; const int sh = (opcode >> 7) & 0x1f; if (((opcode >> 4) & 1) == 1) { // we expect only legal load/store instructions printf("FATAL: invalid shift operand\n"); return false; } const unsigned int v = regs[rm]; switch ((opcode >> 5) & 3) { case 0: // logical shift left offset = sh ? v << sh : v; break; case 1: // logical shift right offset = sh ? v >> sh : 0; break; case 2: // arithmetic shift right if (sh) offset = ((signed int)v) >> sh; else offset = (v & 0x80000000) ? 0xffffffff : 0; break; case 3: // rotate right if (sh) offset = (v >> sh) | (v << (32 - sh)); else offset = (v >> 1) | ((regs[ARM_REG_CPSR] << 2) & 0x80000000); break; } } if (((opcode >> 23) & 1) == 0) offset = -offset; int rd = (opcode >> 12) & 0xf; int rn = (opcode >> 16) & 0xf; #if DEBUG static const char * reg_names[] = { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r9", "r9", "sl", "fp", "ip", "sp", "lr", "pc" }; printf("%s %s register %s\n", transfer_size == SIZE_BYTE ? "byte" : transfer_size == SIZE_WORD ? "word" : transfer_size == SIZE_LONG ? "long" : "unknown", transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from", reg_names[rd]); #endif unsigned int base = regs[rn]; if (((opcode >> 24) & 1) == 1) base += offset; if (transfer_type == SIGSEGV_TRANSFER_LOAD) regs[rd] = 0; if (((opcode >> 24) & 1) == 0) // post-index addressing regs[rn] += offset; else if (((opcode >> 21) & 1) == 1) // write-back address into base regs[rn] = base; regs[ARM_REG_PC] += 4; return true; } #endif #ifdef _STRUCT_ARM_THREAD_STATE64 static bool aarch64_skip_instruction(unsigned long *regs) { _STRUCT_ARM_THREAD_STATE64 *ts = (_STRUCT_ARM_THREAD_STATE64 *)regs; if (!ts->__pc) return false; ts->__pc += 4; return true; } #endif #ifdef __linux__ static bool aarch64_skip_instruction(unsigned long *regs) { unsigned long long *r = (unsigned long long *)regs; if (!r[32]) return false; r[32] += 4; return true; } #endif // Fallbacks #ifndef SIGSEGV_FAULT_ADDRESS_FAST #define SIGSEGV_FAULT_ADDRESS_FAST SIGSEGV_FAULT_ADDRESS #endif #ifndef SIGSEGV_FAULT_INSTRUCTION_FAST #define SIGSEGV_FAULT_INSTRUCTION_FAST SIGSEGV_FAULT_INSTRUCTION #endif #ifndef SIGSEGV_FAULT_INSTRUCTION #define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_INVALID_ADDRESS #endif #ifndef SIGSEGV_FAULT_HANDLER_ARGLIST_1 #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 SIGSEGV_FAULT_HANDLER_ARGLIST #endif #ifndef SIGSEGV_FAULT_HANDLER_INVOKE #define SIGSEGV_FAULT_HANDLER_INVOKE(P) sigsegv_fault_handler(P) #endif // SIGSEGV recovery supported ? #if defined(SIGSEGV_ALL_SIGNALS) && defined(SIGSEGV_FAULT_HANDLER_ARGLIST) && defined(SIGSEGV_FAULT_ADDRESS) #define HAVE_SIGSEGV_RECOVERY #endif /* * SIGSEGV global handler */ #ifdef HAVE_MACH_EXCEPTIONS #ifdef EMULATED_PPC static void mach_get_exception_state(sigsegv_info_t *SIP) { SIP->exc_state_count = SIGSEGV_EXCEPTION_STATE_COUNT; kern_return_t krc = thread_get_state(SIP->thread, SIGSEGV_EXCEPTION_STATE_FLAVOR, (natural_t *)&SIP->exc_state, &SIP->exc_state_count); MACH_CHECK_ERROR(thread_get_state, krc); SIP->has_exc_state = true; } #endif static void mach_get_thread_state(sigsegv_info_t *SIP) { SIP->thr_state_count = SIGSEGV_THREAD_STATE_COUNT; kern_return_t krc = thread_get_state(SIP->thread, SIGSEGV_THREAD_STATE_FLAVOR, (natural_t *)&SIP->thr_state, &SIP->thr_state_count); MACH_CHECK_ERROR(thread_get_state, krc); SIP->has_thr_state = true; } static void mach_set_thread_state(sigsegv_info_t *SIP) { kern_return_t krc = thread_set_state(SIP->thread, SIGSEGV_THREAD_STATE_FLAVOR, (natural_t *)&SIP->thr_state, SIP->thr_state_count); MACH_CHECK_ERROR(thread_set_state, krc); } #endif // Return the address of the invalid memory reference sigsegv_address_t sigsegv_get_fault_address(sigsegv_info_t *SIP) { #ifdef HAVE_MACH_EXCEPTIONS #ifdef EMULATED_PPC static int use_fast_path = -1; if (use_fast_path != 1 && !SIP->has_exc_state) { mach_get_exception_state(SIP); sigsegv_address_t addr = (sigsegv_address_t)SIGSEGV_FAULT_ADDRESS; if (use_fast_path < 0) { const char *machfault = getenv("SIGSEGV_MACH_FAULT"); if (machfault) { if (strcmp(machfault, "fast") == 0) use_fast_path = 1; else if (strcmp(machfault, "slow") == 0) use_fast_path = 0; } if (use_fast_path < 0) use_fast_path = addr == SIP->addr; } SIP->addr = addr; } #endif #endif return SIP->addr; } // Return the address of the instruction that caused the fault, or // SIGSEGV_INVALID_ADDRESS if we could not retrieve this information sigsegv_address_t sigsegv_get_fault_instruction_address(sigsegv_info_t *SIP) { #ifdef HAVE_MACH_EXCEPTIONS #ifdef EMULATED_PPC if (!SIP->has_thr_state) { mach_get_thread_state(SIP); SIP->pc = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION; } #endif #endif return SIP->pc; } // This function handles the badaccess to memory. // It is called from the signal handler or the exception handler. static bool handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGLIST_1) { sigsegv_info_t SI; SI.addr = (sigsegv_address_t)SIGSEGV_FAULT_ADDRESS_FAST; SI.pc = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION_FAST; #ifdef HAVE_MACH_EXCEPTIONS SI.thread = thread; SI.has_exc_state = false; SI.has_thr_state = false; #endif sigsegv_info_t * const SIP = &SI; // Call user's handler and reinstall the global handler, if required switch (SIGSEGV_FAULT_HANDLER_INVOKE(SIP)) { case SIGSEGV_RETURN_SUCCESS: return true; #if HAVE_SIGSEGV_SKIP_INSTRUCTION case SIGSEGV_RETURN_SKIP_INSTRUCTION: // Call the instruction skipper with the register file // available #ifdef HAVE_MACH_EXCEPTIONS if (!SIP->has_thr_state) mach_get_thread_state(SIP); #endif if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE)) { #ifdef HAVE_MACH_EXCEPTIONS // Unlike UNIX signals where the thread state // is modified off of the stack, in Mach we // need to actually call thread_set_state to // have the register values updated. mach_set_thread_state(SIP); #endif return true; } break; #endif case SIGSEGV_RETURN_FAILURE: // We can't do anything with the fault_address, dump state? if (sigsegv_state_dumper != 0) sigsegv_state_dumper(SIP); break; } return false; } /* * There are two mechanisms for handling a bad memory access, * Mach exceptions and UNIX signals. The implementation specific * code appears below. Its reponsibility is to call handle_badaccess * which is the routine that handles the fault in an implementation * agnostic manner. The implementation specific code below is then * reponsible for checking whether handle_badaccess was able * to handle the memory access error and perform any implementation * specific tasks necessary afterwards. */ #ifdef HAVE_MACH_EXCEPTIONS /* * We need to forward all exceptions that we do not handle. * This is important, there are many exceptions that may be * handled by other exception handlers. For example debuggers * use exceptions and the exception hander is in another * process in such a case. (Timothy J. Wood states in his * message to the list that he based this code on that from * gdb for Darwin.) */ static inline kern_return_t