macemu/BasiliskII/src/video.cpp

970 lines
28 KiB
C++

/*
* video.cpp - Video/graphics emulation
*
* Basilisk II (C) 1997-2008 Christian Bauer
* Portions written by Marc Hellwig
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/*
* SEE ALSO
* Inside Macintosh: Devices, chapter 1 "Device Manager"
* Designing Cards and Drivers for the Macintosh Family, Second Edition
* Designing PCI Cards and Drivers for Power Macintosh Computers
* Display Device Driver Guide
*/
#include <stdio.h>
#include "sysdeps.h"
#include "cpu_emulation.h"
#include "main.h"
#include "macos_util.h"
#include "slot_rom.h"
#include "video.h"
#include "video_defs.h"
#define DEBUG 0
#include "debug.h"
// Next available NuBus slot ID
uint8 monitor_desc::next_slot_id = 0x80;
// Vector of pointers to available monitor descriptions, filled by VideoInit()
vector<monitor_desc *> VideoMonitors;
/*
* Converts a video_depth to a C-String name ("VDEPTH_1BIT", "VDEPTH_2BIT", etc.)
*/
const char * NameOfDepth(video_depth depth)
{
switch (depth) {
case VDEPTH_1BIT: return "VDEPTH_1BIT";
case VDEPTH_2BIT: return "VDEPTH_2BIT";
case VDEPTH_4BIT: return "VDEPTH_4BIT";
case VDEPTH_8BIT: return "VDEPTH_8BIT";
case VDEPTH_16BIT: return "VDEPTH_16BIT";
case VDEPTH_32BIT: return "VDEPTH_32BIT";
}
return "";
}
/*
* Find palette size for given color depth
*/
static int palette_size(video_depth depth)
{
switch (depth) {
case VDEPTH_1BIT: return 2;
case VDEPTH_2BIT: return 4;
case VDEPTH_4BIT: return 16;
case VDEPTH_8BIT: return 256;
case VDEPTH_16BIT: return 32;
case VDEPTH_32BIT: return 256;
default: return 0;
}
}
/*
* Find pointer to monitor_desc for given slot ID (or NULL if not found)
*/
static monitor_desc *find_monitor(uint8 id)
{
vector<monitor_desc *>::const_iterator i, end = VideoMonitors.end();
for (i = VideoMonitors.begin(); i != end; ++i) {
if ((*i)->get_slot_id() == id)
return *i;
}
return NULL;
}
/*
* monitor_desc constructor
*/
monitor_desc::monitor_desc(const vector<video_mode> &available_modes, video_depth default_depth, uint32 default_id) : modes(available_modes)
{
// Assign the next slot ID on construction
slot_id = next_slot_id++;
// Initialize Apple mode list
uint16 mode = 0x80;
for (int depth = VDEPTH_1BIT; depth <= VDEPTH_32BIT; depth++) {
if (has_depth(video_depth(depth)))
apple_mode_for_depth[depth] = mode++;
else
apple_mode_for_depth[depth] = 0;
}
// Set default mode
current_mode = find_mode(depth_to_apple_mode(default_depth), default_id);
}
/*
* Get bytes-per-row value for specified resolution/depth
* (if the mode isn't supported, make a good guess)
*/
uint32 monitor_desc::get_bytes_per_row(video_depth depth, uint32 id) const
{
vector<video_mode>::const_iterator i, end = modes.end();
for (i = modes.begin(); i != end; ++i) {
if (i->depth == depth && i->resolution_id == id)
return i->bytes_per_row;
}
uint32 x, y;
get_size_of_resolution(id, x, y);
return TrivialBytesPerRow(x, depth);
}
/*
* Check whether a mode with the specified depth exists on this display
*/
bool monitor_desc::has_depth(video_depth depth) const
{
vector<video_mode>::const_iterator i = modes.begin(), end = modes.end();
while (i != end) {
if (i->depth == depth)
return true;
++i;
}
return false;
}
