/* * sigsegv.cpp - SIGSEGV signals support * * Derived from Bruno Haible's work on his SIGSEGV library for clisp * * * MacOS X support derived from the post by Timothy J. Wood to the * omnigroup macosx-dev list: * Mach Exception Handlers 101 (Was Re: ptrace, gdb) * tjw@omnigroup.com Sun, 4 Jun 2000 * www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html * * Basilisk II (C) 1997-2005 Christian Bauer * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #ifdef HAVE_UNISTD_H #include #endif #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include #include "sigsegv.h" #ifndef NO_STD_NAMESPACE using std::list; #endif // Return value type of a signal handler (standard type if not defined) #ifndef RETSIGTYPE #define RETSIGTYPE void #endif // Type of the system signal handler typedef RETSIGTYPE (*signal_handler)(int); // User's SIGSEGV handler static sigsegv_fault_handler_t sigsegv_fault_handler = 0; // Function called to dump state if we can't handle the fault static sigsegv_state_dumper_t sigsegv_state_dumper = 0; // Actual SIGSEGV handler installer static bool sigsegv_do_install_handler(int sig); /* * Instruction decoding aids */ // Transfer size enum transfer_size_t { SIZE_UNKNOWN, SIZE_BYTE, SIZE_WORD, // 2 bytes SIZE_LONG, // 4 bytes SIZE_QUAD, // 8 bytes }; // Transfer type typedef sigsegv_transfer_type_t transfer_type_t; #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__)) // Addressing mode enum addressing_mode_t { MODE_UNKNOWN, MODE_NORM, MODE_U, MODE_X, MODE_UX }; // Decoded instruction struct instruction_t { transfer_type_t transfer_type; transfer_size_t transfer_size; addressing_mode_t addr_mode; unsigned int addr; char ra, rd; }; static void powerpc_decode_instruction(instruction_t *instruction, unsigned int nip, unsigned long * gpr) { // Get opcode and divide into fields unsigned int opcode = *((unsigned int *)(unsigned long)nip); unsigned int primop = opcode >> 26; unsigned int exop = (opcode >> 1) & 0x3ff; unsigned int ra = (opcode >> 16) & 0x1f; unsigned int rb = (opcode >> 11) & 0x1f; unsigned int rd = (opcode >> 21) & 0x1f; signed int imm = (signed short)(opcode & 0xffff); // Analyze opcode transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN; transfer_size_t transfer_size = SIZE_UNKNOWN; addressing_mode_t addr_mode = MODE_UNKNOWN; switch (primop) { case 31: switch (exop) { case 23: // lwzx transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_X; break; case 55: // lwzux transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break; case 87: // lbzx transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break; case 119: // lbzux transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break; case 151: // stwx transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_X; break; case 183: // stwux transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_UX; break; case 215: // stbx transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break; case 247: // stbux transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break; case 279: // lhzx transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break; case 311: // lhzux transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break; case 343: // lhax transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break; case 375: // lhaux transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break; case 407: // sthx transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break; case 439: // sthux transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break; } break; case 32: // lwz transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break; case 33: // lwzu transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; addr_mode = MODE_U; break; case 34: // lbz transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break; case 35: // lbzu transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break; case 36: // stw transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_NORM; break; case 37: // stwu transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; addr_mode = MODE_U; break; case 38: // stb transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break; case 39: // stbu transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break; case 40: // lhz transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break; case 41: // lhzu transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break; case 42: // lha transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break; case 43: // lhau transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break; case 44: // sth transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break; case 45: // sthu transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break; case 58: // ld, ldu, lwa transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_QUAD; addr_mode = ((opcode & 3) == 1) ? MODE_U : MODE_NORM; imm &= ~3; break; case 62: // std, stdu, stq transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_QUAD; addr_mode = ((opcode & 3) == 1) ? MODE_U : MODE_NORM; imm &= ~3; break; } // Calculate effective address unsigned int addr = 0; switch (addr_mode) { case MODE_X: case MODE_UX: if (ra == 0) addr = gpr[rb]; else addr = gpr[ra] + gpr[rb]; break; case MODE_NORM: case MODE_U: if (ra == 0) addr = (signed int)(signed short)imm; else addr = gpr[ra] + (signed int)(signed short)imm; break; default: break; } // Commit decoded instruction instruction->addr = addr; instruction->addr_mode = addr_mode; instruction->transfer_type = transfer_type; instruction->transfer_size = transfer_size; instruction->ra = ra; instruction->rd = rd; } #endif /* * OS-dependant SIGSEGV signals support section */ #if HAVE_SIGINFO_T // Generic extended signal handler #if defined(__FreeBSD__) #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGBUS) #else #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV) #endif #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, siginfo_t *sip, void *scp #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 siginfo_t *sip, void *scp #define SIGSEGV_FAULT_HANDLER_ARGS sip, scp #define SIGSEGV_FAULT_ADDRESS sip->si_addr #if (defined(sgi) || defined(__sgi)) #include #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.gregs) #define SIGSEGV_FAULT_INSTRUCTION (unsigned long)SIGSEGV_CONTEXT_REGS[CTX_EPC] #if (defined(mips) || defined(__mips)) #define SIGSEGV_REGISTER_FILE SIGSEGV_CONTEXT_REGS #define SIGSEGV_SKIP_INSTRUCTION mips_skip_instruction #endif #endif #if defined(__sun__) #if (defined(sparc) || defined(__sparc__)) #include #include #include #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.gregs) #define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS[REG_PC] #define SIGSEGV_SPARC_GWINDOWS (((ucontext_t *)scp)->uc_mcontext.gwins) #define SIGSEGV_SPARC_RWINDOW (struct rwindow *)((char *)SIGSEGV_CONTEXT_REGS[REG_SP] + STACK_BIAS) #define SIGSEGV_REGISTER_FILE ((unsigned long *)SIGSEGV_CONTEXT_REGS), SIGSEGV_SPARC_GWINDOWS, SIGSEGV_SPARC_RWINDOW #define SIGSEGV_SKIP_INSTRUCTION sparc_skip_instruction #endif #if defined(__i386__) #include #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.gregs) #define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS[EIP] #define SIGSEGV_REGISTER_FILE (unsigned long *)SIGSEGV_CONTEXT_REGS #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction #endif #endif #if defined(__FreeBSD__) || defined(__OpenBSD__) #if (defined(i386) || defined(__i386__)) #define SIGSEGV_FAULT_INSTRUCTION (((struct sigcontext *)scp)->sc_eip) #define SIGSEGV_REGISTER_FILE ((unsigned long *)&(((struct sigcontext *)scp)->sc_edi)) /* EDI is the first GPR (even below EIP) in sigcontext */ #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction #endif #endif #if defined(__NetBSD__) #if (defined(i386) || defined(__i386__)) #include #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.