forward_exception(mach_port_t thread_port, mach_port_t task_port, exception_type_t exception_type, mach_exception_data_t exception_data, mach_msg_type_number_t data_count, ExceptionPorts *oldExceptionPorts) { kern_return_t kret; unsigned int portIndex; mach_port_t port; exception_behavior_t behavior; thread_state_flavor_t flavor; thread_state_data_t thread_state; mach_msg_type_number_t thread_state_count; for (portIndex = 0; portIndex < oldExceptionPorts->maskCount; portIndex++) { if (oldExceptionPorts->masks[portIndex] & (1 << exception_type)) { // This handler wants the exception break; } } if (portIndex >= oldExceptionPorts->maskCount) { fprintf(stderr, "No handler for exception_type = %d. Not fowarding\n", exception_type); return KERN_FAILURE; } port = oldExceptionPorts->handlers[portIndex]; behavior = oldExceptionPorts->behaviors[portIndex]; flavor = oldExceptionPorts->flavors[portIndex]; if (!VALID_THREAD_STATE_FLAVOR(flavor)) { fprintf(stderr, "Invalid thread_state flavor = %d. Not forwarding\n", flavor); return KERN_FAILURE; } /* fprintf(stderr, "forwarding exception, port = 0x%x, behaviour = %d, flavor = %d\n", port, behavior, flavor); */ if (behavior != EXCEPTION_DEFAULT) { thread_state_count = THREAD_STATE_MAX; kret = thread_get_state (thread_port, flavor, (natural_t *)&thread_state, &thread_state_count); MACH_CHECK_ERROR (thread_get_state, kret); } switch (behavior) { case EXCEPTION_DEFAULT: // fprintf(stderr, "forwarding to exception_raise\n"); kret = mach_exception_raise(port, thread_port, task_port, exception_type, exception_data, data_count); MACH_CHECK_ERROR (mach_exception_raise, kret); break; case EXCEPTION_STATE: // fprintf(stderr, "forwarding to exception_raise_state\n"); kret = mach_exception_raise_state(port, exception_type, exception_data, data_count, &flavor, (natural_t *)&thread_state, thread_state_count, (natural_t *)&thread_state, &thread_state_count); MACH_CHECK_ERROR (mach_exception_raise_state, kret); break; case EXCEPTION_STATE_IDENTITY: // fprintf(stderr, "forwarding to exception_raise_state_identity\n"); kret = mach_exception_raise_state_identity(port, thread_port, task_port, exception_type, exception_data, data_count, &flavor, (natural_t *)&thread_state, thread_state_count, (natural_t *)&thread_state, &thread_state_count); MACH_CHECK_ERROR (mach_exception_raise_state_identity, kret); break; default: fprintf(stderr, "forward_exception got unknown behavior\n"); kret = KERN_FAILURE; break; } if (behavior != EXCEPTION_DEFAULT) { kret = thread_set_state (thread_port, flavor, (natural_t *)&thread_state, thread_state_count); MACH_CHECK_ERROR (thread_set_state, kret); } return kret; } /* * This is the code that actually handles the exception. * It is called by exc_server. For Darwin 5 Apple changed * this a bit from how this family of functions worked in * Mach. If you are familiar with that it is a little * different. The main variation that concerns us here is * that code is an array of exception specific codes and * codeCount is a count of the number of codes in the code * array. In typical Mach all exceptions have a code * and sub-code. It happens to be the case that for a * EXC_BAD_ACCESS exception the first entry is the type of * bad access that occurred and the second entry is the * faulting address so these entries correspond exactly to * how the code and sub-code are used on Mach. * * This is a MIG interface. No code in Basilisk II should * call this directley. This has to have external C * linkage because that is what exc_server