/*
* Check whether the specified resolution ID is one of the supported resolutions
*/
bool monitor_desc::has_resolution(uint32 id) const
{
vector<video_mode>::const_iterator i, end = modes.end();
for (i = modes.begin(); i != end; ++i) {
if (i->resolution_id == id)
return true;
}
return false;
}
/*
* Find specified mode (depth/resolution) (or invalid_mode() if not found)
*/
vector<video_mode>::const_iterator monitor_desc::find_mode(uint16 apple_mode, uint32 id) const
{
vector<video_mode>::const_iterator i, end = modes.end();
for (i = modes.begin(); i != end; ++i) {
if (i->resolution_id == id && depth_to_apple_mode(i->depth) == apple_mode)
return i;
}
return i;
}
/*
* Find maximum supported depth for given resolution ID
*/
video_depth monitor_desc::max_depth_of_resolution(uint32 id) const
{
video_depth m = VDEPTH_1BIT;
vector<video_mode>::const_iterator i, end = modes.end();
for (i = modes.begin(); i != end; ++i) {
if (i->depth > m)
m = i->depth;
}
return m;
}
/*
* Get X/Y size of specified resolution
*/
void monitor_desc::get_size_of_resolution(uint32 id, uint32 &x, uint32 &y) const
{
vector<video_mode>::const_iterator i, end = modes.end();
for (i = modes.begin(); i != end; ++i) {
if (i->resolution_id == id) {
x = i->x;
y = i->y;
return;
}
}
x = y = 0;
}
/*
* Set palette to 50% gray
*/
void monitor_desc::set_gray_palette(void)
{
for (int i=0; i<256; i++) {
palette[i * 3 + 0] = 127;
palette[i * 3 + 1] = 127;
palette[i * 3 + 2] = 127;
}
set_palette(palette, 256);
}
/*
* Load gamma-corrected black-to-white ramp
*/
void monitor_desc::load_gamma_ramp(void)
{
// Find tables for gamma correction
uint8 *red_gamma = NULL, *green_gamma = NULL, *blue_gamma = NULL;
bool have_gamma = false;
int data_width = 0;
if (gamma_table) {
uint32 table = gamma_table;
red_gamma = Mac2HostAddr(table + gFormulaData + ReadMacInt16(table + gFormulaSize));
int chan_cnt = ReadMacInt16(table + gChanCnt);
if (chan_cnt == 1)
green_gamma = blue_gamma = red_gamma;
else {
int ofs = ReadMacInt16(table + gDataCnt);
green_gamma = red_gamma + ofs;
blue_gamma = green_gamma + ofs;
}
data_width = ReadMacInt16(table + gDataWidth);
have_gamma = true;
}
int num = (current_mode->depth == VDEPTH_16BIT ? 32 : 256);
uint8 *p = palette;
for (int i=0; i<num; i++) {
uint8 red = (i * 256 / num), green = red, blue = red;
if (have_gamma) {
red = red_gamma[red >> (8 - data_width)];
green = green_gamma[green >> (8 - data_width)];
blue = blue_gamma[blue >> (8 - data_width)];
}
*p++ = red;
*p++ = green;
*p++ = blue;
}
set_gamma(palette, num);
}
/*
* Allocate gamma table of specified size
*/
bool monitor_desc::allocate_gamma_table(int size)
{
M68kRegisters r;
if (size > alloc_gamma_table_size) {
if (gamma_table) {
r.a[0] = gamma_table;
Execute68kTrap(0xa01f, &r); // DisposePtr()
gamma_table = 0;
alloc_gamma_table_size = 0;
}
r.d[0] = size;
Execute68kTrap(0xa71e, &r); // NewPtrSysClear()
if (r.a[0] == 0)
return false;
gamma_table = r.a[0];
alloc_gamma_table_size = size;
}
return true;
}
/*
* Set gamma table (0 = build linear ramp)
*/
int16 monitor_desc::set_gamma_table(uint32 user_table)
{
if (user_table == 0) { // Build linear ramp, 256 entries
// Allocate new table, if necessary