__gregs) #define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS[_REG_EIP] #define SIGSEGV_REGISTER_FILE (unsigned long *)SIGSEGV_CONTEXT_REGS #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction #endif #if (defined(powerpc) || defined(__powerpc__)) #include #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.__gregs) #define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS[_REG_PC] #define SIGSEGV_REGISTER_FILE (unsigned long *)&SIGSEGV_CONTEXT_REGS[_REG_PC], (unsigned long *)&SIGSEGV_CONTEXT_REGS[_REG_R0] #define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction #endif #endif #if defined(__linux__) #if (defined(i386) || defined(__i386__)) #include #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.gregs) #define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS[14] /* should use REG_EIP instead */ #define SIGSEGV_REGISTER_FILE (unsigned long *)SIGSEGV_CONTEXT_REGS #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction #endif #if (defined(x86_64) || defined(__x86_64__)) #include #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.gregs) #define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS[16] /* should use REG_RIP instead */ #define SIGSEGV_REGISTER_FILE (unsigned long *)SIGSEGV_CONTEXT_REGS #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction #endif #if (defined(ia64) || defined(__ia64__)) #define SIGSEGV_FAULT_INSTRUCTION (((struct sigcontext *)scp)->sc_ip & ~0x3ULL) /* slot number is in bits 0 and 1 */ #endif #if (defined(powerpc) || defined(__powerpc__)) #include #define SIGSEGV_CONTEXT_REGS (((ucontext_t *)scp)->uc_mcontext.regs) #define SIGSEGV_FAULT_INSTRUCTION (SIGSEGV_CONTEXT_REGS->nip) #define SIGSEGV_REGISTER_FILE (unsigned long *)&SIGSEGV_CONTEXT_REGS->nip, (unsigned long *)(SIGSEGV_CONTEXT_REGS->gpr) #define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction #endif #if (defined(hppa) || defined(__hppa__)) #undef SIGSEGV_FAULT_ADDRESS #define SIGSEGV_FAULT_ADDRESS sip->si_ptr #endif #if (defined(arm) || defined(__arm__)) #include /* use kernel structure, glibc may not be in sync */ #define SIGSEGV_CONTEXT_REGS (((struct ucontext *)scp)->uc_mcontext) #define SIGSEGV_FAULT_INSTRUCTION (SIGSEGV_CONTEXT_REGS.arm_pc) #define SIGSEGV_REGISTER_FILE (&SIGSEGV_CONTEXT_REGS.arm_r0) #define SIGSEGV_SKIP_INSTRUCTION arm_skip_instruction #endif #endif #endif #if HAVE_SIGCONTEXT_SUBTERFUGE // Linux kernels prior to 2.4 ? #if defined(__linux__) #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV) #if (defined(i386) || defined(__i386__)) #include #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, struct sigcontext scs #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp #define SIGSEGV_FAULT_HANDLER_ARGS &scs #define SIGSEGV_FAULT_ADDRESS scp->cr2 #define SIGSEGV_FAULT_INSTRUCTION scp->eip #define SIGSEGV_REGISTER_FILE (unsigned long *)scp #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction #endif #if (defined(sparc) || defined(__sparc__)) #include #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp, char *addr #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp, addr #define SIGSEGV_FAULT_ADDRESS addr #endif #if (defined(powerpc) || defined(__powerpc__)) #include #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, struct sigcontext *scp #define SIGSEGV_FAULT_HANDLER_ARGS sig, scp #define SIGSEGV_FAULT_ADDRESS scp->regs->dar #define SIGSEGV_FAULT_INSTRUCTION scp->regs->nip #define SIGSEGV_REGISTER_FILE (unsigned long *)&scp->regs->nip, (unsigned long *)(scp->regs->gpr) #define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction #endif #if (defined(alpha) || defined(__alpha__)) #include #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp #define SIGSEGV_FAULT_ADDRESS get_fault_address(scp) #define SIGSEGV_FAULT_INSTRUCTION scp->sc_pc #endif #if (defined(arm) || defined(__arm__)) #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int r1, int r2, int r3, struct sigcontext sc #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 struct sigcontext *scp #define SIGSEGV_FAULT_HANDLER_ARGS &sc #define SIGSEGV_FAULT_ADDRESS scp->fault_address #define SIGSEGV_FAULT_INSTRUCTION scp->arm_pc #define SIGSEGV_REGISTER_FILE &scp->arm_r0 #define SIGSEGV_SKIP_INSTRUCTION arm_skip_instruction #endif #endif // Irix 5 or 6 on MIPS #if (defined(sgi) || defined(__sgi)) && (defined(SYSTYPE_SVR4) || defined(_SYSTYPE_SVR4)) #include #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp #define SIGSEGV_FAULT_ADDRESS (unsigned long)scp->sc_badvaddr #define SIGSEGV_FAULT_INSTRUCTION (unsigned long)scp->sc_pc #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV) #endif // HP-UX #if (defined(hpux) || defined(__hpux__)) #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp #define SIGSEGV_FAULT_ADDRESS scp->sc_sl.sl_ss.ss_narrow.ss_cr21 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV) FAULT_HANDLER(SIGBUS) #endif // OSF/1 on Alpha #if defined(__osf__) #include #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp #define SIGSEGV_FAULT_ADDRESS scp->sc_traparg_a0 #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV) #endif // AIX #if defined(_AIX) #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp #define SIGSEGV_FAULT_ADDRESS scp->sc_jmpbuf.jmp_context.o_vaddr #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV) #endif // NetBSD #if defined(__NetBSD__) #if (defined(m68k) || defined(__m68k__)) #include #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp #define SIGSEGV_FAULT_ADDRESS get_fault_address(scp) #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV) // Use decoding scheme from BasiliskII/m68k native static sigsegv_address_t get_fault_address(struct sigcontext *scp) { struct sigstate { int ss_flags; struct frame ss_frame; }; struct sigstate *state = (struct sigstate *)scp->sc_ap; char *fault_addr; switch (state->ss_frame.f_format) { case 7: /* 68040 access error */ /* "code" is sometimes unreliable (i.e. contains NULL or a bogus address), reason unknown */ fault_addr = state->ss_frame.f_fmt7.f_fa; break; default: fault_addr = (char *)code; break; } return (sigsegv_address_t)fault_addr; } #endif #if (defined(alpha) || defined(__alpha__)) #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp #define SIGSEGV_FAULT_ADDRESS get_fault_address(scp) #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGBUS) #endif #if (defined(i386) || defined(__i386__)) #error "FIXME: need to decode instruction and compute EA" #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV) #endif #endif #if defined(__FreeBSD__) #if (defined(i386) || defined(__i386__)) #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGBUS) #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp, char *addr #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp, addr #define SIGSEGV_FAULT_ADDRESS addr #define SIGSEGV_FAULT_INSTRUCTION scp->sc_eip #define SIGSEGV_REGISTER_FILE ((unsigned long *)&scp->sc_edi) #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction #endif #if (defined(alpha) || defined(__alpha__)) #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGSEGV) #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, char *addr, struct sigcontext *scp #define SIGSEGV_FAULT_HANDLER_ARGS sig, addr, scp #define SIGSEGV_FAULT_ADDRESS addr #define SIGSEGV_FAULT_INSTRUCTION scp->sc_pc #endif #endif // Extract fault address out of a sigcontext #if (defined(alpha) || defined(__alpha__)) // From Boehm's GC 6.0alpha8 static sigsegv_address_t get_fault_address(struct sigcontext *scp) { unsigned int instruction = *((unsigned int *)(scp->sc_pc)); unsigned long fault_address = scp->sc_regs[(instruction >> 16) & 0x1f]; fault_address += (signed long)(signed short)(instruction & 0xffff); return (sigsegv_address_t)fault_address; } #endif // MacOS X, not sure which version this works in. Under 10.1 // vm_protect does not appear to work from a signal handler. Under // 10.2 signal handlers get siginfo type arguments but the si_addr // field is the address of the