macemu/BasiliskII/src/uae_cpu/fpu/fpu_uae.cpp
2019-09-02 14:40:01 -05:00

2515 lines
64 KiB
C++

/*
* fpu/fpu_uae.cpp - the old UAE FPU
*
* Copyright (c) 2001-2004 Milan Jurik of ARAnyM dev team (see AUTHORS)
*
* Inspired by Christian Bauer's Basilisk II
*
* This file is part of the ARAnyM project which builds a new and powerful
* TOS/FreeMiNT compatible virtual machine running on almost any hardware.
*
* MC68881/68040 fpu emulation
*
* Original UAE FPU, copyright 1996 Herman ten Brugge
* Rewrite for x86, copyright 1999-2001 Lauri Pesonen
* New framework, copyright 2000-2001 Gwenole Beauchesne
* Adapted for JIT compilation (c) Bernd Meyer, 2000-2001
*
* ARAnyM is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* ARAnyM is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with ARAnyM; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/*
* UAE - The Un*x Amiga Emulator
*
* MC68881 emulation
*
* Copyright 1996 Herman ten Brugge
*
*
* Following fixes by Lauri Pesonen, July 1999:
*
* FMOVEM list handling:
* The lookup tables did not work correctly, rewritten.
* FINT:
* (int) cast does not work, fixed.
* Further, now honors the FPU fpcr rounding modes.
* FINTRZ:
* (int) cast cannot be used, fixed.
* FGETEXP:
* Input argument value 0 returned erroneous value.
* FMOD:
* (int) cast cannot be used. Replaced by proper rounding.
* Quotient byte handling was missing.
* FREM:
* (int) cast cannot be used. Replaced by proper rounding.
* Quotient byte handling was missing.
* FSCALE:
* Input argument value 0 was not handled correctly.
* FMOVEM Control Registers to/from address FPU registers An:
* A bug caused the code never been called.
* FMOVEM Control Registers pre-decrement:
* Moving of control regs from memory to FPP was not handled properly,
* if not all of the three FPU registers were moved.
* Condition code "Not Greater Than or Equal":
* Returned erroneous value.
* FSINCOS:
* Cosine must be loaded first if same register.
* FMOVECR:
* Status register was not updated (yes, this affects it).
* FMOVE <ea> -> reg:
* Status register was not updated (yes, this affects it).
* FMOVE reg -> reg:
* Status register was not updated.
* FDBcc:
* The loop termination condition was wrong.
* Possible leak from int16 to int32 fixed.
* get_fp_value:
* Immediate addressing mode && Operation Length == Byte ->
* Use the low-order byte of the extension word.
* Now FPU fpcr high 16 bits are always read as zeroes, no matter what was
* written to them.
*
* Other:
* - Optimized single/double/extended to/from conversion functions.
* Huge speed boost, but not (necessarily) portable to other systems.
* Enabled/disabled by #define FPU_HAVE_IEEE_DOUBLE 1
* - Optimized versions of FSCALE, FGETEXP, FGETMAN
* - Conversion routines now handle NaN and infinity better.
* - Some constants precalculated. Not all compilers can optimize the
* expressions previously used.
*
* TODO:
* - Floating point exceptions.
* - More Infinity/NaN/overflow/underflow checking.
* - FPU instruction_address (only needed when exceptions are implemented)
* - Should be written in assembly to support long doubles.
* - Precision rounding single/double
*/
#include "sysdeps.h"
#include "memory.h"
#include "readcpu.h"
#include "newcpu.h"
#include "main.h"
#define FPU_IMPLEMENTATION
#include "fpu/fpu.h"
#include "fpu/fpu_uae.h"
#ifdef HAVE_NEW_HEADERS
#define _GLIBCPP_USE_C99 1
# include <cmath>
# include <cstdio>
using namespace __gnu_cxx;
#undef _GLIBCPP_USE_C99
#else
# include <math.h>
# include <stdio.h>
#endif
/* Global FPU context */
fpu_t fpu;
/* -------------------------------------------------------------------------- */
/* --- Native Support --- */
/* -------------------------------------------------------------------------- */
#include "fpu/flags.h"
#include "fpu/exceptions.h"
#include "fpu/rounding.h"
#include "fpu/impl.h"
#include "fpu/flags.cpp"
#include "fpu/exceptions.cpp"
/* -------------------------------------------------------------------------- */
/* --- Scopes Definition --- */
/* -------------------------------------------------------------------------- */
#undef PUBLIC
#define PUBLIC /**/
#undef PRIVATE
#define PRIVATE static
#undef FFPU
#define FFPU /**/
#undef FPU
#define FPU fpu.
/* -------------------------------------------------------------------------- */
/* --- Debugging --- */
/* -------------------------------------------------------------------------- */
PUBLIC void FFPU fpu_dump_registers(void)
{
for (int i = 0; i < 8; i++){
printf ("FP%d: %g ", i, fpu_get_register(i));
if ((i & 3) == 3)
printf ("\n");
}
}
PUBLIC void FFPU fpu_dump_flags(void)
{
printf ("N=%d Z=%d I=%d NAN=%d\n",
(get_fpsr() & FPSR_CCB_NEGATIVE) != 0,
(get_fpsr() & FPSR_CCB_ZERO)!= 0,
(get_fpsr() & FPSR_CCB_INFINITY) != 0,
(get_fpsr() & FPSR_CCB_NAN) != 0);
}
/* single : S 8*E 23*F */
/* double : S 11*E 52*F */
/* extended : S 15*E 64*F */
/* E = 0 & F = 0 -> 0 */
/* E = MAX & F = 0 -> Infin */
/* E = MAX & F # 0 -> NotANumber */
/* E = biased by 127 (single) ,1023 (double) ,16383 (extended) */
#if FPU_DEBUG
PUBLIC void FFPU dump_registers(const char * str)
{
char temp_str[512];
sprintf(temp_str, "%s: %.04f, %.04f, %.04f, %.04f, %.04f, %.04f, %.04f, %.04f\n",
str,
fpu_get_register(0), fpu_get_register(1), fpu_get_register(2), fpu_get_register(3),
fpu_get_register(4), fpu_get_register(5), fpu_get_register(6), fpu_get_register(7) );
fpu_debug((temp_str));
}
PUBLIC void FFPU dump_first_bytes(uae_u8 * buffer, uae_s32 actual)
{
char temp_buf1[256], temp_buf2[10];
int bytes = sizeof(temp_buf1)/3-1-3;
if (actual < bytes)
bytes = actual;
temp_buf1[0] = 0;
for (int i = 0; i < bytes; i++) {
sprintf(temp_buf2, "%02x ", (uae_u32)buffer[i]);
strcat(temp_buf1, temp_buf2);
}
strcat(temp_buf1, "\n");
fpu_debug((temp_buf1));
}
#else
PUBLIC void FFPU dump_registers(const char *)
{
}
#define dump_first_bytes(a,b)
#endif
PRIVATE inline fpu_register FFPU round_to_zero(fpu_register const & x)
{
return (x < 0.0 ? ceil(x) : floor(x));
}
PRIVATE inline fpu_register FFPU round_to_nearest(fpu_register const & x)
{
return floor(x + 0.5);
}
#if FPU_HAVE_IEEE_DOUBLE
#ifndef HAVE_ISNAN
#define isnan(x) do_isnan((x))
#endif
PRIVATE inline bool FFPU do_isnan(fpu_register const & r)
{
fpu_register_parts const p = { r };
if ((p.parts[FHI] & 0x7FF00000) == 0x7FF00000) {
// logical or is faster here.