expects. */ kern_return_t catch_mach_exception_raise(mach_port_t exception_port, mach_port_t thread, mach_port_t task, exception_type_t exception, mach_exception_data_t code, mach_msg_type_number_t code_count) { kern_return_t krc; if (exception == EXC_BAD_ACCESS) { switch (code[0]) { case KERN_PROTECTION_FAILURE: case KERN_INVALID_ADDRESS: if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS)) return KERN_SUCCESS; break; } } // In Mach we do not need to remove the exception handler. // If we forward the exception, eventually some exception handler // will take care of this exception. krc = forward_exception(thread, task, exception, code, code_count, &ports); return krc; } /* XXX: borrowed from launchd and gdb */ kern_return_t catch_mach_exception_raise_state(mach_port_t exception_port, exception_type_t exception, mach_exception_data_t code, mach_msg_type_number_t code_count, int *flavor, thread_state_t old_state, mach_msg_type_number_t old_state_count, thread_state_t new_state, mach_msg_type_number_t *new_state_count) { memcpy(new_state, old_state, old_state_count * sizeof(old_state[0])); *new_state_count = old_state_count; return KERN_SUCCESS; } /* XXX: borrowed from launchd and gdb */ kern_return_t catch_mach_exception_raise_state_identity(mach_port_t exception_port, mach_port_t thread_port, mach_port_t task_port, exception_type_t exception, mach_exception_data_t code, mach_msg_type_number_t code_count, int *flavor, thread_state_t old_state, mach_msg_type_number_t old_state_count, thread_state_t new_state, mach_msg_type_number_t *new_state_count) { kern_return_t kret; memcpy(new_state, old_state, old_state_count * sizeof(old_state[0])); *new_state_count = old_state_count; kret = mach_port_deallocate(mach_task_self(), task_port); MACH_CHECK_ERROR(mach_port_deallocate, kret); kret = mach_port_deallocate(mach_task_self(), thread_port); MACH_CHECK_ERROR(mach_port_deallocate, kret); return KERN_SUCCESS; } #endif #ifdef HAVE_SIGSEGV_RECOVERY // Handle bad memory accesses with signal handler static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST) { // Call handler and reinstall the global handler, if required if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS)) { #if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL)) sigsegv_do_install_handler(sig); #endif return; } // Failure: reinstall default handler for "safe" crash #define FAULT_HANDLER(sig) signal(sig, SIG_DFL); SIGSEGV_ALL_SIGNALS #undef FAULT_HANDLER } #endif /* * SIGSEGV handler initialization */ #if defined(HAVE_SIGINFO_T) static bool sigsegv_do_install_handler(int sig) { // Setup SIGSEGV handler to process writes to frame buffer #ifdef HAVE_SIGACTION struct sigaction sigsegv_sa; memset(&sigsegv_sa, 0, sizeof(struct sigaction)); sigemptyset(&sigsegv_sa.sa_mask); sigsegv_sa.sa_sigaction = sigsegv_handler; sigsegv_sa.sa_flags = SA_SIGINFO; return (sigaction(sig, &sigsegv_sa, 0) == 0); #else return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR); #endif } #endif #if defined(HAVE_SIGCONTEXT_SUBTERFUGE) static bool sigsegv_do_install_handler(int sig) { // Setup SIGSEGV handler to process writes to frame buffer #ifdef HAVE_SIGACTION struct sigaction sigsegv_sa; memset(&sigsegv_sa, 0, sizeof(struct sigaction)); sigemptyset(&sigsegv_sa.sa_mask); sigsegv_sa.sa_handler = (signal_handler)sigsegv_handler; sigsegv_sa.sa_flags = 0; #if !EMULATED_68K && defined(__NetBSD__) sigaddset(&sigsegv_sa.sa_mask, SIGALRM); sigsegv_sa.sa_flags |= SA_ONSTACK; #endif return (sigaction(sig, &sigsegv_sa, 