faulting instruction and not the // address that caused the SIGBUS. Maybe this works in 10.0? In any // case with Mach exception handlers there is a way to do what this // was meant to do. #ifndef HAVE_MACH_EXCEPTIONS #if defined(__APPLE__) && defined(__MACH__) #if (defined(ppc) || defined(__ppc__)) #define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, int code, struct sigcontext *scp #define SIGSEGV_FAULT_HANDLER_ARGS sig, code, scp #define SIGSEGV_FAULT_ADDRESS get_fault_address(scp) #define SIGSEGV_FAULT_INSTRUCTION scp->sc_ir #define SIGSEGV_ALL_SIGNALS FAULT_HANDLER(SIGBUS) #define SIGSEGV_REGISTER_FILE (unsigned int *)&scp->sc_ir, &((unsigned int *) scp->sc_regs)[2] #define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction // Use decoding scheme from SheepShaver static sigsegv_address_t get_fault_address(struct sigcontext *scp) { unsigned int nip = (unsigned int) scp->sc_ir; unsigned int * gpr = &((unsigned int *) scp->sc_regs)[2]; instruction_t instr; powerpc_decode_instruction(&instr, nip, gpr); return (sigsegv_address_t)instr.addr; } #endif #endif #endif #endif #if HAVE_WIN32_EXCEPTIONS #define WIN32_LEAN_AND_MEAN /* avoid including junk */ #include #include #define SIGSEGV_FAULT_HANDLER_ARGLIST EXCEPTION_POINTERS *ExceptionInfo #define SIGSEGV_FAULT_HANDLER_ARGS ExceptionInfo #define SIGSEGV_FAULT_ADDRESS ExceptionInfo->ExceptionRecord->ExceptionInformation[1] #define SIGSEGV_CONTEXT_REGS ExceptionInfo->ContextRecord #define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_CONTEXT_REGS->Eip #define SIGSEGV_REGISTER_FILE ((unsigned long *)&SIGSEGV_CONTEXT_REGS->Edi) #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction #endif #if HAVE_MACH_EXCEPTIONS // This can easily be extended to other Mach systems, but really who // uses HURD (oops GNU/HURD), Darwin/x86, NextStep, Rhapsody, or CMU // Mach 2.5/3.0? #if defined(__APPLE__) && defined(__MACH__) #include #include #include #include /* * If you are familiar with MIG then you will understand the frustration * that was necessary to get these embedded into C++ code by hand. */ extern "C" { #include #include extern boolean_t exc_server(mach_msg_header_t *, mach_msg_header_t *); extern kern_return_t catch_exception_raise(mach_port_t, mach_port_t, mach_port_t, exception_type_t, exception_data_t, mach_msg_type_number_t); extern kern_return_t exception_raise(mach_port_t, mach_port_t, mach_port_t, exception_type_t, exception_data_t, mach_msg_type_number_t); extern kern_return_t exception_raise_state(mach_port_t, exception_type_t, exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *, thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *); extern kern_return_t exception_raise_state_identity(mach_port_t, mach_port_t, mach_port_t, exception_type_t, exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *, thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *); } // Could make this dynamic by looking for a result of MIG_ARRAY_TOO_LARGE #define HANDLER_COUNT 64 // structure to tuck away existing exception handlers typedef struct _ExceptionPorts { mach_msg_type_number_t maskCount; exception_mask_t masks[HANDLER_COUNT]; exception_handler_t handlers[HANDLER_COUNT]; exception_behavior_t behaviors[HANDLER_COUNT]; thread_state_flavor_t flavors[HANDLER_COUNT]; } ExceptionPorts; // exception handler thread static pthread_t exc_thread; // place where old exception handler info is stored static ExceptionPorts ports; // our exception port static mach_port_t _exceptionPort = MACH_PORT_NULL; #define MACH_CHECK_ERROR(name,ret) \ if (ret != KERN_SUCCESS) { \ mach_error(#name, ret); \ exit (1); \ } #ifdef __ppc__ #define SIGSEGV_THREAD_STATE_TYPE ppc_thread_state_t #define SIGSEGV_THREAD_STATE_FLAVOR PPC_THREAD_STATE #define SIGSEGV_THREAD_STATE_COUNT PPC_THREAD_STATE_COUNT #define SIGSEGV_FAULT_INSTRUCTION state->srr0 #define SIGSEGV_SKIP_INSTRUCTION powerpc_skip_instruction #define SIGSEGV_REGISTER_FILE (unsigned long *)&state->srr0, (unsigned long *)&state->r0 #endif #ifdef __i386__ #ifdef i386_SAVED_STATE #define SIGSEGV_THREAD_STATE_TYPE struct i386_saved_state #define SIGSEGV_THREAD_STATE_FLAVOR i386_SAVED_STATE #define SIGSEGV_THREAD_STATE_COUNT i386_SAVED_STATE_COUNT #define SIGSEGV_REGISTER_FILE ((unsigned long *)&state->edi) /* EDI is the first GPR we consider */ #else #define SIGSEGV_THREAD_STATE_TYPE struct i386_thread_state #define SIGSEGV_THREAD_STATE_FLAVOR i386_THREAD_STATE #define SIGSEGV_THREAD_STATE_COUNT i386_THREAD_STATE_COUNT #define SIGSEGV_REGISTER_FILE ((unsigned long *)&state->eax) /* EAX is the first GPR we consider */ #endif #define SIGSEGV_FAULT_INSTRUCTION state->eip #define SIGSEGV_SKIP_INSTRUCTION ix86_skip_instruction #endif #define SIGSEGV_FAULT_ADDRESS code[1] #define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP) ((code[0] == KERN_PROTECTION_FAILURE) ? sigsegv_fault_handler(ADDR, IP) : SIGSEGV_RETURN_FAILURE) #define SIGSEGV_FAULT_HANDLER_ARGLIST mach_port_t thread, exception_data_t code, SIGSEGV_THREAD_STATE_TYPE *state #define SIGSEGV_FAULT_HANDLER_ARGS thread, code, &state // Since there can only be one exception thread running at any time // this is not a problem. #define MSG_SIZE 512 static char msgbuf[MSG_SIZE]; static char replybuf[MSG_SIZE]; /* * This is the entry point for the exception handler thread. The job * of this thread is to wait for exception messages on the exception * port that was setup beforehand and to pass them on to exc_server. * exc_server is a MIG generated function that is a part of Mach. * Its job is to decide what to do with the exception message. In our * case exc_server calls catch_exception_raise on our behalf. After * exc_server returns, it is our responsibility to send the reply. */ static void * handleExceptions(void *priv) { mach_msg_header_t *msg, *reply; kern_return_t krc; msg = (mach_msg_header_t *)msgbuf; reply = (mach_msg_header_t *)replybuf; for (;;) { krc = mach_msg(msg, MACH_RCV_MSG, MSG_SIZE, MSG_SIZE, _exceptionPort, 0, MACH_PORT_NULL); MACH_CHECK_ERROR(mach_msg, krc); if (!exc_server(msg, reply)) { fprintf(stderr, "exc_server hated the message\n"); exit(1); } krc = mach_msg(reply, MACH_SEND_MSG, reply->msgh_size, 0, msg->msgh_local_port, 0, MACH_PORT_NULL); if (krc != KERN_SUCCESS) { fprintf(stderr, "Error sending message to original reply port, krc = %d, %s", krc, mach_error_string(krc)); exit(1); } } } #endif #endif /* * Instruction skipping */ #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION // Decode and skip X86 instruction #if (defined(i386) || defined(__i386__)) || defined(__x86_64__) #if defined(__linux__) enum { #if (defined(i386) || defined(__i386__)) X86_REG_EIP = 14, X86_REG_EAX = 11, X86_REG_ECX = 10, X86_REG_EDX = 9, X86_REG_EBX = 8, X86_REG_ESP = 7, X86_REG_EBP = 6, X86_REG_ESI = 5, X86_REG_EDI = 4 #endif #if defined(__x86_64__) X86_REG_R8 = 0, X86_REG_R9 = 1, X86_REG_R10 = 2, X86_REG_R11 = 3, X86_REG_R12 = 4, X86_REG_R13 = 5, X86_REG_R14 = 6, X86_REG_R15 = 7, X86_REG_EDI = 8, X86_REG_ESI = 9, X86_REG_EBP = 10, X86_REG_EBX = 11, X86_REG_EDX = 12, X86_REG_EAX = 13, X86_REG_ECX = 14, X86_REG_ESP = 15, X86_REG_EIP = 16 #endif }; #endif #if defined(__NetBSD__) enum { #if (defined(i386) || defined(__i386__)) X86_REG_EIP = _REG_EIP, X86_REG_EAX = _REG_EAX, X86_REG_ECX = _REG_ECX, X86_REG_EDX = _REG_EDX, X86_REG_EBX = _REG_EBX, X86_REG_ESP = _REG_ESP, X86_REG_EBP = _REG_EBP, X86_REG_ESI = _REG_ESI, X86_REG_EDI = _REG_EDI #endif }; #endif #if defined(__FreeBSD__) enum { #if (defined(i386) || defined(__i386__)) X86_REG_EIP = 10, X86_REG_EAX = 7, X86_REG_ECX = 6, X86_REG_EDX = 5, X86_REG_EBX = 4, X86_REG_ESP = 13, X86_REG_EBP = 2, X86_REG_ESI = 1, X86_REG_EDI = 0 #endif }; #endif #if defined(__OpenBSD__) enum { #if defined(__i386__) // EDI is the first register we consider #define OREG(REG) offsetof(struct sigcontext, sc_##REG) #define DREG(REG) ((OREG(REG) - OREG(edi)) / 4) X86_REG_EIP = DREG(eip), // 7 