if ((p.parts[FHI] & 0x000FFFFF) || p.parts[FLO]) {
return true;
}
}
return false;
}
#ifndef HAVE_ISINF
#define isinf(x) do_isinf((x))
#endif
PRIVATE inline bool FFPU do_isinf(fpu_register const & r)
{
fpu_register_parts const p = { r };
if ((p.parts[FHI] & 0x7FF00000) == 0x7FF00000 && p.parts[FLO] == 0) {
return true;
}
return false;
}
#ifndef HAVE_ISNEG
#define isneg(x) do_isneg((x))
#endif
PRIVATE inline bool FFPU do_isneg(fpu_register const & r)
{
fpu_register_parts const p = { r };
return ((p.parts[FHI] & 0x80000000) != 0);
}
#ifndef HAVE_ISZERO
#define iszero(x) do_iszero((x))
#endif
PRIVATE inline bool FFPU do_iszero(fpu_register const & r)
{
fpu_register_parts const p = { r };
return (((p.parts[FHI] & 0x7FF00000) == 0) && p.parts[FLO] == 0);
}
// May be optimized for particular processors
#ifndef FPU_USE_NATIVE_FLAGS
PRIVATE inline void FFPU make_fpsr(fpu_register const & r)
{
FPU fpsr.condition_codes
= (iszero(r) ? NATIVE_FFLAG_ZERO : 0)
| (isneg(r) ? NATIVE_FFLAG_NEGATIVE : 0)
| (isnan(r) ? NATIVE_FFLAG_NAN : 0)
| (isinf(r) ? NATIVE_FFLAG_INFINITY : 0)
;
}
#endif
PRIVATE inline void FFPU get_dest_flags(fpu_register const & r)
{
fl_dest.negative = isneg(r);
fl_dest.zero = iszero(r);
fl_dest.infinity = isinf(r);
fl_dest.nan = isnan(r);
fl_dest.in_range = !fl_dest.zero && !fl_dest.infinity && !fl_dest.nan;
}
PRIVATE inline void FFPU get_source_flags(fpu_register const & r)
{
fl_source.negative = isneg(r);
fl_source.zero = iszero(r);
fl_source.infinity = isinf(r);
fl_source.nan = isnan(r);
fl_source.in_range = !fl_source.zero && !fl_source.infinity && !fl_source.nan;
}
PRIVATE inline void FFPU make_nan(fpu_register & r, bool negative)
{
fpu_register_parts p;
p.parts[FLO] = 0xffffffff;
p.parts[FHI] = negative ? 0xffffffff : 0x7fffffff;
r = p.val;
}
PRIVATE inline void FFPU make_zero(fpu_register & r, bool negative)
{
fpu_register_parts p;
p.parts[FLO] = 0;
p.parts[FHI] = negative ? 0x80000000 : 0;
r = p.val;
}
PRIVATE inline void FFPU make_inf(fpu_register & r, bool negative)
{
fpu_register_parts p;
p.parts[FLO] = 0;
p.parts[FHI] = negative ? 0xFFF00000 : 0x7FF00000;
r = p.val;
}
PRIVATE inline void FFPU fast_scale(fpu_register & r, int add)
{
fpu_register_parts p = { r };
int exp = (p.parts[FHI] & 0x7FF00000) >> 20;
// TODO: overflow flags
exp += add;
if(exp >= 2047) {
make_inf(r, false);
return;
} else if(exp < 0) {
// keep sign (+/- 0)
p.parts[FHI] &= 0x80000000;
} else {
p.parts[FHI] = (p.parts[FHI] & 0x800FFFFF) | ((uae_u32)exp << 20);
}
r = p.val;
}
PRIVATE inline fpu_register FFPU fast_fgetexp(fpu_register const & r)
{
fpu_register_parts const p = { r };
int exp = (p.parts[FHI] & 0x7FF00000) >> 20;
return( exp - 1023 );
}
// Normalize to range 1..2
PRIVATE inline void FFPU fast_remove_exponent(fpu_register & r)
{
fpu_register_parts p = { r };
p.parts[FHI] = (p.parts[FHI] & 0x800FFFFF) | 0x3FF00000;
r = p.val;
}
// The sign of the quotient is the exclusive-OR of the sign bits
// of the source and destination operands.
PRIVATE inline uae_u32 FFPU get_quotient_sign(fpu_register const & ra, fpu_register const & rb)
{
fpu_register_parts const a = { ra };
fpu_register_parts const b = { rb };
return (((a.parts[FHI] ^ b.parts[FHI]) & 0x80000000) ? FPSR_QUOTIENT_SIGN : 0);
}
// Quotient Byte is loaded with the sign and least significant
// seven bits of the quotient.
PRIVATE inline void FFPU make_quotient(fpu_register const & quotient, uae_u32 sign)
{
uae_u32 lsb = (uae_u32)fabs(quotient) & 0x7f;
FPU fpsr.quotient = sign | (lsb << 16);
}
// to_single
PRIVATE inline fpu_register FFPU make_single(uae_u32 value)
{
if ((value & 0x7fffffff) == 0)
return (0.0);
fpu_register result;
fpu_register_parts p;
uae_u32 sign = (value & 0x80000000);
uae_u32 exp = ((value & 0x7F800000) >> 23) + 1023 - 127;
p.parts[FLO] = value << 29;
p.parts[FHI] = sign | (exp << 20) | ((value & 0x007FFFFF) >> 3);
result = p.val;
fpu_debug(("make_single (%X) = %.04f\n",value,(double)result));
return(result);
}
// from_single
PRIVATE inline uae_u32 FFPU extract_single(fpu_register const & src)
{
if (src == 0.0)
return 0;
uae_u32 result;
fpu_register_parts const p = { src };
uae_u32 sign = (p.parts[FHI] & 0x80000000);
uae_u32 exp = (p.parts[FHI] & 0x7FF00000) >> 20;
if(exp + 127 < 1023) {
exp = 0;
} else if(exp > 1023 + 127) {
exp = 255;
} else {
exp = exp + 127 - 1023;
}
result = sign | (exp << 23) | ((p.parts[FHI] & 0x000FFFFF) << 3) | (p.parts[FLO] >> 29);
fpu_debug(("extract_single (%.04f) = %X\n",(double)src,result));
return (result);
}
// to_exten
PRIVATE inline fpu_register FFPU make_extended(uae_u32 wrd1, uae_u32 wrd2, uae_u32 wrd3)
{
if ((wrd1 & 0x7fff0000) == 0 && wrd2 == 0 && wrd3 == 0)
return 0.0;
fpu_register result;
fpu_register_parts p;
uae_u32 sign = wrd1 & 0x80000000;
uae_u32 exp = (wrd1 >> 16) & 0x7fff;
// The explicit integer bit is not set, must normalize.
if((wrd2 & 0x80000000) == 0) {
fpu_debug(("make_extended denormalized mantissa (%X,%X,%X)\n",wrd1,wrd2,wrd3));
if( wrd2 | wrd3 ) {
// mantissa, not fraction.
uae_u64 man = ((uae_u64)wrd2 << 32) | wrd3;
while( exp > 0 && (man & UVAL64(0x8000000000000000)) == 0 ) {
man <<= 1;
exp--;
}
wrd2 = (uae_u32)( man >> 32 );
wrd3 = (uae_u32)( man & 0xFFFFFFFF );
} else {
if(exp == 0x7FFF) {
// Infinity.
} else {
// Zero
exp = 16383 - 1023;
}
}
}
if(exp < 16383 - 1023) {
// should set underflow.
exp = 0;
} else if(exp > 16383 + 1023) {
// should set overflow.
exp = 2047;
} else {
exp = exp + 1023 - 16383;
}
// drop the explicit integer bit.
p.parts[FLO] = (wrd2 << 21) | (wrd3 >> 11);
p.parts[FHI] = sign | (exp << 20) | ((wrd2 & 0x7FFFFFFF) >> 11);
result = p.val;
fpu_debug(("make_extended (%X,%X,%X) = %.04f\n",wrd1,wrd2,wrd3,(double)result));
return(result);
}
/*
Would be so much easier with full size floats :(
... this is so vague.
*/
// make_extended_no_normalize
PRIVATE inline void FFPU make_extended_no_normalize(
uae_u32 wrd1, uae_u32 wrd2, uae_u32 wrd3, fpu_register & result
)
{
// Is it zero?
if ((wrd1 & 0x7fff0000) == 0 && wrd2 == 0 && wrd3 == 0) {
make_zero(result, false);
return;
}
// Is it NaN?
if( (wrd1 & 0x7FFF0000) == 0x7FFF0000 ) {
if( (wrd1 & 0x0000FFFF) || wrd2 || wrd3 ) {
make_nan(result, (wrd1 & 0x80000000) != 0);
return;
}
}
uae_u32 sign = wrd1 & 0x80000000;
uae_u32 exp = (wrd1 >> 16) & 0x7fff;
if(exp < 16383 - 1023) {
// should set underflow.
exp = 0;
} else if(exp > 16383 + 1023) {
// should set overflow.
exp = 2047;
} else {
exp = exp + 1023 - 16383;
}
// drop the explicit integer bit.
fpu_register_parts p;
p.parts[FLO] = (wrd2 << 21) | (wrd3 >> 11);
p.parts[FHI] = sign | (exp << 20) | ((wrd2 & 0x7FFFFFFF) >> 11);
result = p.val;
fpu_debug(("make_extended (%X,%X,%X) = %.04f\n",wrd1,wrd2,wrd3,(double)result));
}
// from_exten
PRIVATE inline void FFPU extract_extended(fpu_register const & src,
uae_u32 * wrd1, uae_u32 * wrd2, uae_u32 * wrd3
)
{
if (src == 0.0) {
*wrd1 = *wrd2 = *wrd3 = 0;
return;
}
fpu_register_parts const p = { src };
fpu_debug(("extract_extended (%X,%X)\n",p.parts[FLO],p.parts[FHI]));
uae_u32 sign = p.parts[FHI] & 0x80000000;
uae_u32 exp = ((p.parts[FHI] >> 20) & 0x7ff);
// Check for maximum
if(exp == 0x7FF) {
exp = 0x7FFF;
} else {
exp += 16383 - 1023;
}
*wrd1 = sign | (exp << 16);
// always set the explicit integer bit.