0) == 0); #else return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR); #endif } #endif #if defined(HAVE_MACH_EXCEPTIONS) static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler) { /* * Except for the exception port functions, this should be * pretty much stock Mach. If later you choose to support * other Mach's besides Darwin, just check for __MACH__ * here and __APPLE__ where the actual differences are. */ #if defined(__APPLE__) && defined(__MACH__) if (sigsegv_fault_handler != NULL) { sigsegv_fault_handler = handler; return true; } kern_return_t krc; // create the the exception port krc = mach_port_allocate(mach_task_self(), MACH_PORT_RIGHT_RECEIVE, &_exceptionPort); if (krc != KERN_SUCCESS) { mach_error("mach_port_allocate", krc); return false; } // add a port send right krc = mach_port_insert_right(mach_task_self(), _exceptionPort, _exceptionPort, MACH_MSG_TYPE_MAKE_SEND); if (krc != KERN_SUCCESS) { mach_error("mach_port_insert_right", krc); return false; } // get the old exception ports ports.maskCount = sizeof (ports.masks) / sizeof (ports.masks[0]); krc = thread_get_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, ports.masks, &ports.maskCount, ports.handlers, ports.behaviors, ports.flavors); if (krc != KERN_SUCCESS) { mach_error("thread_get_exception_ports", krc); return false; } // set the new exception port // // We could have used EXCEPTION_STATE_IDENTITY instead of // EXCEPTION_DEFAULT to get the thread state in the initial // message, but it turns out that in the common case this is not // neccessary. If we need it we can later ask for it from the // suspended thread. // // Even with THREAD_STATE_NONE, Darwin provides the program // counter in the thread state. The comments in the header file // seem to imply that you can count on the GPR's on an exception // as well but just to be safe I use MACHINE_THREAD_STATE because // you have to ask for all of the GPR's anyway just to get the // program counter. In any case because of update effective // address from immediate and update address from effective // addresses of ra and rb modes (as good an name as any for these // addressing modes) used in PPC instructions, you will need the // GPR state anyway. krc = thread_set_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, _exceptionPort, EXCEPTION_DEFAULT | MACH_EXCEPTION_CODES, SIGSEGV_THREAD_STATE_FLAVOR); if (krc != KERN_SUCCESS) { mach_error("thread_set_exception_ports", krc); return false; } // create the exception handler thread if (pthread_create(&exc_thread, NULL, &handleExceptions, NULL) != 0) { (void)fprintf(stderr, "creation of exception thread failed\n"); return false; } // do not care about the exception thread any longer, let is run standalone (void)pthread_detach(exc_thread); sigsegv_fault_handler = handler; return true; #else return false; #endif } #endif #ifdef HAVE_WIN32_EXCEPTIONS static LONG WINAPI main_exception_filter(EXCEPTION_POINTERS *ExceptionInfo) { if (sigsegv_fault_handler != NULL && ExceptionInfo->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION && ExceptionInfo->ExceptionRecord->NumberParameters >= 2 && handle_badaccess(ExceptionInfo)) return EXCEPTION_CONTINUE_EXECUTION; return EXCEPTION_CONTINUE_SEARCH; } #if defined __CYGWIN__ && defined __i386__ /* In Cygwin programs, SetUnhandledExceptionFilter has no effect because Cygwin installs a global exception handler. We have to dig deep in order to install our main_exception_filter. */ /* Data structures for the current