X86_REG_EAX = DREG(eax), // 6 X86_REG_ECX = DREG(ecx), // 5 X86_REG_EDX = DREG(edx), // 4 X86_REG_EBX = DREG(ebx), // 3 X86_REG_ESP = DREG(esp), // 10 X86_REG_EBP = DREG(ebp), // 2 X86_REG_ESI = DREG(esi), // 1 X86_REG_EDI = DREG(edi) // 0 #undef DREG #undef OREG #endif }; #endif #if defined(__sun__) // Same as for Linux, need to check for x86-64 enum { #if defined(__i386__) X86_REG_EIP = EIP, X86_REG_EAX = EAX, X86_REG_ECX = ECX, X86_REG_EDX = EDX, X86_REG_EBX = EBX, X86_REG_ESP = ESP, X86_REG_EBP = EBP, X86_REG_ESI = ESI, X86_REG_EDI = EDI #endif }; #endif #if defined(__APPLE__) && defined(__MACH__) enum { #ifdef i386_SAVED_STATE // same as FreeBSD (in Open Darwin 8.0.1) X86_REG_EIP = 10, X86_REG_EAX = 7, X86_REG_ECX = 6, X86_REG_EDX = 5, X86_REG_EBX = 4, X86_REG_ESP = 13, X86_REG_EBP = 2, X86_REG_ESI = 1, X86_REG_EDI = 0 #else // new layout (MacOS X 10.4.4 for x86) X86_REG_EIP = 10, X86_REG_EAX = 0, X86_REG_ECX = 2, X86_REG_EDX = 4, X86_REG_EBX = 1, X86_REG_ESP = 7, X86_REG_EBP = 6, X86_REG_ESI = 5, X86_REG_EDI = 4 #endif }; #endif #if defined(_WIN32) enum { #if (defined(i386) || defined(__i386__)) X86_REG_EIP = 7, X86_REG_EAX = 5, X86_REG_ECX = 4, X86_REG_EDX = 3, X86_REG_EBX = 2, X86_REG_ESP = 10, X86_REG_EBP = 6, X86_REG_ESI = 1, X86_REG_EDI = 0 #endif }; #endif // FIXME: this is partly redundant with the instruction decoding phase // to discover transfer type and register number static inline int ix86_step_over_modrm(unsigned char * p) { int mod = (p[0] >> 6) & 3; int rm = p[0] & 7; int offset = 0; // ModR/M Byte switch (mod) { case 0: // [reg] if (rm == 5) return 4; // disp32 break; case 1: // disp8[reg] offset = 1; break; case 2: // disp32[reg] offset = 4; break; case 3: // register return 0; } // SIB Byte if (rm == 4) { if (mod == 0 && (p[1] & 7) == 5) offset = 5; // disp32[index] else offset++; } return offset; } static bool ix86_skip_instruction(unsigned long * regs) { unsigned char * eip = (unsigned char *)regs[X86_REG_EIP]; if (eip == 0) return false; #ifdef _WIN32 if (IsBadCodePtr((FARPROC)eip)) return false; #endif transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN; transfer_size_t transfer_size = SIZE_LONG; int reg = -1; int len = 0; #if DEBUG printf("IP: %p [%02x %02x %02x %02x...]\n", eip, eip[0], eip[1], eip[2], eip[3]); #endif // Operand size prefix if (*eip == 0x66) { eip++; len++; transfer_size = SIZE_WORD; } // REX prefix #if defined(__x86_64__) struct rex_t { unsigned char W; unsigned char R; unsigned char X; unsigned char B; }; rex_t rex = { 0, 0, 0, 0 }; bool has_rex = false; if ((*eip & 0xf0) == 0x40) { has_rex = true; const unsigned char b = *eip; rex.W = b & (1 << 3); rex.R = b & (1 << 2); rex.X = b & (1 << 1); rex.B = b & (1 << 0); #if DEBUG printf("REX: %c,%c,%c,%c\n", rex.W ? 'W' : '_', rex.R ? 'R' : '_', rex.X ? 'X' : '_', rex.B ? 'B' : '_'); #endif eip++; len++; if (rex.W) transfer_size = SIZE_QUAD; } #else const bool has_rex = false; #endif // Decode instruction int target_size = SIZE_UNKNOWN; switch (eip[0]) { case 0x0f: target_size = transfer_size; switch (eip[1]) { case 0xbe: // MOVSX r32, r/m8 case 0xb6: // MOVZX r32, r/m8 transfer_size = SIZE_BYTE; goto do_mov_extend; case 0xbf: // MOVSX r32, r/m16 case 0xb7: // MOVZX r32, r/m16 transfer_size = SIZE_WORD; goto do_mov_extend; do_mov_extend: switch (eip[2] & 0xc0) { case 0x80: reg = (eip[2] >> 3) & 7; transfer_type = SIGSEGV_TRANSFER_LOAD; break; case 0x40: reg = (eip[2] >> 3) & 7; transfer_type = SIGSEGV_TRANSFER_LOAD; break; case 0x00: reg = (eip[2] >> 3) & 7; transfer_type = SIGSEGV_TRANSFER_LOAD; break; } len += 3 + ix86_step_over_modrm(eip + 2); break; } break; case 0x8a: // MOV r8, r/m8 transfer_size = SIZE_BYTE; case 0x8b: // MOV r32, r/m32 (or 16-bit operation) switch (eip[1] & 0xc0) { case 0x80: reg = (eip[1] >> 3) & 7; transfer_type = SIGSEGV_TRANSFER_LOAD; break; case 0x40: reg = (eip[1] >> 3) & 7; transfer_type = SIGSEGV_TRANSFER_LOAD; break; case 0x00: reg = (eip[1] >> 3) & 7; transfer_type = SIGSEGV_TRANSFER_LOAD; break; } len += 2 + ix86_step_over_modrm(eip + 1); break; case 0x88: // MOV r/m8, r8 transfer_size = SIZE_BYTE; case 0x89: // MOV r/m32, r32 (or 16-bit operation) switch (eip[1] & 0xc0) { case 0x80: reg = (eip[1] >> 3) & 7; transfer_type = SIGSEGV_TRANSFER_STORE; break; case 0x40: reg = (eip[1] >> 3) & 7; transfer_type = SIGSEGV_TRANSFER_STORE; break; case 0x00: reg = (eip[1] >> 3) & 7; transfer_type = SIGSEGV_TRANSFER_STORE; break; } len += 2 + ix86_step_over_modrm(eip + 1); break; } if (target_size == SIZE_UNKNOWN) target_size = transfer_size; if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) { // Unknown machine code, let it crash. Then patch the decoder return false; } #if defined(__x86_64__) if (rex.R) reg += 8; #endif if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != -1) { static const int x86_reg_map[] = { X86_REG_EAX, X86_REG_ECX, X86_REG_EDX, X86_REG_EBX, X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI, #if defined(__x86_64__) X86_REG_R8, X86_REG_R9, X86_REG_R10, X86_REG_R11, X86_REG_R12, X86_REG_R13, X86_REG_R14, X86_REG_R15, #endif }; if (reg < 0 || reg >= (sizeof(x86_reg_map)/sizeof(x86_reg_map[0]) - 1)) return false; // Set 0 to the relevant register part // NOTE: this is only valid for MOV alike instructions int rloc = x86_reg_map[reg]; switch (target_size) { case SIZE_BYTE: if (has_rex || reg < 4) regs[rloc] = (regs[rloc] & ~0x00ffL); else { rloc = x86_reg_map[reg - 4]; regs[rloc] = (regs[rloc] & ~0xff00L); } break; case SIZE_WORD: regs[rloc] = (regs[rloc] & ~0xffffL); break; case SIZE_LONG: case SIZE_QUAD: // zero-extension regs[rloc] = 0; break; } } #if DEBUG printf("%08x: %s %s access", regs[X86_REG_EIP], transfer_size == SIZE_BYTE ? "byte" : transfer_size == SIZE_WORD ? "word" : transfer_size == SIZE_LONG ? "long" : transfer_size == SIZE_QUAD ? "quad" : "unknown", transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write"); if (reg != -1) { static const char * x86_byte_reg_str_map[] = { "al", "cl", "dl", "bl", "spl", "bpl", "sil", "dil", "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b", "r15b", "ah", "ch", "dh", "bh", }; static const char * x86_word_reg_str_map[] = { "ax", "cx", "dx", "bx", "sp", "bp", "si", "di", "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w", }; static const char *x86_long_reg_str_map[] = { "eax", "ecx", "edx", "ebx", "esp", "ebp", "esi", "edi", "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d", }; static const char *x86_quad_reg_str_map[] = { "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", }; const char * reg_str = NULL; switch (target_size) { case SIZE_BYTE: reg_str = x86_byte_reg_str_map[(!has_rex && reg >= 4 ? 12 : 0) + reg]; break; case SIZE_WORD: reg_str = x86_word_reg_str_map[reg]; break; case SIZE_LONG: reg_str = x86_long_reg_str_map[reg]; break; case SIZE_QUAD: reg_str = x86_quad_reg_str_map[reg]; break; } if (reg_str) printf(" %s register %%%s", transfer_type == SIGSEGV_TRANSFER_LOAD ? "to" : "from", reg_str); } printf(", %d bytes instruction\n", len); #endif regs[X86_REG_EIP] += len; return true; } #endif // Decode and skip PPC instruction #if (defined(powerpc) || defined(__powerpc__) || defined(__ppc__)) static bool powerpc_skip_instruction(unsigned long * nip_p, unsigned long * regs) { instruction_t instr; powerpc_decode_instruction(&instr, *nip_p, regs); if (instr.transfer_type == SIGSEGV_TRANSFER_UNKNOWN) { // Unknown machine code, let it crash. Then patch the decoder return false; } #if DEBUG printf("%08x: %s %s access", *nip_p, instr.transfer_size == SIZE_BYTE ? "byte" : instr.transfer_size == SIZE_WORD ? "word" : instr.transfer_size == SIZE_LONG ? "long" : "quad", instr.transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write"); if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX) printf(" r%d (ra = %08x)\n", instr.ra, instr.addr); if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD) printf(" r%d (rd = 0)\n", instr.rd); #endif