*wrd2 = 0x80000000 | ((p.parts[FHI] & 0x000FFFFF) << 11) | ((p.parts[FLO] & 0xFFE00000) >> 21);
*wrd3 = p.parts[FLO] << 11;
fpu_debug(("extract_extended (%.04f) = %X,%X,%X\n",(double)src,*wrd1,*wrd2,*wrd3));
}
// to_double
PRIVATE inline fpu_register FFPU make_double(uae_u32 wrd1, uae_u32 wrd2)
{
if ((wrd1 & 0x7fffffff) == 0 && wrd2 == 0)
return 0.0;
fpu_register result;
fpu_register_parts p;
p.parts[FLO] = wrd2;
p.parts[FHI] = wrd1;
result = p.val;
fpu_debug(("make_double (%X,%X) = %.04f\n",wrd1,wrd2,(double)result));
return(result);
}
// from_double
PRIVATE inline void FFPU extract_double(fpu_register const & src,
uae_u32 * wrd1, uae_u32 * wrd2
)
{
/*
if (src == 0.0) {
*wrd1 = *wrd2 = 0;
return;
}
*/
fpu_register_parts const p = { src };
*wrd2 = p.parts[FLO];
*wrd1 = p.parts[FHI];
fpu_debug(("extract_double (%.04f) = %X,%X\n",(double)src,*wrd1,*wrd2));
}
#else // !FPU_HAVE_IEEE_DOUBLE
#ifndef FPU_USE_NATIVE_FLAGS
PRIVATE inline void FFPU make_fpsr(fpu_register const & r)
{
FPU fpsr.condition_codes
= (iszero(r) ? NATIVE_FFLAG_ZERO : 0)
| (isneg(r) ? NATIVE_FFLAG_NEGATIVE : 0)
;
}
#endif
// make_single
PRIVATE inline fpu_register FFPU make_single(uae_u32 value)
{
if ((value & 0x7fffffff) == 0)
return (0.0);
fpu_register frac = (fpu_register) ((value & 0x7fffff) | 0x800000) / 8388608.0;
if (value & 0x80000000)
frac = -frac;
fpu_register result = ldexp (frac, (int)((value >> 23) & 0xff) - 127);
fpu_debug(("make_single (%X) = %.04f\n",value,(double)result));
return (result);
}
// extract_single
PRIVATE inline uae_u32 FFPU extract_single(fpu_register const & src)
{
int expon;
uae_u32 tmp, result;
fpu_register frac;
#if FPU_DEBUG
fpu_register src0 = src;
#endif
if (src == 0.0)
return 0;
if (src < 0) {
tmp = 0x80000000;
src = -src;
} else {
tmp = 0;
}
frac = frexp (src, &expon);
frac += 0.5 / 16777216.0;
if (frac >= 1.0) {
frac /= 2.0;
expon++;
}
result = tmp | (((expon + 127 - 1) & 0xff) << 23) | (((int) (frac * 16777216.0)) & 0x7fffff);
// fpu_debug(("extract_single (%.04f) = %X\n",(float)src0,result));
return (result);
}
// to exten
PRIVATE inline fpu_register FFPU make_extended(uae_u32 wrd1, uae_u32 wrd2, uae_u32 wrd3)
{
fpu_register frac, result;
if ((wrd1 & 0x7fff0000) == 0 && wrd2 == 0 && wrd3 == 0)
return 0.0;
frac = (fpu_register) wrd2 / 2147483648.0 +
(fpu_register) wrd3 / 9223372036854775808.0;
if (wrd1 & 0x80000000)
frac = -frac;
result = ldexp (frac, (int)((wrd1 >> 16) & 0x7fff) - 16383);
fpu_debug(("make_extended (%X,%X,%X) = %.04f\n",wrd1,wrd2,wrd3,(double)result));
return result;
}
// extract_extended
PRIVATE inline void FFPU extract_extended(fpu_register const & src, uae_u32 * wrd1, uae_u32 * wrd2, uae_u32 * wrd3)
{
int expon;
fpu_register frac;
#if FPU_DEBUG
fpu_register src0 = src;
#endif
if (src == 0.0) {
*wrd1 = 0;
*wrd2 = 0;
*wrd3 = 0;
return;
}
if (src < 0) {
*wrd1 = 0x80000000;
src = -src;
} else {
*wrd1 = 0;
}
frac = frexp (src, &expon);
frac += 0.5 / 18446744073709551616.0;
if (frac >= 1.0) {
frac /= 2.0;
expon++;
}
*wrd1 |= (((expon + 16383 - 1) & 0x7fff) << 16);
*wrd2 = (uae_u32) (frac * 4294967296.0);
*wrd3 = (uae_u32) (frac * 18446744073709551616.0 - *wrd2 * 4294967296.0);
// fpu_debug(("extract_extended (%.04f) = %X,%X,%X\n",(float)src0,*wrd1,*wrd2,*wrd3));
}
// make_double
PRIVATE inline fpu_register FFPU make_double(uae_u32 wrd1, uae_u32 wrd2)
{
if ((wrd1 & 0x7fffffff) == 0 && wrd2 == 0)
return 0.0;
fpu_register frac =
(fpu_register) ((wrd1 & 0xfffff) | 0x100000) / 1048576.0 +
(fpu_register) wrd2 / 4503599627370496.0;
if (wrd1 & 0x80000000)
frac = -frac;
fpu_register result = ldexp (frac, (int)((wrd1 >> 20) & 0x7ff) - 1023);
fpu_debug(("make_double (%X,%X) = %.04f\n",wrd1,wrd2,(double)result));
return result;
}
// extract_double
PRIVATE inline void FFPU extract_double(fpu_register const & src, uae_u32 * wrd1, uae_u32 * wrd2)
{
int expon;
int tmp;
fpu_register frac frac;
#if FPU_DEBUG
fpu_register src0 = src;
#endif
if (src == 0.0) {
*wrd1 = 0;
*wrd2 = 0;
return;
}
if (src < 0) {
*wrd1 = 0x80000000;
src = -src;
} else {
*wrd1 = 0;
}
frac = frexp (src, &expon);
frac += 0.5 / 9007199254740992.0;
if (frac >= 1.0) {
frac /= 2.0;
expon++;
}
tmp = (uae_u32) (frac * 2097152.0);
*wrd1 |= (((expon + 1023 - 1) & 0x7ff) << 20) | (tmp & 0xfffff);
*wrd2 = (uae_u32) (frac * 9007199254740992.0 - tmp * 4294967296.0);
// fpu_debug(("extract_double (%.04f) = %X,%X\n",(float)src0,*wrd1,*wrd2));
}
#endif
// to_pack
PRIVATE inline fpu_register FFPU make_packed(uae_u32 wrd1, uae_u32 wrd2, uae_u32 wrd3)
{
fpu_double d;
char *cp;
char str[100];
cp = str;
if (wrd1 & 0x80000000)
*cp++ = '-';
*cp++ = (char)((wrd1 & 0xf) + '0');
*cp++ = '.';
*cp++ = (char)(((wrd2 >> 28) & 0xf) + '0');
*cp++ = (char)(((wrd2 >> 24) & 0xf) + '0');
*cp++ = (char)(((wrd2 >> 20) & 0xf) + '0');
*cp++ = (char)(((wrd2 >> 16) & 0xf) + '0');
*cp++ = (char)(((wrd2 >> 12) & 0xf) + '0');
*cp++ = (char)(((wrd2 >> 8) & 0xf) + '0');
*cp++ = (char)(((wrd2 >> 4) & 0xf) + '0');
*cp++ = (char)(((wrd2 >> 0) & 0xf) + '0');
*cp++ = (char)(((wrd3 >> 28) & 0xf) + '0');
*cp++ = (char)(((wrd3 >> 24) & 0xf) + '0');
*cp++ = (char)(((wrd3 >> 20) & 0xf) + '0');
*cp++ = (char)(((wrd3 >> 16) & 0xf) + '0');
*cp++ = (char)(((wrd3 >> 12) & 0xf) + '0');
*cp++ = (char)(((wrd3 >> 8) & 0xf) + '0');
*cp++ = (char)(((wrd3 >> 4) & 0xf) + '0');
*cp++ = (char)(((wrd3 >> 0) & 0xf) + '0');
*cp++ = 'E';
if (wrd1 & 0x40000000)
*cp++ = '-';
*cp++ = (char)(((wrd1 >> 24) & 0xf) + '0');
*cp++ = (char)(((wrd1 >> 20) & 0xf) + '0');
*cp++ = (char)(((wrd1 >> 16) & 0xf) + '0');
*cp = 0;
sscanf(str, "%le", &d);
fpu_debug(("make_packed str = %s\n",str));
fpu_debug(("make_packed(%X,%X,%X) = %.04f\n",wrd1,wrd2,wrd3,(double)d));
return d;
}
// from_pack
PRIVATE inline void FFPU extract_packed(fpu_register const & src, uae_u32 * wrd1, uae_u32 * wrd2, uae_u32 * wrd3)
{
int i;
int t;
char *cp;
char str[100];
sprintf(str, "%.16e", src);
fpu_debug(("extract_packed(%.04f,%s)\n",(double)src,str));
cp = str;
*wrd1 = *wrd2 = *wrd3 = 0;
if (*cp == '-') {
cp++;
*wrd1 = 0x80000000;
}
if (*cp == '+')
cp++;
*wrd1 |= (*cp++ - '0');
if (*cp == '.')