if (!allocate_gamma_table(SIZEOF_GammaTbl + 256))
return memFullErr;
// Initialize header
WriteMacInt16(gamma_table + gVersion, 0);
WriteMacInt16(gamma_table + gType, 0);
WriteMacInt16(gamma_table + gFormulaSize, 0);
WriteMacInt16(gamma_table + gChanCnt, 1);
WriteMacInt16(gamma_table + gDataCnt, 256);
WriteMacInt16(gamma_table + gDataWidth, 8);
// Build ramp
uint32 p = gamma_table + gFormulaData;
for (int i=0; i<256; i++)
WriteMacInt8(p + i, i);
} else { // User-supplied gamma table
// Validate header
if (ReadMacInt16(user_table + gVersion))
return paramErr;
if (ReadMacInt16(user_table + gType))
return paramErr;
int chan_cnt = ReadMacInt16(user_table + gChanCnt);
if (chan_cnt != 1 && chan_cnt != 3)
return paramErr;
int data_width = ReadMacInt16(user_table + gDataWidth);
if (data_width > 8)
return paramErr;
int data_cnt = ReadMacInt16(user_table + gDataCnt);
if (data_cnt != (1 << data_width))
return paramErr;
// Allocate new table, if necessary
int size = SIZEOF_GammaTbl + ReadMacInt16(user_table + gFormulaSize) + chan_cnt * data_cnt;
if (!allocate_gamma_table(size))
return memFullErr;
// Copy table
Mac2Mac_memcpy(gamma_table, user_table, size);
}
load_gamma_ramp();
return noErr;
}
/*
* Switch video mode
*/
void monitor_desc::switch_mode(vector<video_mode>::const_iterator it, uint32 param, uint32 dce)
{
const video_mode &mode = *it;
// Switch mode
set_gray_palette();
current_mode = it;
switch_to_current_mode();
// Update variables
current_apple_mode = depth_to_apple_mode(mode.depth);
current_id = mode.resolution_id;
M68kRegisters r;
r.a[0] = slot_param;
// Find functional sResource for this display
WriteMacInt8(slot_param + spSlot, ReadMacInt8(dce + dCtlSlot));
WriteMacInt8(slot_param + spID, ReadMacInt8(dce + dCtlSlotId));
WriteMacInt8(slot_param + spExtDev, 0);
r.d[0] = 0x0016;
Execute68kTrap(0xa06e, &r); // SRsrcInfo()
uint32 rsrc = ReadMacInt32(slot_param + spPointer);
// Patch minorBase (otherwise rebooting won't work)
WriteMacInt8(slot_param + spID, 0x0a); // minorBase
r.d[0] = 0x0006;
Execute68kTrap(0xa06e, &r); // SFindStruct()
uint32 minor_base = ReadMacInt32(slot_param + spPointer) - ROMBaseMac;
ROMBaseHost[minor_base + 0] = mac_frame_base >> 24;
ROMBaseHost[minor_base + 1] = mac_frame_base >> 16;
ROMBaseHost[minor_base + 2] = mac_frame_base >> 8;
ROMBaseHost[minor_base + 3] = mac_frame_base;
// Patch video mode parameter table
WriteMacInt32(slot_param + spPointer, rsrc);
WriteMacInt8(slot_param + spID, depth_to_apple_mode(mode.depth));
r.d[0] = 0x0006;
Execute68kTrap(0xa06e, &r); // SFindStruct()
WriteMacInt8(slot_param + spID, 0x01);
r.d[0] = 0x0006;
Execute68kTrap(0xa06e, &r); // SFindStruct()
uint32 p = ReadMacInt32(slot_param + spPointer) - ROMBaseMac;
ROMBaseHost[p + 8] = mode.bytes_per_row >> 8;
ROMBaseHost[p + 9] = mode.bytes_per_row;
ROMBaseHost[p + 14] = mode.y >> 8;
ROMBaseHost[p + 15] = mode.y;
ROMBaseHost[p + 16] = mode.x >> 8;
ROMBaseHost[p + 17] = mode.x;
// Recalculate slot ROM checksum
ChecksumSlotROM();
// Update sResource
WriteMacInt8(slot_param + spID, ReadMacInt8(dce + dCtlSlotId));
r.d[0] = 0x002b;
Execute68kTrap(0xa06e, &r); // SUpdateSRT()
// Update frame buffer base in DCE and param block
WriteMacInt32(dce + dCtlDevBase, mac_frame_base);