if (instr.addr_mode == MODE_U || instr.addr_mode == MODE_UX) regs[instr.ra] = instr.addr; if (instr.transfer_type == SIGSEGV_TRANSFER_LOAD) regs[instr.rd] = 0; *nip_p += 4; return true; } #endif // Decode and skip MIPS instruction #if (defined(mips) || defined(__mips)) enum { #if (defined(sgi) || defined(__sgi)) MIPS_REG_EPC = 35, #endif }; static bool mips_skip_instruction(greg_t * regs) { unsigned int * epc = (unsigned int *)(unsigned long)regs[MIPS_REG_EPC]; if (epc == 0) return false; #if DEBUG printf("IP: %p [%08x]\n", epc, epc[0]); #endif transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN; transfer_size_t transfer_size = SIZE_LONG; int direction = 0; const unsigned int opcode = epc[0]; switch (opcode >> 26) { case 32: // Load Byte case 36: // Load Byte Unsigned transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; break; case 33: // Load Halfword case 37: // Load Halfword Unsigned transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; break; case 35: // Load Word case 39: // Load Word Unsigned transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; break; case 34: // Load Word Left transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; direction = -1; break; case 38: // Load Word Right transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; direction = 1; break; case 55: // Load Doubleword transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_QUAD; break; case 26: // Load Doubleword Left transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_QUAD; direction = -1; break; case 27: // Load Doubleword Right transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_QUAD; direction = 1; break; case 40: // Store Byte transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; break; case 41: // Store Halfword transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; break; case 43: // Store Word case 42: // Store Word Left case 46: // Store Word Right transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; break; case 63: // Store Doubleword case 44: // Store Doubleword Left case 45: // Store Doubleword Right transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_QUAD; break; /* Misc instructions unlikely to be used within CPU emulators */ case 48: // Load Linked Word transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; break; case 52: // Load Linked Doubleword transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_QUAD; break; case 56: // Store Conditional Word transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; break; case 60: // Store Conditional Doubleword transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_QUAD; break; } if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) { // Unknown machine code, let it crash. Then patch the decoder return false; } // Zero target register in case of a load operation const int reg = (opcode >> 16) & 0x1f; if (transfer_type == SIGSEGV_TRANSFER_LOAD) { if (direction == 0) regs[reg] = 0; else { // FIXME: untested code unsigned long ea = regs[(opcode >> 21) & 0x1f]; ea += (signed long)(signed int)(signed short)(opcode & 0xffff); const int offset = ea & (transfer_size == SIZE_LONG ? 3 : 7); unsigned long value; if (direction > 0) { const unsigned long rmask = ~((1L << ((offset + 1) * 8)) - 1); value = regs[reg] & rmask; } else { const unsigned long lmask = (1L << (offset * 8)) - 1; value = regs[reg] & lmask; } // restore most significant bits if (transfer_size == SIZE_LONG) value = (signed long)(signed int)value; regs[reg] = value; } } #if DEBUG #if (defined(_ABIN32) || defined(_ABI64)) static const char * mips_gpr_names[32] = { "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra" }; #else static const char * mips_gpr_names[32] = { "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3", "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra" }; #endif printf("%s %s register %s\n", transfer_size == SIZE_BYTE ? "byte" : transfer_size == SIZE_WORD ? "word" : transfer_size == SIZE_LONG ? "long" : transfer_size == SIZE_QUAD ? "quad" : "unknown", transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from", mips_gpr_names[reg]); #endif regs[MIPS_REG_EPC] += 4; return true; } #endif // Decode and skip SPARC instruction #if (defined(sparc) || defined(__sparc__)) enum { #if (defined(__sun__)) SPARC_REG_G1 = REG_G1, SPARC_REG_O0 = REG_O0, SPARC_REG_PC = REG_PC, #endif }; static bool sparc_skip_instruction(unsigned long * regs, gwindows_t * gwins, struct rwindow * rwin) { unsigned int * pc = (unsigned int *)regs[SPARC_REG_PC]; if (pc == 0) return false; #if DEBUG printf("IP: %p [%08x]\n", pc, pc[0]); #endif transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN; transfer_size_t transfer_size = SIZE_LONG; bool register_pair = false; const unsigned int opcode = pc[0]; if ((opcode >> 30) != 3) return false; switch ((opcode >> 19) & 0x3f) { case 9: // Load Signed Byte case 1: // Load Unsigned Byte transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_BYTE; break; case 10:// Load Signed Halfword case 2: // Load Unsigned Word transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_WORD; break; case 8: // Load Word case 0: // Load Unsigned Word transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; break; case 11:// Load Extended Word transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_QUAD; break; case 3: // Load Doubleword transfer_type = SIGSEGV_TRANSFER_LOAD; transfer_size = SIZE_LONG; register_pair = true; break; case 5: // Store Byte transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_BYTE; break; case 6: // Store Halfword transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; break; case 4: // Store Word transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_LONG; break; case 14:// Store Extended Word transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_QUAD; break; case 7: // Store Doubleword transfer_type = SIGSEGV_TRANSFER_STORE; transfer_size = SIZE_WORD; register_pair = true; break; } if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) { // Unknown machine code, let it crash. Then patch the decoder return false; } // Zero target register in case of a load operation const int reg = (opcode >> 25) & 0x1f; if (transfer_type == SIGSEGV_TRANSFER_LOAD && reg != 0) { // FIXME: code to handle local & input registers is not tested if (reg >= 1 && reg <= 7) { // global registers regs[reg - 1 + SPARC_REG_G1] = 0; } else if (reg >= 8 && reg <= 15) { // output registers regs[reg - 8 + SPARC_REG_O0] = 0; } else if (reg >= 16 && reg <= 23) { // local registers (in register windows) if (gwins) gwins->wbuf->rw_local[reg - 16] = 0; else rwin->rw_local[reg - 16] = 0; } else { // input registers (in register windows) if (gwins) gwins->wbuf->rw_in[reg - 24] = 0; else rwin->rw_in[reg - 24] = 0; } } #if DEBUG static const char * reg_names[] = { "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7", "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7", "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7", "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7" }; printf("%s %s register %s\n", transfer_size == SIZE_BYTE ? "byte" : transfer_size == SIZE_WORD ? "word" : transfer_size == SIZE_LONG ? "long" : transfer_size == SIZE_QUAD ? "quad" : "unknown", transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from", reg_names[reg]); #endif regs[SPARC_REG_PC] += 4; return true; } #endif #endif // Decode and skip ARM instruction #if (defined(arm) || defined(__arm__)) enum { #if (defined(__linux__)) ARM_REG_PC = 15, ARM_REG_CPSR = 16 #endif }; static bool arm_skip_instruction(unsigned long * regs) { unsigned int * pc = (unsigned int *)regs[ARM_REG_PC]; if (pc == 0) return false; #if DEBUG printf("IP: %p [%08x]\n", pc, pc[0]); #endif transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN; transfer_size_t transfer_size = SIZE_UNKNOWN; enum { op_sdt = 1, op_sdth = 2 }; int op = 0; // Handle load/store