cp++;
for (i = 0; i < 8; i++) {
*wrd2 <<= 4;
if (*cp >= '0' && *cp <= '9')
*wrd2 |= *cp++ - '0';
}
for (i = 0; i < 8; i++) {
*wrd3 <<= 4;
if (*cp >= '0' && *cp <= '9')
*wrd3 |= *cp++ - '0';
}
if (*cp == 'e' || *cp == 'E') {
cp++;
if (*cp == '-') {
cp++;
*wrd1 |= 0x40000000;
}
if (*cp == '+')
cp++;
t = 0;
for (i = 0; i < 3; i++) {
if (*cp >= '0' && *cp <= '9')
t = (t << 4) | (*cp++ - '0');
}
*wrd1 |= t << 16;
}
fpu_debug(("extract_packed(%.04f) = %X,%X,%X\n",(double)src,*wrd1,*wrd2,*wrd3));
}
PRIVATE inline int FFPU get_fp_value (uae_u32 opcode, uae_u16 extra, fpu_register & src)
{
uaecptr tmppc;
uae_u16 tmp;
int size;
int mode;
int reg;
uae_u32 ad = 0;
static int sz1[8] = {4, 4, 12, 12, 2, 8, 1, 0};
static int sz2[8] = {4, 4, 12, 12, 2, 8, 2, 0};
// fpu_debug(("get_fp_value(%X,%X)\n",(int)opcode,(int)extra));
// dump_first_bytes( regs.pc_p-4, 16 );
if ((extra & 0x4000) == 0) {
src = FPU registers[(extra >> 10) & 7];
return 1;
}
mode = (opcode >> 3) & 7;
reg = opcode & 7;
size = (extra >> 10) & 7;
fpu_debug(("get_fp_value mode=%d, reg=%d, size=%d\n",(int)mode,(int)reg,(int)size));
switch (mode) {
case 0:
switch (size) {
case 6:
src = (fpu_register) (uae_s8) m68k_dreg (regs, reg);
break;
case 4:
src = (fpu_register) (uae_s16) m68k_dreg (regs, reg);
break;
case 0:
src = (fpu_register) (uae_s32) m68k_dreg (regs, reg);
break;
case 1:
src = make_single(m68k_dreg (regs, reg));
break;
default:
return 0;
}
return 1;
case 1:
return 0;
case 2:
ad = m68k_areg (regs, reg);
break;
case 3:
ad = m68k_areg (regs, reg);
break;
case 4:
ad = m68k_areg (regs, reg) - (reg == 7 ? sz2[size] : sz1[size]);
break;
case 5:
ad = m68k_areg (regs, reg) + (uae_s32) (uae_s16) next_iword();
break;
case 6:
ad = get_disp_ea_020 (m68k_areg (regs, reg), next_iword());
break;
case 7:
switch (reg) {
case 0:
ad = (uae_s32) (uae_s16) next_iword();
break;
case 1:
ad = next_ilong();
break;
case 2:
ad = m68k_getpc ();
ad += (uae_s32) (uae_s16) next_iword();
fpu_debug(("get_fp_value next_iword()=%X\n",ad-m68k_getpc()-2));
break;
case 3:
tmppc = m68k_getpc ();
tmp = (uae_u16)next_iword();
ad = get_disp_ea_020 (tmppc, tmp);
break;
case 4:
ad = m68k_getpc ();
m68k_setpc (ad + sz2[size]);
// Immediate addressing mode && Operation Length == Byte ->
// Use the low-order byte of the extension word.
if(size == 6) ad++;
break;
default:
return 0;
}
}
fpu_debug(("get_fp_value m68k_getpc()=%X\n",m68k_getpc()));
fpu_debug(("get_fp_value ad=%X\n",ad));
fpu_debug(("get_fp_value get_long (ad)=%X\n",get_long (ad)));
dump_first_bytes( get_real_address(ad, 0, 0)-64, 64 );
dump_first_bytes( get_real_address(ad, 0, 0), 64 );
switch (size) {
case 0:
src = (fpu_register) (uae_s32) get_long (ad);
break;
case 1:
src = make_single(get_long (ad));
break;
case 2: {
uae_u32 wrd1, wrd2, wrd3;
wrd1 = get_long (ad);
ad += 4;
wrd2 = get_long (ad);
ad += 4;
wrd3 = get_long (ad);
src = make_extended(wrd1, wrd2, wrd3);
break;
}
case 3: {
uae_u32 wrd1, wrd2, wrd3;
wrd1 = get_long (ad);
ad += 4;
wrd2 = get_long (ad);
ad += 4;
wrd3 = get_long (ad);
src = make_packed(wrd1, wrd2, wrd3);
break;
}
case 4:
src = (fpu_register) (uae_s16) get_word(ad);
break;
case 5: {
uae_u32 wrd1, wrd2;
wrd1 = get_long (ad);
ad += 4;
wrd2 = get_long (ad);
src = make_double(wrd1, wrd2);
break;
}
case 6:
src = (fpu_register) (uae_s8) get_byte(ad);
break;
default:
return 0;
}
switch (mode) {
case 3:
m68k_areg (regs, reg) += reg == 7 ? sz2[size] : sz1[size];
break;
case 4:
m68k_areg (regs, reg) -= reg == 7 ? sz2[size] : sz1[size];
break;
}
// fpu_debug(("get_fp_value result = %.04f\n",(float)src));
return 1;
}
PRIVATE inline int FFPU put_fp_value (uae_u32 opcode, uae_u16 extra, fpu_register const & value)
{
uae_u16 tmp;
uaecptr tmppc;
int size;
int mode;
int reg;
uae_u32 ad;
static int sz1[8] = {4, 4, 12, 12, 2, 8, 1, 0};
static int sz2[8] = {4, 4, 12, 12, 2, 8, 2, 0};
// fpu_debug(("put_fp_value(%.04f,%X,%X)\n",(float)value,(int)opcode,(int)extra));
if ((extra & 0x4000) == 0) {
int dest_reg = (extra >> 10) & 7;
FPU registers[dest_reg] = value;
make_fpsr(FPU registers[dest_reg]);
return 1;
}
mode = (opcode >> 3) & 7;
reg = opcode & 7;
size = (extra >> 10) & 7;
ad = 0xffffffff;
switch (mode) {
case 0:
switch (size) {
case 6:
m68k_dreg (regs, reg)
= (((uae_s32) value & 0xff)
| (m68k_dreg (regs, reg) & ~0xff));
break;
case 4:
m68k_dreg (regs, reg)
= (((uae_s32) value & 0xffff)
| (m68k_dreg (regs, reg) & ~0xffff));
break;
case 0:
m68k_dreg (regs, reg) = (uae_s32) value;
break;
case 1:
m68k_dreg (regs, reg) = extract_single(value);
break;
default:
return 0;
}
return 1;
case 1:
return 0;
case 2:
ad = m68k_areg (regs, reg);
break;
case 3:
ad = m68k_areg (regs, reg);
m68k_areg (regs, reg) += reg == 7 ? sz2[size] : sz1[size];
break;
case 4:
m68k_areg (regs, reg) -= reg == 7 ? sz2[size] : sz1[size];
ad = m68k_areg (regs, reg);
break;
case 5:
ad = m68k_areg (regs, reg) + (uae_s32) (uae_s16) next_iword();
break;
case 6:
ad = get_disp_ea_020 (m68k_areg (regs, reg), next_iword());
break;
case 7:
switch (reg) {
case 0:
ad = (uae_s32) (uae_s16) next_iword();
break;
case 1:
ad = next_ilong();
break;
case 2:
ad = m68k_getpc ();
ad += (uae_s32) (uae_s16) next_iword();
break;
case 3:
tmppc = m68k_getpc ();
tmp = (uae_u16)next_iword();
ad = get_disp_ea_020 (tmppc, tmp);
break;
case 4:
ad = m68k_getpc ();
m68k_setpc (ad + sz2[size]);
break;
default:
return 0;
}
}
switch (size) {
case 0:
put_long (ad, (uae_s32) value);
break;
case 1:
put_long (ad, extract_single(value));
break;
case 2: {
uae_u32 wrd1, wrd2, wrd3;
extract_extended(value, &wrd1, &wrd2, &wrd3);
put_long (ad, wrd1);
ad += 4;
put_long (ad, wrd2);
ad += 4;
put_long (ad, wrd3);
break;
}
case 3: {
uae_u32 wrd1, wrd2, wrd3;
extract_packed(value, &wrd1, &wrd2, &wrd3);
put_long (ad, wrd1);
ad += 4;
put_long (ad, wrd2);
ad += 4;
put_long (ad, wrd3);
break;
}
case 4:
put_word(ad, (uae_s16) value);
break;
case 5: {
uae_u32 wrd1, wrd2;
extract_double(value, &wrd1, &wrd2);
put_long (ad, wrd1);
ad += 4;
put_long (ad, wrd2);
break;
}
case 6:
put_byte(ad, (uae_s8) value);