WriteMacInt32(param + csBaseAddr, mac_frame_base);
// Patch frame buffer base address for MacOS versions <7.6
if (!dm_present) { // Only do this when no Display Manager seems to be present; otherwise, the screen will not get redrawn
D(bug("No Display Manager, patching frame buffer base\n"));
WriteMacInt32(0x824, mac_frame_base); // ScrnBase
WriteMacInt32(0x898, mac_frame_base); // CrsrBase
uint32 gdev = ReadMacInt32(0x8a4); // MainDevice
D(bug("MainDevice handle at %08lx\n", gdev));
if (gdev != 0 && gdev != 0xffffffff) {
gdev = ReadMacInt32(gdev);
D(bug(" pointer at %08lx\n", gdev));
uint32 pmap = ReadMacInt32(gdev + 0x16); // gdPMap
D(bug(" PixMap handle at %08lx\n", pmap));
pmap = ReadMacInt32(pmap);
D(bug(" pointer at %08lx\n", pmap));
WriteMacInt32(pmap, mac_frame_base); // baseAddr
}
gdev = ReadMacInt32(0xcc8); // TheGDevice
D(bug("TheGDevice handle at %08lx\n", gdev));
}
}
/*
* Driver Open() routine
*/
int16 monitor_desc::driver_open(void)
{
// This shouldn't happen unless the platform-specific video code is broken
if (modes.empty())
fprintf(stderr, "No valid video modes found (broken video driver?)\n");
// Init local variables
luminance_mapping = false;
interrupts_enabled = false;
current_apple_mode = preferred_apple_mode = depth_to_apple_mode(current_mode->depth);
current_id = preferred_id = current_mode->resolution_id;
dm_present = false;
// Allocate Slot Manager parameter block in Mac RAM
M68kRegisters r;
r.d[0] = SIZEOF_SPBlock;
Execute68kTrap(0xa71e, &r); // NewPtrSysClear()
if (r.a[0] == 0)
return memFullErr;
slot_param = r.a[0];
D(bug("SPBlock at %08x\n", slot_param));
// Find and set default gamma table
gamma_table = 0;
alloc_gamma_table_size = 0;
set_gamma_table(0);
// Init color palette (solid gray)
set_gray_palette();
return noErr;
}
int16 VideoDriverOpen(uint32 pb, uint32 dce)
{
uint8 slot_id = ReadMacInt8(dce + dCtlSlotId);
D(bug("VideoDriverOpen slot %02x\n", slot_id));
monitor_desc *m = find_monitor(slot_id);
if (m)
return m->driver_open();
else
return nsDrvErr;
}
/*
* Driver Control() routine
*/
int16 monitor_desc::driver_control(uint16 code, uint32 param, uint32 dce)
{
switch (code) {
case cscSetMode: { // Set color depth
uint16 mode = ReadMacInt16(param + csMode);
D(bug(" SetMode %04x\n", mode));
// Set old base address in case the switch fails
WriteMacInt32(param + csBaseAddr, mac_frame_base);
if (ReadMacInt16(param + csPage))
return paramErr;
if (mode != current_apple_mode) {
vector<video_mode>::const_iterator i = find_mode(mode, current_id);
if (i == invalid_mode())
return paramErr;
switch_mode(i, param, dce);
}
D(bug(" base %08x\n", mac_frame_base));
return noErr;
}
case cscSetEntries: // Set palette
case cscDirectSetEntries: {
D(bug(" (Direct)SetEntries table %08x, count %d, start %d\n", ReadMacInt32(param + csTable), ReadMacInt16(param + csCount), ReadMacInt16(param + csStart)));
bool is_direct = IsDirectMode(*current_mode);
if (code == cscSetEntries && is_direct)
return controlErr;
if (code == cscDirectSetEntries && !is_direct)
return controlErr;
uint32 s_pal = ReadMacInt32(param + csTable); // Source palette
uint8 *d_pal; // Destination palette
uint16 start = ReadMacInt16(param + csStart);