instructions only const unsigned int opcode = pc[0]; switch ((opcode >> 25) & 7) { case 0: // Halfword and Signed Data Transfer (LDRH, STRH, LDRSB, LDRSH) op = op_sdth; // Determine transfer size (S/H bits) switch ((opcode >> 5) & 3) { case 0: // SWP instruction break; case 1: // Unsigned halfwords case 3: // Signed halfwords transfer_size = SIZE_WORD; break; case 2: // Signed byte transfer_size = SIZE_BYTE; break; } break; case 2: case 3: // Single Data Transfer (LDR, STR) op = op_sdt; // Determine transfer size (B bit) if (((opcode >> 22) & 1) == 1) transfer_size = SIZE_BYTE; else transfer_size = SIZE_LONG; break; default: // FIXME: support load/store mutliple? return false; } // Check for invalid transfer size (SWP instruction?) if (transfer_size == SIZE_UNKNOWN) return false; // Determine transfer type (L bit) if (((opcode >> 20) & 1) == 1) transfer_type = SIGSEGV_TRANSFER_LOAD; else transfer_type = SIGSEGV_TRANSFER_STORE; // Compute offset int offset; if (((opcode >> 25) & 1) == 0) { if (op == op_sdt) offset = opcode & 0xfff; else if (op == op_sdth) { int rm = opcode & 0xf; if (((opcode >> 22) & 1) == 0) { // register offset offset = regs[rm]; } else { // immediate offset offset = ((opcode >> 4) & 0xf0) | (opcode & 0x0f); } } } else { const int rm = opcode & 0xf; const int sh = (opcode >> 7) & 0x1f; if (((opcode >> 4) & 1) == 1) { // we expect only legal load/store instructions printf("FATAL: invalid shift operand\n"); return false; } const unsigned int v = regs[rm]; switch ((opcode >> 5) & 3) { case 0: // logical shift left offset = sh ? v << sh : v; break; case 1: // logical shift right offset = sh ? v >> sh : 0; break; case 2: // arithmetic shift right if (sh) offset = ((signed int)v) >> sh; else offset = (v & 0x80000000) ? 0xffffffff : 0; break; case 3: // rotate right if (sh) offset = (v >> sh) | (v << (32 - sh)); else offset = (v >> 1) | ((regs[ARM_REG_CPSR] << 2) & 0x80000000); break; } } if (((opcode >> 23) & 1) == 0) offset = -offset; int rd = (opcode >> 12) & 0xf; int rn = (opcode >> 16) & 0xf; #if DEBUG static const char * reg_names[] = { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r9", "r9", "sl", "fp", "ip", "sp", "lr", "pc" }; printf("%s %s register %s\n", transfer_size == SIZE_BYTE ? "byte" : transfer_size == SIZE_WORD ? "word" : transfer_size == SIZE_LONG ? "long" : "unknown", transfer_type == SIGSEGV_TRANSFER_LOAD ? "load to" : "store from", reg_names[rd]); #endif unsigned int base = regs[rn]; if (((opcode >> 24) & 1) == 1) base += offset; if (transfer_type == SIGSEGV_TRANSFER_LOAD) regs[rd] = 0; if (((opcode >> 24) & 1) == 0) // post-index addressing regs[rn] += offset; else if (((opcode >> 21) & 1) == 1) // write-back address into base regs[rn] = base; regs[ARM_REG_PC] += 4; return true; } #endif // Fallbacks #ifndef SIGSEGV_FAULT_INSTRUCTION #define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_INVALID_PC #endif #ifndef SIGSEGV_FAULT_HANDLER_ARGLIST_1 #define SIGSEGV_FAULT_HANDLER_ARGLIST_1 SIGSEGV_FAULT_HANDLER_ARGLIST #endif #ifndef SIGSEGV_FAULT_HANDLER_INVOKE #define SIGSEGV_FAULT_HANDLER_INVOKE(ADDR, IP) sigsegv_fault_handler(ADDR, IP) #endif // SIGSEGV recovery supported ? #if defined(SIGSEGV_ALL_SIGNALS) && defined(SIGSEGV_FAULT_HANDLER_ARGLIST) && defined(SIGSEGV_FAULT_ADDRESS) #define HAVE_SIGSEGV_RECOVERY #endif /* * SIGSEGV global handler */ // This function handles the badaccess to memory. // It is called from the signal handler or the exception handler. static bool handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGLIST_1) { #ifdef HAVE_MACH_EXCEPTIONS // We must match the initial count when writing back the CPU state registers kern_return_t krc; mach_msg_type_number_t count; count = SIGSEGV_THREAD_STATE_COUNT; krc = thread_get_state(thread, SIGSEGV_THREAD_STATE_FLAVOR, (thread_state_t)state, &count); MACH_CHECK_ERROR (thread_get_state, krc); #endif sigsegv_address_t fault_address = (sigsegv_address_t)SIGSEGV_FAULT_ADDRESS; sigsegv_address_t fault_instruction = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION; // Call user's handler and reinstall the global handler, if required switch (SIGSEGV_FAULT_HANDLER_INVOKE(fault_address, fault_instruction)) { case SIGSEGV_RETURN_SUCCESS: return true; #if HAVE_SIGSEGV_SKIP_INSTRUCTION case SIGSEGV_RETURN_SKIP_INSTRUCTION: // Call the instruction skipper with the register file // available if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE)) { #ifdef HAVE_MACH_EXCEPTIONS // Unlike UNIX signals where the thread state // is modified off of the stack, in Mach we // need to actually call thread_set_state to // have the register values updated. krc = thread_set_state(thread, SIGSEGV_THREAD_STATE_FLAVOR, (thread_state_t)state, count); MACH_CHECK_ERROR (thread_set_state, krc); #endif return true; } break; #endif case SIGSEGV_RETURN_FAILURE: // We can't do anything with the fault_address, dump state? if (sigsegv_state_dumper != 0) sigsegv_state_dumper(fault_address, fault_instruction); break; } return false; } /* * There are two mechanisms for handling a bad memory access, * Mach exceptions and UNIX signals. The implementation specific * code appears below. Its reponsibility is to call handle_badaccess * which is the routine that handles the fault in an implementation * agnostic manner. The implementation specific code below is then * reponsible for checking whether handle_badaccess was able * to handle the memory access error and perform any implementation * specific tasks necessary afterwards. */ #ifdef HAVE_MACH_EXCEPTIONS /* * We need to forward all exceptions that we do not handle. * This is important, there are many exceptions that may be * handled by other exception handlers. For example debuggers * use exceptions and the exception hander is in another * process in such a case. (Timothy J. Wood states in his * message to the list that he based this code on that from * gdb for Darwin.) */ static inline kern_return_t forward_exception(mach_port_t thread_port, mach_port_t task_port, exception_type_t exception_type, exception_data_t exception_data, mach_msg_type_number_t data_count, ExceptionPorts *oldExceptionPorts) { kern_return_t kret; unsigned int portIndex; mach_port_t port; exception_behavior_t behavior; thread_state_flavor_t flavor; thread_state_data_t thread_state; mach_msg_type_number_t thread_state_count; for (portIndex = 0; portIndex < oldExceptionPorts->maskCount; portIndex++) { if (oldExceptionPorts->masks[portIndex] & (1 << exception_type)) { // This handler wants the exception break; } } if (portIndex >= oldExceptionPorts->maskCount) { fprintf(stderr, "No handler for exception_type = %d. Not fowarding\n", exception_type); return KERN_FAILURE; } port = oldExceptionPorts->handlers[portIndex]; behavior = oldExceptionPorts->behaviors[portIndex]; flavor = oldExceptionPorts->flavors[portIndex]; /* fprintf(stderr, "forwarding exception, port = 0x%x, behaviour = %d, flavor = %d\n", port, behavior, flavor); */ if (behavior != EXCEPTION_DEFAULT) { thread_state_count = THREAD_STATE_MAX; kret = thread_get_state (thread_port, flavor, thread_state, &thread_state_count); MACH_CHECK_ERROR (thread_get_state, kret); } switch (behavior) { case EXCEPTION_DEFAULT: // fprintf(stderr, "forwarding to exception_raise\n"); kret = exception_raise(port, thread_port, task_port, exception_type, exception_data, data_count); MACH_CHECK_ERROR (exception_raise, kret); break; case EXCEPTION_STATE: // fprintf(stderr, "forwarding to exception_raise_state\n"); kret = exception_raise_state(port, exception_type, exception_data, data_count, &flavor, thread_state, thread_state_count, thread_state, &thread_state_count); MACH_CHECK_ERROR (exception_raise_state, kret); break; case EXCEPTION_STATE_IDENTITY: // fprintf(stderr, "forwarding to exception_raise_state_identity\n"); kret = exception_raise_state_identity(port, thread_port, task_port, exception_type, exception_data, data_count, &flavor, thread_state, thread_state_count, thread_state, &thread_state_count); MACH_CHECK_ERROR (exception_raise_state_identity, kret); break; default: fprintf(stderr, "forward_exception got unknown behavior\n"); break; } if (behavior != EXCEPTION_DEFAULT) { kret = thread_set_state (thread_port, flavor, thread_state, thread_state_count); MACH_CHECK_ERROR (thread_set_state, kret); } return KERN_SUCCESS; } /* * This is the code that actually handles the exception. * It is called by exc_server. For Darwin 5 Apple changed * this a bit from how this family of functions worked in * Mach. If you are familiar with that it is a little * different. The main variation that concerns us here is * that code is an array of exception specific codes and * codeCount is a count of the number of codes in the code * array. In typical Mach all exceptions have a code * and sub-code. It happens to be the case that for a * EXC_BAD_ACCESS exception the first entry is the type of * bad access that occurred and the second entry is the * faulting address so these entries correspond exactly to * how the code and sub-code are used on Mach. * * This is a MIG interface. No code in Basilisk II should * call this directley. This has to have external C * linkage because that is what exc_server expects. */ kern_return_t catch_exception_raise(mach_port_t exception_port, mach_port_t thread, mach_port_t task, exception_type_t exception, exception_data_t code, mach_msg_type_number_t codeCount) { SIGSEGV_THREAD_STATE_TYPE state; kern_return_t krc; if ((exception == EXC_BAD_ACCESS) && (codeCount >= 2)) { if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS)) return KERN_SUCCESS; } // In Mach we do not need to remove the exception handler. // If we forward the exception, eventually some exception handler // will take care of this exception. krc = forward_exception(thread, task, exception, code, codeCount, &ports); return krc; } #endif #ifdef HAVE_SIGSEGV_RECOVERY // Handle bad memory accesses with signal handler static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST) { // Call handler and reinstall the global handler, if required if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS)) { #if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL)) sigsegv_do_install_handler(sig); #endif return; } // Failure: reinstall default handler for "safe" crash #define FAULT_HANDLER(sig) signal(sig, SIG_DFL); SIGSEGV_ALL_SIGNALS #undef FAULT_HANDLER } #endif /* * SIGSEGV handler initialization */ #if defined(HAVE_SIGINFO_T) static bool sigsegv_do_install_handler(int sig) { // Setup SIGSEGV handler to process writes to frame buffer #ifdef HAVE_SIGACTION struct sigaction sigsegv_sa; sigemptyset(&sigsegv_sa.sa_mask); sigsegv_sa.sa_sigaction = sigsegv_handler; sigsegv_sa.sa_flags = SA_SIGINFO; return (sigaction(sig, &sigsegv_sa, 0) == 0); #else return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR); #endif } #endif #if defined(HAVE_SIGCONTEXT_SUBTERFUGE) static bool sigsegv_do_install_handler(int sig) { // Setup SIGSEGV handler to process writes to frame buffer #ifdef HAVE_SIGACTION struct sigaction sigsegv_sa; sigemptyset(&sigsegv_sa.sa_mask); sigsegv_sa.sa_handler = (signal_handler)sigsegv_handler; sigsegv_sa.sa_flags = 0; #if !EMULATED_68K && defined(__NetBSD__) sigaddset(&sigsegv_sa.sa_mask, SIGALRM); sigsegv_sa.sa_flags |= SA_ONSTACK; #endif return (sigaction(sig, &sigsegv_sa, 0) == 0); #else return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR); #endif } #endif #if defined(HAVE_MACH_EXCEPTIONS) static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler) { /* * Except for the exception port functions, this should be * pretty much stock Mach. If later you choose to support * other Mach's besides Darwin, just check for __MACH__ * here and __APPLE__ where the actual differences are. */ #if defined(__APPLE__) && defined(__MACH__) if (sigsegv_fault_handler != NULL) { sigsegv_fault_handler = handler; return true; } kern_return_t krc; // create the the exception port krc = mach_port_allocate(mach_task_self(), MACH_PORT_RIGHT_RECEIVE, &_exceptionPort); if (krc != KERN_SUCCESS) { mach_error("mach_port_allocate", krc); return false; } // add a port send right krc = mach_port_insert_right(mach_task_self(), _exceptionPort, _exceptionPort, MACH_MSG_TYPE_MAKE_SEND); if (krc != KERN_SUCCESS) { mach_error("mach_port_insert_right", krc); return false; } // get the old exception ports ports.maskCount = sizeof (ports.masks) / sizeof (ports.masks[0]); krc = thread_get_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, ports.masks, &ports.maskCount, ports.handlers, ports.behaviors, ports.flavors); if (krc != KERN_SUCCESS) { mach_error("thread_get_exception_ports", krc); return false; } // set the new exception port // // We could have used EXCEPTION_STATE_IDENTITY instead of // EXCEPTION_DEFAULT to get the thread state in the initial // message, but it turns out that in the common case this is not // neccessary. If we need it we can later ask for it from the // suspended thread. // // Even with THREAD_STATE_NONE, Darwin provides the program // counter in the thread state. The comments in the header file // seem to imply that you can count on the GPR's on an exception // as well but just to be safe I use MACHINE_THREAD_STATE because // you have to ask for all of the GPR's anyway just to get the // program counter. In any case because of update effective // address from immediate and update address from effective // addresses of ra and rb modes (as good an name as any for these // addressing modes) used in PPC instructions, you will need the // GPR state anyway. krc = thread_set_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, _exceptionPort, EXCEPTION_DEFAULT, SIGSEGV_THREAD_STATE_FLAVOR); if (krc != KERN_SUCCESS) { mach_error("thread_set_exception_ports", krc); return false; } // create the exception handler thread if (pthread_create(&exc_thread, NULL, &handleExceptions, NULL) != 0) { (void)fprintf(stderr, "creation of exception thread failed\n"); return false; } // do not care about the exception thread any longer, let is run standalone (void)pthread_detach(exc_thread); sigsegv_fault_handler = handler; return true; #else return false; #endif } #endif #ifdef HAVE_WIN32_EXCEPTIONS static LONG WINAPI main_exception_filter(EXCEPTION_POINTERS *ExceptionInfo) { if (sigsegv_fault_handler != NULL && ExceptionInfo->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION && ExceptionInfo->ExceptionRecord->NumberParameters == 2 && handle_badaccess(ExceptionInfo)) return EXCEPTION_CONTINUE_EXECUTION; return EXCEPTION_CONTINUE_SEARCH; } #if defined __CYGWIN__ && defined __i386__ /* In Cygwin programs, SetUnhandledExceptionFilter has no effect because Cygwin installs a global exception handler. We have to dig deep in order to install our main_exception_filter. */ /* Data structures for the current thread's exception handler chain. On the x86 Windows uses register fs, offset 0 to point to the current exception handler; Cygwin mucks with it, so we must do the same... :-/ */ /* Magic taken from winsup/cygwin/include/exceptions.h. */ struct exception_list { struct exception_list *prev; int (*handler) (EXCEPTION_RECORD *, void *, CONTEXT *, void *); }; typedef struct exception_list exception_list; /* Magic taken from winsup/cygwin/exceptions.cc. */ __asm__ (".equ __except_list,0"); extern exception_list *_except_list __asm__ ("%fs:__except_list"); /* For debugging. _except_list is not otherwise accessible from gdb. */ static exception_list * debug_get_except_list () { return _except_list; } /* Cygwin's original exception handler. */ static int (*cygwin_exception_handler) (EXCEPTION_RECORD *, void *, CONTEXT *, void *); /* Our exception handler. */ static int libsigsegv_exception_handler (EXCEPTION_RECORD *exception, void *frame, CONTEXT *context, void *dispatch) { EXCEPTION_POINTERS ExceptionInfo; ExceptionInfo.ExceptionRecord = exception; ExceptionInfo.ContextRecord = context; if (main_exception_filter (&ExceptionInfo) == EXCEPTION_CONTINUE_SEARCH) return cygwin_exception_handler (exception, frame, context, dispatch); else return 0; } static void do_install_main_exception_filter () { /* We cannot insert any handler into the chain, because such handlers must lie on the stack (?). Instead, we have to replace(!) Cygwin's global exception handler. */ cygwin_exception_handler = _except_list->handler; _except_list->handler = libsigsegv_exception_handler; } #else static void do_install_main_exception_filter () { SetUnhandledExceptionFilter ((LPTOP_LEVEL_EXCEPTION_FILTER) &main_exception_filter); } #endif static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler) { static bool main_exception_filter_installed = false; if (!main_exception_filter_installed) { do_install_main_exception_filter(); main_exception_filter_installed = true; } sigsegv_fault_handler = handler; return true; } #endif bool sigsegv_install_handler(sigsegv_fault_handler_t handler) { #if defined(HAVE_SIGSEGV_RECOVERY) bool success = true; #define FAULT_HANDLER(sig) success = success && sigsegv_do_install_handler(sig); SIGSEGV_ALL_SIGNALS #undef FAULT_HANDLER if (success) sigsegv_fault_handler = handler; return success; #elif defined(HAVE_MACH_EXCEPTIONS) || defined(HAVE_WIN32_EXCEPTIONS) return sigsegv_do_install_handler(handler); #else // FAIL: no siginfo_t nor sigcontext subterfuge is available return false; #endif } /* * SIGSEGV handler deinitialization */ void sigsegv_deinstall_handler(void) { // We do nothing for Mach exceptions, the thread would need to be // suspended if not already so, and we might mess with other // exception handlers that came after we registered ours. There is // no need to remove the exception handler, in fact this function is // not called anywhere in Basilisk II. #ifdef HAVE_SIGSEGV_RECOVERY sigsegv_fault_handler = 0; #define FAULT_HANDLER(sig) signal(sig, SIG_DFL); SIGSEGV_ALL_SIGNALS #undef FAULT_HANDLER #endif #ifdef HAVE_WIN32_EXCEPTIONS sigsegv_fault_handler = NULL; #endif } /* * Set callback function when we cannot handle the fault */ void sigsegv_set_dump_state(sigsegv_state_dumper_t handler) { sigsegv_state_dumper = handler; } /* * Test program used for configure/test */ #ifdef CONFIGURE_TEST_SIGSEGV_RECOVERY #include #include #include #ifdef HAVE_SYS_MMAN_H #include #endif #include "vm_alloc.h" const int REF_INDEX = 123; const int REF_VALUE = 45; static int page_size; static volatile char * page = 0; static volatile int handler_called = 0; #ifdef __GNUC__ // Code range where we expect the fault to come from static void *b_region, *e_region; #endif static sigsegv_return_t sigsegv_test_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address) { #if DEBUG printf("sigsegv_test_handler(%p, %p)\n", fault_address, instruction_address); printf("expected fault at %p\n", page + REF_INDEX); #ifdef __GNUC__ printf("expected instruction address range: %p-%p\n", b_region, e_region); #endif #endif handler_called++; if ((fault_address - REF_INDEX) != page) exit(10); #ifdef __GNUC__ // Make sure reported fault instruction address falls into // expected code range if (instruction_address != SIGSEGV_INVALID_PC && ((instruction_address < (sigsegv_address_t)b_region) || (instruction_address >= (sigsegv_address_t)e_region))) exit(11); #endif if (vm_protect((char *)((unsigned long)fault_address & -page_size), page_size, VM_PAGE_READ | VM_PAGE_WRITE) != 0) exit(12); return SIGSEGV_RETURN_SUCCESS; } #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION static sigsegv_return_t sigsegv_insn_handler(sigsegv_address_t fault_address, sigsegv_address_t instruction_address) { #if DEBUG printf("sigsegv_insn_handler(%p, %p)\n", fault_address, instruction_address); #endif if (((unsigned long)fault_address - (unsigned long)page) < page_size) { #ifdef __GNUC__ // Make sure reported fault instruction address falls into // expected code range if (instruction_address != SIGSEGV_INVALID_PC && ((instruction_address < (sigsegv_address_t)b_region) || (instruction_address >= (sigsegv_address_t)e_region))) return SIGSEGV_RETURN_FAILURE; #endif return SIGSEGV_RETURN_SKIP_INSTRUCTION; } return SIGSEGV_RETURN_FAILURE; } // More sophisticated tests for instruction skipper static bool arch_insn_skipper_tests() { #if (defined(i386) || defined(__i386__)) || defined(__x86_64__) static const unsigned char code[] = { 0x8a, 0x00, // mov (%eax),%al 0x8a, 0x2c, 0x18, // mov (%eax,%ebx,1),%ch 0x88, 0x20, // mov %ah,(%eax) 0x88, 0x08, // mov %cl,(%eax) 0x66, 0x8b, 0x00, // mov (%eax),%ax 0x66, 0x8b, 0x0c, 0x18, // mov (%eax,%ebx,1),%cx 0x66, 0x89, 0x00, // mov %ax,(%eax) 0x66, 0x89, 0x0c, 0x18, // mov %cx,(%eax,%ebx,1) 0x8b, 0x00, // mov (%eax),%eax 0x8b, 0x0c, 0x18, // mov (%eax,%ebx,1),%ecx 0x89, 0x00, // mov %eax,(%eax) 0x89, 0x0c, 0x18, // mov %ecx,(%eax,%ebx,1) #if defined(__x86_64__) 0x44, 0x8a, 0x00, // mov (%rax),%r8b 0x44, 0x8a, 0x20, // mov (%rax),%r12b 0x42, 0x8a, 0x3c, 0x10, // mov (%rax,%r10,1),%dil 0x44, 0x88, 0x00, // mov %r8b,(%rax) 0x44, 0x88, 0x20, // mov %r12b,(%rax) 0x42, 0x88, 0x3c, 0x10, // mov %dil,(%rax,%r10,1) 0x66, 0x44, 0x8b, 0x00, // mov (%rax),%r8w 0x66, 0x42, 0x8b, 0x0c, 0x10, // mov (%rax,%r10,1),%cx 0x66, 0x44, 0x89, 0x00, // mov %r8w,(%rax) 0x66, 0x42, 0x89, 0x0c, 0x10, // mov %cx,(%rax,%r10,1) 0x44, 0x8b, 0x00, // mov (%rax),%r8d 0x42, 0x8b, 0x0c, 0x10, // mov (%rax,%r10,1),%ecx 0x44, 0x89, 0x00, // mov %r8d,(%rax) 0x42, 0x89, 0x0c, 0x10, // mov %ecx,(%rax,%r10,1) 0x48, 0x8b, 0x08, // mov (%rax),%rcx 0x4c, 0x8b, 0x18, // mov (%rax),%r11 0x4a, 0x8b, 0x0c, 0x10, // mov (%rax,%r10,1),%rcx 0x4e, 0x8b, 0x1c, 0x10, // mov (%rax,%r10,1),%r11 0x48, 0x89, 0x08, // mov %rcx,(%rax) 0x4c, 0x89, 0x18, // mov %r11,(%rax) 0x4a, 0x89, 0x0c, 0x10, // mov %rcx,(%rax,%r10,1) 0x4e, 0x89, 0x1c, 0x10, // mov %r11,(%rax,%r10,1) #endif 0 // end }; const int N_REGS = 20; unsigned long regs[N_REGS]; for (int i = 0; i < N_REGS; i++) regs[i] = i; const unsigned long start_code = (unsigned long)&code; regs[X86_REG_EIP] = start_code; while ((regs[X86_REG_EIP] - start_code) < (sizeof(code) - 1) && ix86_skip_instruction(regs)) ; /* simply iterate */ return (regs[X86_REG_EIP] - start_code) == (sizeof(code) - 1); #endif return true; } #endif int main(void) { if (vm_init() < 0) return 1; page_size = vm_get_page_size(); if ((page = (char *)vm_acquire(page_size)) == VM_MAP_FAILED) return 2; memset((void *)page, 0, page_size); if (vm_protect((char *)page, page_size, VM_PAGE_READ) < 0) return 3; if (!sigsegv_install_handler(sigsegv_test_handler)) return 4; #ifdef __GNUC__ b_region = &&L_b_region1; e_region = &&L_e_region1; #endif L_b_region1: page[REF_INDEX] = REF_VALUE; if (page[REF_INDEX] != REF_VALUE) exit(20); page[REF_INDEX] = REF_VALUE; L_e_region1: if (handler_called != 1) return 5; #ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION if (!sigsegv_install_handler(sigsegv_insn_handler)) return 6; if (vm_protect((char *)page, page_size, VM_PAGE_READ | VM_PAGE_WRITE) < 0) return 7; for (int i = 0; i < page_size; i++) page[i] = (i + 1) % page_size; if (vm_protect((char *)page, page_size, VM_PAGE_NOACCESS) < 0) return 8; #define TEST_SKIP_INSTRUCTION(TYPE) do { \ const unsigned long TAG = 0x12345678 | \ (sizeof(long) == 8 ? 0x9abcdef0UL << 31 : 0); \ TYPE data = *((TYPE *)(page + sizeof(TYPE))); \ volatile unsigned long effect = data + TAG; \ if (effect != TAG) \ return 9; \ } while (0) #ifdef __GNUC__ b_region = &&L_b_region2; e_region = &&L_e_region2; #endif L_b_region2: TEST_SKIP_INSTRUCTION(unsigned char); TEST_SKIP_INSTRUCTION(unsigned short); TEST_SKIP_INSTRUCTION(unsigned int); TEST_SKIP_INSTRUCTION(unsigned long); TEST_SKIP_INSTRUCTION(signed char); TEST_SKIP_INSTRUCTION(signed short); TEST_SKIP_INSTRUCTION(signed int); TEST_SKIP_INSTRUCTION(signed long); L_e_region2: if (!arch_insn_skipper_tests()) return 20; #endif vm_exit(); return 0; } #endif