break;
default:
return 0;
}
return 1;
}
PRIVATE inline int FFPU get_fp_ad(uae_u32 opcode, uae_u32 * ad)
{
uae_u16 tmp;
uaecptr tmppc;
int mode;
int reg;
mode = (opcode >> 3) & 7;
reg = opcode & 7;
switch (mode) {
case 0:
case 1:
return 0;
case 2:
*ad = m68k_areg (regs, reg);
break;
case 3:
*ad = m68k_areg (regs, reg);
break;
case 4:
*ad = m68k_areg (regs, reg);
break;
case 5:
*ad = m68k_areg (regs, reg) + (uae_s32) (uae_s16) next_iword();
break;
case 6:
*ad = get_disp_ea_020 (m68k_areg (regs, reg), next_iword());
break;
case 7:
switch (reg) {
case 0:
*ad = (uae_s32) (uae_s16) next_iword();
break;
case 1:
*ad = next_ilong();
break;
case 2:
*ad = m68k_getpc ();
*ad += (uae_s32) (uae_s16) next_iword();
break;
case 3:
tmppc = m68k_getpc ();
tmp = (uae_u16)next_iword();
*ad = get_disp_ea_020 (tmppc, tmp);
break;
default:
return 0;
}
}
return 1;
}
#if FPU_DEBUG
# define CONDRET(s,x) fpu_debug(("fpp_cond %s = %d\n",s,(uint32)(x))); return (x)
#else
# define CONDRET(s,x) return (x)
#endif
PRIVATE inline int FFPU fpp_cond(int condition)
{
#if 1
# define N ((FPU fpsr.condition_codes & NATIVE_FFLAG_NEGATIVE) == NATIVE_FFLAG_NEGATIVE)
# define Z ((FPU fpsr.condition_codes & NATIVE_FFLAG_ZERO) == NATIVE_FFLAG_ZERO)
# define I ((FPU fpsr.condition_codes & NATIVE_FFLAG_INFINITY) == NATIVE_FFLAG_INFINITY)
# define NaN ((FPU fpsr.condition_codes & NATIVE_FFLAG_NAN) == NATIVE_FFLAG_NAN)
#else
# define N ((FPU fpsr.condition_codes & NATIVE_FFLAG_NEGATIVE) != 0)
# define Z ((FPU fpsr.condition_codes & NATIVE_FFLAG_ZERO) != 0)
# define I ((FPU fpsr.condition_codes & NATIVE_FFLAG_INFINITY) != 0)
# define NaN ((FPU fpsr.condition_codes & NATIVE_FFLAG_NAN) != 0)
#endif
#if 0
return fpcctrue(condition);
#else
switch (condition & 0x1f) {
case 0x00: CONDRET("False",0);
case 0x01: CONDRET("Equal",Z);
case 0x02: CONDRET("Ordered Greater Than",!(NaN || Z || N));
case 0x03: CONDRET("Ordered Greater Than or Equal",Z || !(NaN || N));
case 0x04: CONDRET("Ordered Less Than",N && !(NaN || Z));
case 0x05: CONDRET("Ordered Less Than or Equal",Z || (N && !NaN));
case 0x06: CONDRET("Ordered Greater or Less Than",!(NaN || Z));
case 0x07: CONDRET("Ordered",!NaN);
case 0x08: CONDRET("Unordered",NaN);
case 0x09: CONDRET("Unordered or Equal",NaN || Z);
case 0x0a: CONDRET("Unordered or Greater Than",NaN || !(N || Z));
case 0x0b: CONDRET("Unordered or Greater or Equal",NaN || Z || !N);
case 0x0c: CONDRET("Unordered or Less Than",NaN || (N && !Z));
case 0x0d: CONDRET("Unordered or Less or Equal",NaN || Z || N);
case 0x0e: CONDRET("Not Equal",!Z);
case 0x0f: CONDRET("True",1);
case 0x10: CONDRET("Signaling False",0);
case 0x11: CONDRET("Signaling Equal",Z);
case 0x12: CONDRET("Greater Than",!(NaN || Z || N));
case 0x13: CONDRET("Greater Than or Equal",Z || !(NaN || N));
case 0x14: CONDRET("Less Than",N && !(NaN || Z));
case 0x15: CONDRET("Less Than or Equal",Z || (N && !NaN));
case 0x16: CONDRET("Greater or Less Than",!(NaN || Z));
case 0x17: CONDRET("Greater, Less or Equal",!NaN);
case 0x18: CONDRET("Not Greater, Less or Equal",NaN);
case 0x19: CONDRET("Not Greater or Less Than",NaN || Z);
case 0x1a: CONDRET("Not Less Than or Equal",NaN || !(N || Z));
case 0x1b: CONDRET("Not Less Than",NaN || Z || !N);
case 0x1c: CONDRET("Not Greater Than or Equal", NaN || (N && !Z));
// case 0x1c: CONDRET("Not Greater Than or Equal",!Z && (NaN || N));
case 0x1d: CONDRET("Not Greater Than",NaN || Z || N);
case 0x1e: CONDRET("Signaling Not Equal",!Z);
case 0x1f: CONDRET("Signaling True",1);
default: CONDRET("",-1);
}
#endif
# undef N
# undef Z
# undef I
# undef NaN
}
void FFPU fpuop_dbcc(uae_u32 opcode, uae_u32 extra)
{
fpu_debug(("fdbcc_opp %X, %X at %08lx\n", (uae_u32)opcode, (uae_u32)extra, m68k_getpc ()));
uaecptr pc = (uae_u32) m68k_getpc ();
uae_s32 disp = (uae_s32) (uae_s16) next_iword();
int cc = fpp_cond(extra & 0x3f);
if (cc == -1) {
m68k_setpc (pc - 4);
op_illg (opcode);
} else if (!cc) {
int reg = opcode & 0x7;
// this may have leaked.
/*
m68k_dreg (regs, reg) = ((m68k_dreg (regs, reg) & ~0xffff)
| ((m68k_dreg (regs, reg) - 1) & 0xffff));
*/
m68k_dreg (regs, reg) = ((m68k_dreg (regs, reg) & 0xffff0000)
| (((m68k_dreg (regs, reg) & 0xffff) - 1) & 0xffff));
// condition reversed.
// if ((m68k_dreg (regs, reg) & 0xffff) == 0xffff)
if ((m68k_dreg (regs, reg) & 0xffff) != 0xffff)
m68k_setpc (pc + disp);
}
}
void FFPU fpuop_scc(uae_u32 opcode, uae_u32 extra)
{
fpu_debug(("fscc_opp %X, %X at %08lx\n", (uae_u32)opcode, (uae_u32)extra, m68k_getpc ()));
uae_u32 ad;
int cc = fpp_cond(extra & 0x3f);
if (cc == -1) {
m68k_setpc (m68k_getpc () - 4);
op_illg (opcode);
}
else if ((opcode & 0x38) == 0) {
m68k_dreg (regs, opcode & 7) = (m68k_dreg (regs, opcode & 7) & ~0xff) |
(cc ? 0xff : 0x00);
}
else if (get_fp_ad(opcode, &ad) == 0) {
m68k_setpc (m68k_getpc () - 4);
op_illg (opcode);
}
else
put_byte(ad, cc ? 0xff : 0x00);
}
void FFPU fpuop_trapcc(uae_u32 opcode, uaecptr oldpc, uae_u32 extra)
{
fpu_debug(("ftrapcc_opp %X, %X at %08lx\n", (uae_u32)opcode, (uae_u32)extra, m68k_getpc ()));
int cc = fpp_cond(extra & 0x3f);
if (cc == -1) {
m68k_setpc (oldpc);
op_illg (opcode);
}
if (cc)
Exception(7, oldpc - 2);
}
// NOTE that we get here also when there is a FNOP (nontrapping false, displ 0)
void FFPU fpuop_bcc(uae_u32 opcode, uaecptr pc, uae_u32 extra)
{
fpu_debug(("fbcc_opp %X, %X at %08lx, jumpto=%X\n", (uae_u32)opcode, (uae_u32)extra, m68k_getpc (), extra ));
int cc = fpp_cond(opcode & 0x3f);
if (cc == -1) {
m68k_setpc (pc);
op_illg (opcode);
}
else if (cc) {
if ((opcode & 0x40) == 0)
extra = (uae_s32) (uae_s16) extra;
m68k_setpc (pc + extra);
}
}
// FSAVE has no post-increment
// 0x1f180000 == IDLE state frame, coprocessor version number 1F
void FFPU fpuop_save(uae_u32 opcode)
{
fpu_debug(("fsave_opp at %08lx\n", m68k_getpc ()));
uae_u32 ad;
int incr = (opcode & 0x38) == 0x20 ? -1 : 1;
int i;
if (get_fp_ad(opcode, &ad) == 0) {
m68k_setpc (m68k_getpc () - 2);
op_illg (opcode);
return;
}
if (CPUType == 4) {
// Put 4 byte 68040 IDLE frame.