uint16 count = ReadMacInt16(param + csCount);
if (s_pal == 0 || count > 255)
return paramErr;
// Find tables for gamma correction
uint8 *red_gamma = NULL, *green_gamma = NULL, *blue_gamma = NULL;
bool have_gamma = false;
int data_width = 0;
if (gamma_table) {
red_gamma = Mac2HostAddr(gamma_table + gFormulaData + ReadMacInt16(gamma_table + gFormulaSize));
int chan_cnt = ReadMacInt16(gamma_table + gChanCnt);
if (chan_cnt == 1)
green_gamma = blue_gamma = red_gamma;
else {
int ofs = ReadMacInt16(gamma_table + gDataCnt);
green_gamma = red_gamma + ofs;
blue_gamma = green_gamma + ofs;
}
data_width = ReadMacInt16(gamma_table + gDataWidth);
have_gamma = true;
}
// Convert palette
if (start == 0xffff) { // Indexed
for (uint32 i=0; i<=count; i++) {
d_pal = palette + (ReadMacInt16(s_pal) & 0xff) * 3;
uint8 red = (uint16)ReadMacInt16(s_pal + 2) >> 8;
uint8 green = (uint16)ReadMacInt16(s_pal + 4) >> 8;
uint8 blue = (uint16)ReadMacInt16(s_pal + 6) >> 8;
if (luminance_mapping && !is_direct)
red = green = blue = (red * 0x4ccc + green * 0x970a + blue * 0x1c29) >> 16;
if (have_gamma) {
red = red_gamma[red >> (8 - data_width)];
green = green_gamma[green >> (8 - data_width)];
blue = blue_gamma[blue >> (8 - data_width)];
}
*d_pal++ = red;
*d_pal++ = green;
*d_pal++ = blue;
s_pal += 8;
}
} else { // Sequential
if (start + count > 255)
return paramErr;
d_pal = palette + start * 3;
for (uint32 i=0; i<=count; i++) {
uint8 red = (uint16)ReadMacInt16(s_pal + 2) >> 8;
uint8 green = (uint16)ReadMacInt16(s_pal + 4) >> 8;
uint8 blue = (uint16)ReadMacInt16(s_pal + 6) >> 8;
if (luminance_mapping && !is_direct)
red = green = blue = (red * 0x4ccc + green * 0x970a + blue * 0x1c29) >> 16;
if (have_gamma) {
red = red_gamma[red >> (8 - data_width)];
green = green_gamma[green >> (8 - data_width)];
blue = blue_gamma[blue >> (8 - data_width)];
}
*d_pal++ = red;
*d_pal++ = green;
*d_pal++ = blue;
s_pal += 8;
}
}
set_palette(palette, palette_size(current_mode->depth));
return noErr;
}
case cscSetGamma: { // Set gamma table
uint32 user_table = ReadMacInt32(param + csGTable);
D(bug(" SetGamma %08x\n", user_table));
return set_gamma_table(user_table);
}
case cscGrayPage: { // Fill page with dithered gray pattern
D(bug(" GrayPage %d\n", ReadMacInt16(param + csPage)));
if (ReadMacInt16(param + csPage))
return paramErr;
uint32 pattern[6] = {
0xaaaaaaaa, // 1 bpp
0xcccccccc, // 2 bpp
0xf0f0f0f0, // 4 bpp
0xff00ff00, // 8 bpp
0xffff0000, // 16 bpp
0xffffffff // 32 bpp
};
uint32 p = mac_frame_base;
uint32 pat = pattern[current_mode->depth];
bool invert = (current_mode->depth == VDEPTH_32BIT);
for (uint32 y=0; y<current_mode->y; y++) {
for (uint32 x=0; x<current_mode->bytes_per_row; x+=4) {
WriteMacInt32(p + x, pat);
if (invert)
pat = ~pat;
}
p += current_mode->bytes_per_row;
pat = ~pat;
}
load_gamma_ramp();
return noErr;
}
case cscSetGray: // Enable/disable luminance mapping
D(bug(" SetGray %02x\n", ReadMacInt8(param + csMode)));
luminance_mapping = ReadMacInt8(param + csMode) != 0;
return noErr;
case cscSetInterrupt: // Enable/disable VBL
D(bug(" SetInterrupt %02x\n", ReadMacInt8(param + csMode)));
interrupts_enabled = (ReadMacInt8(param + csMode) == 0);
return noErr;