thread's exception handler chain. On the x86 Windows uses register fs, offset 0 to point to the current exception handler; Cygwin mucks with it, so we must do the same... :-/ */ /* Magic taken from winsup/cygwin/include/exceptions.h. */ struct exception_list { struct exception_list *prev; int (*handler) (EXCEPTION_RECORD *, void *, CONTEXT *, void *); }; typedef struct exception_list exception_list; /* Magic taken from winsup/cygwin/exceptions.cc. */ __asm__ (".equ __except_list,0"); extern exception_list *_except_list __asm__ ("%fs:__except_list"); /* For debugging. _except_list is not otherwise accessible from gdb. */ static exception_list * debug_get_except_list () { return _except_list; } /* Cygwin's original exception handler. */ static int (*cygwin_exception_handler) (EXCEPTION_RECORD *, void *, CONTEXT *, void *); /* Our exception handler. */ static int libsigsegv_exception_handler (EXCEPTION_RECORD *exception, void *frame, CONTEXT *context, void *dispatch) { EXCEPTION_POINTERS ExceptionInfo; ExceptionInfo.ExceptionRecord = exception; ExceptionInfo.ContextRecord = context; if (main_exception_filter (&ExceptionInfo) == EXCEPTION_CONTINUE_SEARCH) return cygwin_exception_handler (exception, frame, context, dispatch); else return 0; } static void do_install_main_exception_filter () { /* We cannot insert any handler into the chain, because such handlers must lie on the stack (?). Instead, we have to replace(!) Cygwin's global exception handler. */ cygwin_exception_handler = _except_list->handler; _except_list->handler = libsigsegv_exception_handler; } #else static void do_install_main_exception_filter () { SetUnhandledExceptionFilter ((LPTOP_LEVEL_EXCEPTION_FILTER) &main_exception_filter); } #endif static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler) { static bool main_exception_filter_installed = false; if (!main_exception_filter_installed) { do_install_main_exception_filter(); main_exception_filter_installed = true; } sigsegv_fault_handler = handler; return true; } #endif bool sigsegv_install_handler(sigsegv_fault_handler_t handler) { #if defined(HAVE_SIGSEGV_RECOVERY) bool success = true; #define FAULT_HANDLER(sig) success = success && sigsegv_do_install_handler(sig); SIGSEGV_ALL_SIGNALS #undef FAULT_HANDLER if (success) sigsegv_fault_handler = handler; return success; #elif defined(HAVE_MACH_EXCEPTIONS) || defined(HAVE_WIN32_EXCEPTIONS) return sigsegv_do_install_handler(handler); #else // FAIL: no siginfo_t nor sigcontext subterfuge is available return false; #endif } /* * SIGSEGV handler deinitialization */ void sigsegv_deinstall_handler(void) { // We do nothing for Mach exceptions, the thread would need to be // suspended if not already so, and we might mess with other // exception handlers that came after we registered ours. There is // no need to remove the exception handler, in fact this function is // not called anywhere in Basilisk II. #ifdef HAVE_SIGSEGV_RECOVERY sigsegv_fault_handler = 0; #define FAULT_HANDLER(sig) signal(sig, SIG_DFL); SIGSEGV_ALL_SIGNALS #undef FAULT_HANDLER #endif #ifdef HAVE_WIN32_EXCEPTIONS sigsegv_fault_handler = NULL; #endif } /* * Set callback function when we cannot handle the fault */ void sigsegv_set_dump_state(sigsegv_state_dumper_t handler) { sigsegv_state_dumper = handler; } /* * Test program used for configure/test */ #ifdef CONFIGURE_TEST_SIGSEGV_RECOVERY #include #include #include #ifdef HAVE_SYS_MMAN_H #include #endif #include "vm_alloc.h" const int REF_INDEX = 123; const int REF_VALUE = 45; static sigsegv_uintptr_t page_size; static volatile char * page = 0; static volatile int handler_called = 0; /* Barriers */ #ifdef __GNUC__ #define BARRIER() asm volatile ("" : : : "memory") #else #define BARRIER() /* nothing */ #endif #ifdef __GNUC__ // Code range where we expect the fault to come from static void *b_region, *e_region; #endif static sigsegv_return_t sigsegv_test_handler(sigsegv_info_t *sip) { const sigsegv_address_t fault_address = sigsegv_get_fault_address(sip); const sigsegv_address_t instruction_address = sigsegv_get_fault_instruction_address(sip); #if DEBUG printf("sigsegv_test_handler(%p, %p)\n", fault_address, instruction_address); printf("expected fault at %p\n", page + REF_INDEX); #ifdef __GNUC__ printf("expected instruction address range: %p-%p\n", b_region, e_region); #endif #endif handler_called++; if ((fault_address - REF_INDEX) != page) exit(10); #ifdef __GNUC__ // Make sure reported fault instruction address falls into // expected code range if (instruction_address != SIGSEGV_INVALID_ADDRESS && ((instruction_address < (sigsegv_address_t)b_region) || (instruction_address >= (sigsegv_address_t)e_region))) exit(11); #endif if (vm_protect((char *)((sigsegv_uintptr_t)fault_address & -page_size), page_size, VM_PAGE_READ | VM_PAGE_WRITE) != 0) exit(12); return SIGSEGV_RETURN_SUCCESS; } #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION static sigsegv_return_t sigsegv_insn_handler(sigsegv_info_t *sip) { const sigsegv_address_t fault_address = sigsegv_get_fault_address(sip); const sigsegv_address_t instruction_address = sigsegv_get_fault_instruction_address(sip); #if DEBUG printf("sigsegv_insn_handler(%p, %p)\n", fault_address, instruction_address); printf("expected instruction address range: %p-%p\n", b_region, e_region); #endif if (((sigsegv_uintptr_t)fault_address - (sigsegv_uintptr_t)page) < page_size) { #ifdef __GNUC__ // Make sure reported fault instruction address falls into // expected code range if (instruction_address != SIGSEGV_INVALID_ADDRESS && ((instruction_address < (sigsegv_address_t)b_region) || (instruction_address >= (sigsegv_address_t)e_region))) return SIGSEGV_RETURN_FAILURE; #endif return SIGSEGV_RETURN_SKIP_INSTRUCTION; } return SIGSEGV_RETURN_FAILURE; } // More sophisticated tests for instruction skipper static bool arch_insn_skipper_tests() { #if (defined(i386) || defined(__i386__)) || (defined(__x86_64__) || defined(_M_X64)) static const unsigned char code[] = { 0x8a, 0x00, // mov (%eax),%al 0x8a, 0x2c, 0x18, // mov (%eax,%ebx,1),%ch 0x88, 0x20, // mov %ah,(%eax) 0x88, 0x08, // mov %cl,(%eax) 0x66, 0x8b, 0x00, // mov (%eax),%ax 0x66, 0x8b, 0x0c, 0x18, // mov (%eax,%ebx,1),%cx 0x66, 0x89, 0x00, // mov %ax,(%eax) 0x66, 0x89, 0x0c, 0x18, // mov %cx,(%eax,%ebx,1) 0x8b, 0x00, // mov (%eax),%eax 0x8b, 0x0c, 0x18, // mov (%eax,%ebx,1),%ecx 0x89, 0x00, // mov %eax,(%eax) 0x89, 0x0c, 0x18, // mov %ecx,(%eax,%ebx,1) #if defined(__x86_64__) || defined(_M_X64) 0x44, 0x8a, 0x00, // mov (%rax),%r8b 0x44, 0x8a, 0x20, // mov (%rax),%r12b 0x42, 0x8a, 0x3c, 0x10, // mov (%rax,%r10,1),%dil 0x44, 0x88, 0x00, // mov %r8b,(%rax) 0x44, 0x88, 0x20, // mov %r12b,(%rax) 0x42, 0x88, 0x3c, 0x10, // mov %dil,(%rax,%r10,1) 0x66, 0x44, 0x8b, 0x00, // mov (%rax),%r8w 0x66, 0x42, 0x8b, 0x0c, 0x10, // mov (%rax,%r10,1),%cx 0x66, 0x44, 0x89, 0x00, // mov %r8w,(%rax) 0x66, 0x42, 0x89, 0x0c, 0x10, // mov %cx,(%rax,%r10,1) 0x44, 0x8b, 0x00, // mov (%rax),%r8d 0x42, 0x8b, 0x0c, 0x10, // mov (%rax,%r10,1),%ecx 0x44, 0x89, 