if (incr < 0) {
ad -= 4;
put_long (ad, 0x41000000);
}
else {
put_long (ad, 0x41000000);
ad += 4;
}
} else {
// Put 28 byte 68881 IDLE frame.
if (incr < 0) {
fpu_debug(("fsave_opp pre-decrement\n"));
ad -= 4;
// What's this? Some BIU flags, or (incorrectly placed) command/condition?
put_long (ad, 0x70000000);
for (i = 0; i < 5; i++) {
ad -= 4;
put_long (ad, 0x00000000);
}
ad -= 4;
put_long (ad, 0x1f180000); // IDLE, vers 1f
}
else {
put_long (ad, 0x1f180000); // IDLE, vers 1f
ad += 4;
for (i = 0; i < 5; i++) {
put_long (ad, 0x00000000);
ad += 4;
}
// What's this? Some BIU flags, or (incorrectly placed) command/condition?
put_long (ad, 0x70000000);
ad += 4;
}
}
if ((opcode & 0x38) == 0x18) {
m68k_areg (regs, opcode & 7) = ad; // Never executed on a 68881
fpu_debug(("PROBLEM: fsave_opp post-increment\n"));
}
if ((opcode & 0x38) == 0x20) {
m68k_areg (regs, opcode & 7) = ad;
fpu_debug(("fsave_opp pre-decrement %X -> A%d\n",ad,opcode & 7));
}
}
// FRESTORE has no pre-decrement
void FFPU fpuop_restore(uae_u32 opcode)
{
fpu_debug(("frestore_opp at %08lx\n", m68k_getpc ()));
uae_u32 ad;
uae_u32 d;
int incr = (opcode & 0x38) == 0x20 ? -1 : 1;
if (get_fp_ad(opcode, &ad) == 0) {
m68k_setpc (m68k_getpc () - 2);
op_illg (opcode);
return;
}
if (CPUType == 4) {
// 68040
if (incr < 0) {
fpu_debug(("PROBLEM: frestore_opp incr < 0\n"));
// this may be wrong, but it's never called.
ad -= 4;
d = get_long (ad);
if ((d & 0xff000000) != 0) { // Not a NULL frame?
if ((d & 0x00ff0000) == 0) { // IDLE
fpu_debug(("frestore_opp found IDLE frame at %X\n",ad-4));
}
else if ((d & 0x00ff0000) == 0x00300000) { // UNIMP
fpu_debug(("PROBLEM: frestore_opp found UNIMP frame at %X\n",ad-4));
ad -= 44;
}
else if ((d & 0x00ff0000) == 0x00600000) { // BUSY
fpu_debug(("PROBLEM: frestore_opp found BUSY frame at %X\n",ad-4));
ad -= 92;
}
}
}
else {
d = get_long (ad);
fpu_debug(("frestore_opp frame at %X = %X\n",ad,d));
ad += 4;
if ((d & 0xff000000) != 0) { // Not a NULL frame?
if ((d & 0x00ff0000) == 0) { // IDLE
fpu_debug(("frestore_opp found IDLE frame at %X\n",ad-4));
}
else if ((d & 0x00ff0000) == 0x00300000) { // UNIMP
fpu_debug(("PROBLEM: frestore_opp found UNIMP frame at %X\n",ad-4));
ad += 44;
}
else if ((d & 0x00ff0000) == 0x00600000) { // BUSY
fpu_debug(("PROBLEM: frestore_opp found BUSY frame at %X\n",ad-4));
ad += 92;
}
}
}
}
else {
// 68881
if (incr < 0) {
fpu_debug(("PROBLEM: frestore_opp incr < 0\n"));
// this may be wrong, but it's never called.
ad -= 4;
d = get_long (ad);
if ((d & 0xff000000) != 0) {
if ((d & 0x00ff0000) == 0x00180000)
ad -= 6 * 4;
else if ((d & 0x00ff0000) == 0x00380000)
ad -= 14 * 4;
else if ((d & 0x00ff0000) == 0x00b40000)
ad -= 45 * 4;
}
}
else {
d = get_long (ad);
fpu_debug(("frestore_opp frame at %X = %X\n",ad,d));
ad += 4;
if ((d & 0xff000000) != 0) { // Not a NULL frame?
if ((d & 0x00ff0000) == 0x00180000) { // IDLE
fpu_debug(("frestore_opp found IDLE frame at %X\n",ad-4));
ad += 6 * 4;
}
else if ((d & 0x00ff0000) == 0x00380000) {// UNIMP? shouldn't it be 3C?
ad += 14 * 4;
fpu_debug(("PROBLEM: frestore_opp found UNIMP? frame at %X\n",ad-4));
}
else if ((d & 0x00ff0000) == 0x00b40000) {// BUSY
fpu_debug(("PROBLEM: frestore_opp found BUSY frame at %X\n",ad-4));
ad += 45 * 4;
}
}
}
}
if ((opcode & 0x38) == 0x18) {
m68k_areg (regs, opcode & 7) = ad;
fpu_debug(("frestore_opp post-increment %X -> A%d\n",ad,opcode & 7));
}
if ((opcode & 0x38) == 0x20) {
m68k_areg (regs, opcode & 7) = ad; // Never executed on a 68881
fpu_debug(("PROBLEM: frestore_opp pre-decrement\n"));
}
}
void FFPU fpuop_arithmetic(uae_u32 opcode, uae_u32 extra)
{
int reg;
fpu_register src;
fpu_debug(("FPP %04lx %04x at %08lx\n", opcode & 0xffff, extra & 0xffff,
m68k_getpc () - 4));
dump_registers( "START");
switch ((extra >> 13) & 0x7) {
case 3:
fpu_debug(("FMOVE -> <ea>\n"));
if (put_fp_value (opcode, extra, FPU registers[(extra >> 7) & 7]) == 0) {
m68k_setpc (m68k_getpc () - 4);
op_illg (opcode);
}
dump_registers( "END ");
return;
case 4:
case 5:
if ((opcode & 0x38) == 0) {
if (extra & 0x2000) { // dr bit
if (extra & 0x1000) {
m68k_dreg (regs, opcode & 7) = get_fpcr();
fpu_debug(("FMOVEM FPU fpcr (%X) -> D%d\n", get_fpcr(), opcode & 7));
}
if (extra & 0x0800) {
m68k_dreg (regs, opcode & 7) = get_fpsr();
fpu_debug(("FMOVEM FPU fpsr (%X) -> D%d\n", get_fpsr(), opcode & 7));
}
if (extra & 0x0400) {
m68k_dreg (regs, opcode & 7) = FPU instruction_address;
fpu_debug(("FMOVEM FPU instruction_address (%X) -> D%d\n", FPU instruction_address, opcode & 7));
}
}
else {
if (extra & 0x1000) {
set_fpcr( m68k_dreg (regs, opcode & 7) );
fpu_debug(("FMOVEM D%d (%X) -> FPU fpcr\n", opcode & 7, get_fpcr()));
}
if (extra & 0x0800) {
set_fpsr( m68k_dreg (regs, opcode & 7) );
fpu_debug(("FMOVEM D%d (%X) -> FPU fpsr\n", opcode & 7, get_fpsr()));
}
if (extra & 0x0400) {
FPU instruction_address = m68k_dreg (regs, opcode & 7);
fpu_debug(("FMOVEM D%d (%X) -> FPU instruction_address\n", opcode & 7, FPU instruction_address));
}
}
// } else if ((opcode & 0x38) == 1) {
}
else if ((opcode & 0x38) == 8) {
if (extra & 0x2000) { // dr bit
if (extra & 0x1000) {
m68k_areg (regs, opcode & 7) = get_fpcr();
fpu_debug(("FMOVEM FPU fpcr (%X) -> A%d\n", get_fpcr(), opcode & 7));
}
if (extra & 0x0800) {
m68k_areg (regs, opcode & 7) = get_fpsr();
fpu_debug(("FMOVEM FPU fpsr (%X) -> A%d\n", get_fpsr(), opcode & 7));
}
if (extra & 0x0400) {
m68k_areg (regs, opcode & 7) = FPU instruction_address;
fpu_debug(("FMOVEM FPU instruction_address (%X) -> A%d\n", FPU instruction_address, opcode & 7));