case cscSetDefaultMode: { // Set default color depth
uint16 mode = ReadMacInt8(param + csMode);
D(bug(" SetDefaultMode %02x\n", mode));
preferred_apple_mode = mode;
return noErr;
}
case cscSwitchMode: { // Switch video mode (depth and resolution)
uint16 mode = ReadMacInt16(param + csMode);
uint32 id = ReadMacInt32(param + csData);
D(bug(" SwitchMode %04x, %08x\n", mode, id));
// Set old base address in case the switch fails
WriteMacInt32(param + csBaseAddr, mac_frame_base);
if (ReadMacInt16(param + csPage))
return paramErr;
if (mode != current_apple_mode || id != current_id) {
vector<video_mode>::const_iterator i = find_mode(mode, id);
if (i == invalid_mode())
return paramErr;
switch_mode(i, param, dce);
}
D(bug(" base %08x\n", mac_frame_base));
return noErr;
}
case cscSavePreferredConfiguration: {
uint16 mode = ReadMacInt16(param + csMode);
uint32 id = ReadMacInt32(param + csData);
D(bug(" SavePreferredConfiguration %04x, %08x\n", mode, id));
preferred_apple_mode = mode;
preferred_id = id;
return noErr;
}
default:
printf("WARNING: Unknown VideoDriverControl(%d)\n", code);
return controlErr;
}
}
int16 VideoDriverControl(uint32 pb, uint32 dce)
{
uint8 slot_id = ReadMacInt8(dce + dCtlSlotId);
uint16 code = ReadMacInt16(pb + csCode);
uint32 param = ReadMacInt32(pb + csParam);
D(bug("VideoDriverControl slot %02x, code %d\n", slot_id, code));
monitor_desc *m = find_monitor(slot_id);
if (m)
return m->driver_control(code, param, dce);
else
return nsDrvErr;
}
/*
* Driver Status() routine
*/
int16 monitor_desc::driver_status(uint16 code, uint32 param)
{
switch (code) {
case cscGetMode: // Get current color depth
D(bug(" GetMode -> %04x, base %08x\n", current_apple_mode, mac_frame_base));
WriteMacInt16(param + csMode, current_apple_mode);
WriteMacInt16(param + csPage, 0);
WriteMacInt32(param + csBaseAddr, mac_frame_base);
return noErr;
case cscGetEntries: { // Read palette
D(bug(" GetEntries table %08x, count %d, start %d\n", ReadMacInt32(param + csTable), ReadMacInt16(param + csCount), ReadMacInt16(param + csStart)));
uint8 *s_pal; // Source palette
uint32 d_pal = ReadMacInt32(param + csTable); // Destination palette
uint16 start = ReadMacInt16(param + csStart);
uint16 count = ReadMacInt16(param + csCount);
if (d_pal == 0 || count > 255)
return paramErr;
if (start == 0xffff) { // Indexed
for (uint32 i=0; i<=count; i++) {
s_pal = palette + (ReadMacInt16(d_pal) & 0xff) * 3;
uint8 red = *s_pal++;
uint8 green = *s_pal++;
uint8 blue = *s_pal++;
WriteMacInt16(d_pal + 2, red * 0x0101);
WriteMacInt16(d_pal + 4, green * 0x0101);
WriteMacInt16(d_pal + 6, blue * 0x0101);
d_pal += 8;
}
} else { // Sequential
if (start + count > 255)
return paramErr;
s_pal = palette + start * 3;
for (uint32 i=0; i<=count; i++) {
uint8 red = *s_pal++;
uint8 green = *s_pal++;
uint8 blue = *s_pal++;
WriteMacInt16(d_pal + 2, red * 0x0101);
WriteMacInt16(d_pal + 4, green * 0x0101);
WriteMacInt16(d_pal + 6, blue * 0x0101);
d_pal += 8;
}
}
return noErr;
}
case cscGetPages: // Get number of pages
D(bug(" GetPages -> 1\n"));
WriteMacInt16(param + csPage, 1);
return noErr;
case cscGetBaseAddress: // Get page base address
D(bug(" GetBaseAddress -> %08x\n", mac_frame_base));