0x00, // mov %r8d,(%rax) 0x42, 0x89, 0x0c, 0x10, // mov %ecx,(%rax,%r10,1) 0x48, 0x8b, 0x08, // mov (%rax),%rcx 0x4c, 0x8b, 0x18, // mov (%rax),%r11 0x4a, 0x8b, 0x0c, 0x10, // mov (%rax,%r10,1),%rcx 0x4e, 0x8b, 0x1c, 0x10, // mov (%rax,%r10,1),%r11 0x48, 0x89, 0x08, // mov %rcx,(%rax) 0x4c, 0x89, 0x18, // mov %r11,(%rax) 0x4a, 0x89, 0x0c, 0x10, // mov %rcx,(%rax,%r10,1) 0x4e, 0x89, 0x1c, 0x10, // mov %r11,(%rax,%r10,1) 0x63, 0x47, 0x04, // movslq 4(%rdi),%eax 0x48, 0x63, 0x47, 0x04, // movslq 4(%rdi),%rax #endif 0 // end }; const int N_REGS = 20; SIGSEGV_REGISTER_TYPE regs[N_REGS]; for (int i = 0; i < N_REGS; i++) regs[i] = i; const sigsegv_uintptr_t start_code = (sigsegv_uintptr_t)&code; regs[X86_REG_EIP] = start_code; while ((regs[X86_REG_EIP] - start_code) < (sizeof(code) - 1) && ix86_skip_instruction(regs)) ; /* simply iterate */ return (regs[X86_REG_EIP] - start_code) == (sizeof(code) - 1); #endif return true; } #endif int main(void) { if (vm_init() < 0) return 1; page_size = vm_get_page_size(); if ((page = (char *)vm_acquire(page_size)) == VM_MAP_FAILED) return 2; memset((void *)page, 0, page_size); if (vm_protect((char *)page, page_size, VM_PAGE_READ) < 0) return 3; if (!sigsegv_install_handler(sigsegv_test_handler)) return 4; #ifdef __GNUC__ b_region = &&L_b_region1; e_region = &&L_e_region1; #endif /* This is a really awful hack but otherwise gcc is smart enough * (or bug'ous enough?) to optimize the labels and place them * e.g. at the "main" entry point, which is wrong. */ volatile int label_hack = 3; switch (label_hack) { case 3: L_b_region1: page[REF_INDEX] = REF_VALUE; if (page[REF_INDEX] != REF_VALUE) exit(20); page[REF_INDEX] = REF_VALUE; BARRIER(); // fall-through case 2: L_e_region1: BARRIER(); break; } if (handler_called != 1) return 5; #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION if (!sigsegv_install_handler(sigsegv_insn_handler)) return 6; if (vm_protect((char *)page, page_size, VM_PAGE_READ | VM_PAGE_WRITE) < 0) return 7; for (int i = 0; i < page_size; i++) page[i] = (i + 1) % page_size; if (vm_protect((char *)page, page_size, VM_PAGE_NOACCESS) < 0) return 8; #define TEST_SKIP_INSTRUCTION(TYPE) do { \ const unsigned long TAG = 0x12345678 | \ (sizeof(long) == 8 ? 0x9abcdef0UL << 31 : 0); \ TYPE data = *((TYPE *)(page + sizeof(TYPE))); \ volatile unsigned long effect = data + TAG; \ if (effect != TAG) \ return 9; \ } while (0) #ifdef __GNUC__ b_region = &&L_b_region2; e_region = &&L_e_region2; #ifdef DEBUG printf("switch footage : \n"); printf(" 4 : %p\n", &&L_b_4_region2); printf(" 5 : %p\n", &&L_b_5_region2); printf(" 8 : %p\n", &&L_b_8_region2); printf(" 6 : %p\n", &&L_b_6_region2); printf(" 7 : %p\n", &&L_b_7_region2); printf(" 9 : %p\n", &&L_b_9_region2); printf(" 1 : %p\n", &&L_b_1_region2); #endif #endif switch (label_hack) { case 3: L_b_region2: TEST_SKIP_INSTRUCTION(unsigned char); BARRIER(); case 4: L_b_4_region2: TEST_SKIP_INSTRUCTION(unsigned short); BARRIER(); case 5: L_b_5_region2: TEST_SKIP_INSTRUCTION(unsigned int); BARRIER(); case 8: L_b_8_region2: TEST_SKIP_INSTRUCTION(unsigned long); BARRIER(); case 6: L_b_6_region2: TEST_SKIP_INSTRUCTION(signed char); BARRIER(); case 7: L_b_7_region2: TEST_SKIP_INSTRUCTION(signed short); BARRIER(); case 9: L_b_9_region2: TEST_SKIP_INSTRUCTION(signed int); BARRIER(); case 1: L_b_1_region2: TEST_SKIP_INSTRUCTION(signed long); BARRIER(); // fall-through case 2: L_e_region2: BARRIER(); break; } if (!arch_insn_skipper_tests()) return 20; #endif vm_exit(); return 0; } #endif