}
} else {
if (extra & 0x1000) {
set_fpcr( m68k_areg (regs, opcode & 7) );
fpu_debug(("FMOVEM A%d (%X) -> FPU fpcr\n", opcode & 7, get_fpcr()));
}
if (extra & 0x0800) {
set_fpsr( m68k_areg (regs, opcode & 7) );
fpu_debug(("FMOVEM A%d (%X) -> FPU fpsr\n", opcode & 7, get_fpsr()));
}
if (extra & 0x0400) {
FPU instruction_address = m68k_areg (regs, opcode & 7);
fpu_debug(("FMOVEM A%d (%X) -> FPU instruction_address\n", opcode & 7, FPU instruction_address));
}
}
}
else if ((opcode & 0x3f) == 0x3c) {
if ((extra & 0x2000) == 0) {
if (extra & 0x1000) {
set_fpcr( next_ilong() );
fpu_debug(("FMOVEM #<%X> -> FPU fpcr\n", get_fpcr()));
}
if (extra & 0x0800) {
set_fpsr( next_ilong() );
fpu_debug(("FMOVEM #<%X> -> FPU fpsr\n", get_fpsr()));
}
if (extra & 0x0400) {
FPU instruction_address = next_ilong();
fpu_debug(("FMOVEM #<%X> -> FPU instruction_address\n", FPU instruction_address));
}
}
}
else if (extra & 0x2000) {
/* FMOVEM FPP->memory */
uae_u32 ad;
int incr = 0;
if (get_fp_ad(opcode, &ad) == 0) {
m68k_setpc (m68k_getpc () - 4);
op_illg (opcode);
dump_registers( "END ");
return;
}
if ((opcode & 0x38) == 0x20) {
if (extra & 0x1000)
incr += 4;
if (extra & 0x0800)
incr += 4;
if (extra & 0x0400)
incr += 4;
}
ad -= incr;
if (extra & 0x1000) {
put_long (ad, get_fpcr());
fpu_debug(("FMOVEM FPU fpcr (%X) -> mem %X\n", get_fpcr(), ad ));
ad += 4;
}
if (extra & 0x0800) {
put_long (ad, get_fpsr());
fpu_debug(("FMOVEM FPU fpsr (%X) -> mem %X\n", get_fpsr(), ad ));
ad += 4;
}
if (extra & 0x0400) {
put_long (ad, FPU instruction_address);
fpu_debug(("FMOVEM FPU instruction_address (%X) -> mem %X\n", FPU instruction_address, ad ));
ad += 4;
}
ad -= incr;
if ((opcode & 0x38) == 0x18) // post-increment?
m68k_areg (regs, opcode & 7) = ad;
if ((opcode & 0x38) == 0x20) // pre-decrement?
m68k_areg (regs, opcode & 7) = ad;
}
else {
/* FMOVEM memory->FPP */
uae_u32 ad;
if (get_fp_ad(opcode, &ad) == 0) {
m68k_setpc (m68k_getpc () - 4);
op_illg (opcode);
dump_registers( "END ");
return;
}
// ad = (opcode & 0x38) == 0x20 ? ad - 12 : ad;
int incr = 0;
if((opcode & 0x38) == 0x20) {
if (extra & 0x1000)
incr += 4;
if (extra & 0x0800)
incr += 4;
if (extra & 0x0400)
incr += 4;
ad = ad - incr;
}
if (extra & 0x1000) {
set_fpcr( get_long (ad) );
fpu_debug(("FMOVEM mem %X (%X) -> FPU fpcr\n", ad, get_fpcr() ));
ad += 4;
}
if (extra & 0x0800) {
set_fpsr( get_long (ad) );
fpu_debug(("FMOVEM mem %X (%X) -> FPU fpsr\n", ad, get_fpsr() ));
ad += 4;
}
if (extra & 0x0400) {
FPU instruction_address = get_long (ad);
fpu_debug(("FMOVEM mem %X (%X) -> FPU instruction_address\n", ad, FPU instruction_address ));
ad += 4;
}
if ((opcode & 0x38) == 0x18) // post-increment?
m68k_areg (regs, opcode & 7) = ad;
if ((opcode & 0x38) == 0x20) // pre-decrement?
// m68k_areg (regs, opcode & 7) = ad - 12;
m68k_areg (regs, opcode & 7) = ad - incr;
}
dump_registers( "END ");
return;
case 6:
case 7: {
uae_u32 ad, list = 0;
int incr = 0;
if (extra & 0x2000) {
/* FMOVEM FPP->memory */
fpu_debug(("FMOVEM FPP->memory\n"));
if (get_fp_ad(opcode, &ad) == 0) {
m68k_setpc (m68k_getpc () - 4);
op_illg (opcode);
dump_registers( "END ");
return;
}
switch ((extra >> 11) & 3) {
case 0: /* static pred */
list = extra & 0xff;
incr = -1;
break;
case 1: /* dynamic pred */
list = m68k_dreg (regs, (extra >> 4) & 3) & 0xff;
incr = -1;
break;
case 2: /* static postinc */
list = extra & 0xff;
incr = 1;
break;
case 3: /* dynamic postinc */
list = m68k_dreg (regs, (extra >> 4) & 3) & 0xff;
incr = 1;
break;
}
if (incr < 0) {
for(reg=7; reg>=0; reg--) {
uae_u32 wrd1, wrd2, wrd3;
if( list & 0x80 ) {
extract_extended(FPU registers[reg],&wrd1, &wrd2, &wrd3);
ad -= 4;
put_long (ad, wrd3);
ad -= 4;
put_long (ad, wrd2);
ad -= 4;
put_long (ad, wrd1);
}
list <<= 1;
}
}
else {
for(reg=0; reg<8; reg++) {
uae_u32 wrd1, wrd2, wrd3;
if( list & 0x80 ) {
extract_extended(FPU registers[reg],&wrd1, &wrd2, &wrd3);
put_long (ad, wrd1);
ad += 4;
put_long (ad, wrd2);
ad += 4;
put_long (ad, wrd3);
ad += 4;
}
list <<= 1;
}
}
if ((opcode & 0x38) == 0x18) // post-increment?
m68k_areg (regs, opcode & 7) = ad;
if ((opcode & 0x38) == 0x20) // pre-decrement?
m68k_areg (regs, opcode & 7) = ad;
}
else {
/* FMOVEM memory->FPP */
fpu_debug(("FMOVEM memory->FPP\n"));
if (get_fp_ad(opcode, &ad) == 0) {
m68k_setpc (m68k_getpc () - 4);
op_illg (opcode);
dump_registers( "END ");
return;
}
switch ((extra >> 11) & 3) {
case 0: /* static pred */
fpu_debug(("memory->FMOVEM FPP not legal mode.\n"));
list = extra & 0xff;
incr = -1;
break;
case 1: /* dynamic pred */
fpu_debug(("memory->FMOVEM FPP not legal mode.\n"));
list = m68k_dreg (regs, (extra >> 4) & 3) & 0xff;
incr = -1;
break;
case 2: /* static postinc */
list = extra & 0xff;
incr = 1;
break;
case 3: /* dynamic postinc */
list = m68k_dreg (regs, (extra >> 4) & 3) & 0xff;
incr = 1;
break;
}
/**/
if (incr < 0) {
// not reached
for(reg=7; reg>=0; reg--) {
uae_u32 wrd1, wrd2, wrd3;
if( list & 0x80 ) {
ad -= 4;
wrd3 = get_long (ad);
ad -= 4;
wrd2 = get_long (ad);
ad -= 4;
wrd1 = get_long (ad);
// FPU registers[reg] = make_extended(wrd1, wrd2, wrd3);
make_extended_no_normalize (wrd1, wrd2, wrd3, FPU registers[reg]);
}
list <<= 1;
}
}
else {
for(reg=0; reg<8; reg++) {
uae_u32 wrd1, wrd2, wrd3;
if( list & 0x80 ) {
wrd1 = get_long (ad);
ad += 4;
wrd2 = get_long (ad);
ad += 4;
wrd3 = get_long (ad);
ad += 4;
// FPU registers[reg] = make_extended(wrd1, wrd2, wrd3);
make_extended_no_normalize (wrd1, wrd2, wrd3, FPU registers[reg]);
}
list <<= 1;
}
}
if ((opcode & 0x38) == 0x18) // post-increment?