WriteMacInt32(param + csBaseAddr, mac_frame_base);
if (ReadMacInt16(param + csPage))
return paramErr;
else
return noErr;
case cscGetGray: // Get luminance mapping flag
D(bug(" GetGray -> %d\n", luminance_mapping));
WriteMacInt8(param, luminance_mapping ? 1 : 0);
return noErr;
case cscGetInterrupt: // Get interrupt disable flag
D(bug(" GetInterrupt -> %d\n", interrupts_enabled));
WriteMacInt8(param, interrupts_enabled ? 0 : 1);
return noErr;
case cscGetGamma:
D(bug(" GetGamma -> %08x\n", gamma_table));
WriteMacInt32(param + csGTable, gamma_table);
return noErr;
case cscGetDefaultMode: // Get default color depth
D(bug(" GetDefaultMode -> %02x\n", preferred_apple_mode));
WriteMacInt8(param + csMode, preferred_apple_mode);
return noErr;
case cscGetCurrentMode: // Get current video mode (depth and resolution)
D(bug(" GetCurMode -> %04x/%08x, base %08x\n", current_apple_mode, current_id, mac_frame_base));
WriteMacInt16(param + csMode, current_apple_mode);
WriteMacInt32(param + csData, current_id);
WriteMacInt16(param + csPage, 0);
WriteMacInt32(param + csBaseAddr, mac_frame_base);
return noErr;
case cscGetConnection: // Get monitor information
D(bug(" GetConnection\n"));
WriteMacInt16(param + csDisplayType, 8); // Modeless connection
WriteMacInt8(param + csConnectTaggedType, 0);
WriteMacInt8(param + csConnectTaggedData, 0);
WriteMacInt32(param + csConnectFlags, 0x43); // All modes valid and safe, non-standard tagging
WriteMacInt32(param + csDisplayComponent, 0);
return noErr;
case cscGetModeTiming: { // Get video timing for specified resolution
uint32 id = ReadMacInt32(param + csTimingMode);
D(bug(" GetModeTiming %08x\n", id));
if (!has_resolution(id))
return paramErr;
WriteMacInt32(param + csTimingFormat, FOURCC('d', 'e', 'c', 'l'));
WriteMacInt32(param + csTimingData, 0); // unknown
uint32 flags = 0xb; // mode valid, safe and shown in Monitors panel
if (id == preferred_id)
flags |= 4; // default mode
WriteMacInt32(param + csTimingFlags, flags);
return noErr;
}
case cscGetModeBaseAddress: // Get frame buffer base address
D(bug(" GetModeBaseAddress -> base %08x\n", mac_frame_base));
WriteMacInt32(param + csBaseAddr, mac_frame_base);
return noErr;
case cscGetPreferredConfiguration: // Get default video mode (depth and resolution)
D(bug(" GetPreferredConfiguration -> %04x/%08x\n", preferred_apple_mode, preferred_id));
WriteMacInt16(param + csMode, preferred_apple_mode);
WriteMacInt32(param + csData, preferred_id);
return noErr;
case cscGetNextResolution: { // Called iteratively to obtain a list of all supported resolutions
uint32 id = ReadMacInt32(param + csPreviousDisplayModeID);
D(bug(" GetNextResolution %08x\n", id));
switch (id) {
case 0:
// Return current resolution
id = current_id;
break;
case 0xfffffffe:
// Return first supported resolution
id = 0x80;
while (!has_resolution(id))
id++;
break;
default:
// Get next resolution
if (!has_resolution(id))
return paramErr;
id++;
while (!has_resolution(id) && id < 0x100)
id++;
if (id == 0x100) { // No more resolutions
WriteMacInt32(param + csRIDisplayModeID, 0xfffffffd);
return noErr;
}
break;
}
WriteMacInt32(param + csRIDisplayModeID, id);
uint32 x, y;
get_size_of_resolution(id, x, y);
WriteMacInt32(param + csHorizontalPixels, x);
WriteMacInt32(param + csVerticalLines, y);
WriteMacInt32(param + csRefreshRate, 75 << 16);
WriteMacInt16(param + csMaxDepthMode, depth_to_apple_mode(max_depth_of_resolution(id)));
WriteMacInt32(param + csResolutionFlags, 0);
return noErr;
}
case cscGetVideoParameters: { // Get information about specified resolution/depth
uint32 id = ReadMacInt32(param + csDisplayModeID);
uint16 mode = ReadMacInt16(param + csDepthMode);
D(bug(" GetVideoParameters %04x/%08x\n", mode, id));
dm_present = true; // Display Manager seems to be present
D(bug(" Display Manager detected\n"));
vector<video_mode>::const_iterator i, end = modes.end();
for (i = modes.begin(); i != end; ++i) {
if (depth_to_apple_mode(i->depth) == mode && i->resolution_id == id) {
uint32 vp = ReadMacInt32(param + csVPBlockPtr);
WriteMacInt32(vp + vpBaseOffset, 0);
WriteMacInt16(vp + vpRowBytes, i->bytes_per_row);
WriteMacInt16(vp + vpBounds, 0);
WriteMacInt16(vp + vpBounds + 2, 0);
WriteMacInt16(vp + vpBounds + 4, i->y);
WriteMacInt16(vp + vpBounds + 6, i->x);
WriteMacInt16(vp + vpVersion, 0);
WriteMacInt16(vp + vpPackType, 0);
WriteMacInt32(vp + vpPackSize, 0);
WriteMacInt32(vp + vpHRes, 0x00480000); // 72 dpi
WriteMacInt32(vp + vpVRes, 0x00480000);
uint32 pix_type, pix_size, cmp_count, cmp_size, dev_type;
switch (i->depth) {
case VDEPTH_16BIT:
pix_type = 0x10; pix_size = 16;
cmp_count = 3; cmp_size = 5;
dev_type = 2; // direct
break;
case VDEPTH_32BIT:
pix_type = 0x10; pix_size = 32;
cmp_count = 3; cmp_size = 8;
dev_type = 2; // direct
break;
default:
pix_type = 0; pix_size = 1 << i->depth;
cmp_count = 1; cmp_size = 1 << i->depth;
dev_type = 0; // CLUT
break;
}
WriteMacInt16(vp + vpPixelType, pix_type);
WriteMacInt16(vp + vpPixelSize, pix_size);
WriteMacInt16(vp + vpCmpCount, cmp_count);
WriteMacInt16(vp + vpCmpSize, cmp_size);
WriteMacInt32(param + csPageCount, 1);
WriteMacInt32(param + csDeviceType, dev_type);
return noErr;
}
}
return paramErr; // specified resolution/depth not supported
}
case cscGetMultiConnect: {
uint32 conn = ReadMacInt32(param + csDisplayCountOrNumber);
D(bug(" GetMultiConnect %08x\n", conn));
if (conn == 0xffffffff) { // Get number of connections
WriteMacInt32(param + csDisplayCountOrNumber, 1); // Single-headed
return noErr;
} else if (conn == 1) { // Get information about first connection
WriteMacInt16(param + csConnectInfo + csDisplayType, 8); // Modeless connection
WriteMacInt8(param + csConnectInfo + csConnectTaggedType, 0);
WriteMacInt8(param + csConnectInfo + csConnectTaggedData, 0);
WriteMacInt32(param + csConnectInfo + csConnectFlags, 0x43); // All modes valid and safe, non-standard tagging
WriteMacInt32(param + csConnectInfo + csDisplayComponent, 0);
return noErr;
} else
return paramErr;
}
default:
printf("WARNING: Unknown VideoDriverStatus(%d)\n", code);
return statusErr;
}
}
int16 VideoDriverStatus(uint32 pb, uint32 dce)
{
uint8 slot_id = ReadMacInt8(dce + dCtlSlotId);
uint16 code = ReadMacInt16(pb + csCode);
uint32 param = ReadMacInt32(pb + csParam);
D(bug("VideoDriverStatus slot %02x, code %d\n", slot_id, code));
monitor_desc *m = find_monitor(slot_id);
if (m)
return m->driver_status(code, param);
else
return nsDrvErr;
}