m68k_areg (regs, opcode & 7) = ad;
if ((opcode & 0x38) == 0x20) // pre-decrement?
m68k_areg (regs, opcode & 7) = ad;
}
dump_registers( "END ");
return;
}
case 0:
case 2:
reg = (extra >> 7) & 7;
if ((extra & 0xfc00) == 0x5c00) {
fpu_debug(("FMOVECR memory->FPP\n"));
switch (extra & 0x7f) {
case 0x00:
// FPU registers[reg] = 4.0 * atan(1.0);
FPU registers[reg] = 3.1415926535897932384626433832795;
fpu_debug(("FP const: Pi\n"));
break;
case 0x0b:
// FPU registers[reg] = log10 (2.0);
FPU registers[reg] = 0.30102999566398119521373889472449;
fpu_debug(("FP const: Log 10 (2)\n"));
break;
case 0x0c:
// FPU registers[reg] = exp (1.0);
FPU registers[reg] = 2.7182818284590452353602874713527;
fpu_debug(("FP const: e\n"));
break;
case 0x0d:
// FPU registers[reg] = log (exp (1.0)) / log (2.0);
FPU registers[reg] = 1.4426950408889634073599246810019;
fpu_debug(("FP const: Log 2 (e)\n"));
break;
case 0x0e:
// FPU registers[reg] = log (exp (1.0)) / log (10.0);
FPU registers[reg] = 0.43429448190325182765112891891661;
fpu_debug(("FP const: Log 10 (e)\n"));
break;
case 0x0f:
FPU registers[reg] = 0.0;
fpu_debug(("FP const: zero\n"));
break;
case 0x30:
// FPU registers[reg] = log (2.0);
FPU registers[reg] = 0.69314718055994530941723212145818;
fpu_debug(("FP const: ln(2)\n"));
break;
case 0x31:
// FPU registers[reg] = log (10.0);
FPU registers[reg] = 2.3025850929940456840179914546844;
fpu_debug(("FP const: ln(10)\n"));
break;
case 0x32:
// ??
FPU registers[reg] = 1.0e0;
fpu_debug(("FP const: 1.0e0\n"));
break;
case 0x33:
FPU registers[reg] = 1.0e1;
fpu_debug(("FP const: 1.0e1\n"));
break;
case 0x34:
FPU registers[reg] = 1.0e2;
fpu_debug(("FP const: 1.0e2\n"));
break;
case 0x35:
FPU registers[reg] = 1.0e4;
fpu_debug(("FP const: 1.0e4\n"));
break;
case 0x36:
FPU registers[reg] = 1.0e8;
fpu_debug(("FP const: 1.0e8\n"));
break;
case 0x37:
FPU registers[reg] = 1.0e16;
fpu_debug(("FP const: 1.0e16\n"));
break;
case 0x38:
FPU registers[reg] = 1.0e32;
fpu_debug(("FP const: 1.0e32\n"));
break;
case 0x39:
FPU registers[reg] = 1.0e64;
fpu_debug(("FP const: 1.0e64\n"));
break;
case 0x3a:
FPU registers[reg] = 1.0e128;
fpu_debug(("FP const: 1.0e128\n"));
break;
case 0x3b:
FPU registers[reg] = 1.0e256;
fpu_debug(("FP const: 1.0e256\n"));
break;
// Valid for 64 bits only (see fpu.cpp)
#if 0
case 0x3c:
FPU registers[reg] = 1.0e512;
fpu_debug(("FP const: 1.0e512\n"));
break;
case 0x3d:
FPU registers[reg] = 1.0e1024;
fpu_debug(("FP const: 1.0e1024\n"));
break;
case 0x3e:
FPU registers[reg] = 1.0e2048;
fpu_debug(("FP const: 1.0e2048\n"));
break;
case 0x3f:
FPU registers[reg] = 1.0e4096;
fpu_debug(("FP const: 1.0e4096\n"));
break;
#endif
default:
m68k_setpc (m68k_getpc () - 4);
op_illg (opcode);
break;
}
// these *do* affect the status reg
make_fpsr(FPU registers[reg]);
dump_registers( "END ");
return;
}
if (get_fp_value (opcode, extra, src) == 0) {
m68k_setpc (m68k_getpc () - 4);
op_illg (opcode);
dump_registers( "END ");
return;
}
fpu_debug(("returned from get_fp_value m68k_getpc()=%X\n",m68k_getpc()));
#if 0 // MJ added, not tested now
if (FPU is_integral) {
// 68040-specific operations
switch (extra & 0x7f) {
case 0x40: /* FSMOVE */
fpu_debug(("FSMOVE %.04f\n",(double)src));
FPU registers[reg] = (float)src;
make_fpsr(FPU registers[reg]);
break;
case 0x44: /* FDMOVE */
fpu_debug(("FDMOVE %.04f\n",(double)src));
FPU registers[reg] = (double)src;
make_fpsr(FPU registers[reg]);
break;
case 0x41: /* FSSQRT */
fpu_debug(("FSQRT %.04f\n",(double)src));
FPU registers[reg] = (float)sqrt (src);
make_fpsr(FPU registers[reg]);
break;
case 0x45: /* FDSQRT */
fpu_debug(("FSQRT %.04f\n",(double)src));
FPU registers[reg] = (double)sqrt (src);
make_fpsr(FPU registers[reg]);
break;
case 0x58: /* FSABS */
fpu_debug(("FSABS %.04f\n",(double)src));
FPU registers[reg] = (float)fabs(src);
make_fpsr(FPU registers[reg]);
break;
case 0x5c: /* FDABS */
fpu_debug(("FDABS %.04f\n",(double)src));
FPU registers[reg] = (double)fabs(src);
make_fpsr(FPU registers[reg]);
break;
case 0x5a: /* FSNEG */
fpu_debug(("FSNEG %.04f\n",(double)src));
FPU registers[reg] = (float)-src;
make_fpsr(FPU registers[reg]);
break;
case 0x5e: /* FDNEG */
fpu_debug(("FDNEG %.04f\n",(double)src));
FPU registers[reg] = (double)-src;
make_fpsr(FPU registers[reg]);
break;
case 0x60: /* FSDIV */
fpu_debug(("FSDIV %.04f\n",(double)src));
FPU registers[reg] = (float)(FPU registers[reg] / src);
make_fpsr(FPU registers[reg]);
break;
case 0x64: /* FDDIV */
fpu_debug(("FDDIV %.04f\n",(double)src));
FPU registers[reg] = (double)(FPU registers[reg] / src);
make_fpsr(FPU registers[reg]);
break;
case 0x62: /* FSADD */
fpu_debug(("FSADD %.04f\n",(double)src));
FPU registers[reg] = (float)(FPU registers[reg] + src);
make_fpsr(FPU registers[reg]);
break;
case 0x66: /* FDADD */
fpu_debug(("FDADD %.04f\n",(double)src));
FPU registers[reg] = (double)(FPU registers[reg] + src);
make_fpsr(FPU registers[reg]);
break;
case 0x68: /* FSSUB */
fpu_debug(("FSSUB %.04f\n",(double)src));
FPU registers[reg] = (float)(FPU registers[reg] - src);
make_fpsr(FPU registers[reg]);
break;
case 0x6c: /* FDSUB */
fpu_debug(("FDSUB %.04f\n",(double)src));
FPU registers[reg] = (double)(FPU registers[reg] - src);
make_fpsr(FPU registers[reg]);
break;
case 0x63: /* FSMUL */
case 0x67: /* FDMUL */
get_dest_flags(FPU registers[reg]);
get_source_flags(src);
if(fl_dest.in_range && fl_source.in_range) {
if ((extra & 0x7f) == 0x63)
FPU registers[reg] = (float)(FPU registers[reg] * src);
else
FPU registers[reg] = (double)(FPU registers[reg] * src);
}
else if (fl_dest.nan || fl_source.nan ||
fl_dest.zero && fl_source.infinity ||
fl_dest.infinity && fl_source.zero ) {
make_nan( FPU registers[reg], fl_dest.negative );
}
else if (fl_dest.zero || fl_source.zero ) {
make_zero(FPU registers[reg], fl_dest.negative != fl_source.negative);
}
else {
make_inf(FPU registers[reg], fl_dest.negative != fl_source.negative);
}
make_fpsr(FPU registers[reg]);
break;
default:
// Continue decode-execute 6888x instructions below
goto process_6888x_instructions;
}
fpu_debug(("END m68k_getpc()=%X\n",m68k_getpc()));
dump_registers( "END ");
return;
}
process_6888x_instructions:
#endif
switch (extra & 0x7f) {
case 0x00: /* FMOVE */
fpu_debug(("FMOVE %.04f\n",(double)src));
FPU registers[reg] = src;
// <ea> -> reg DOES affect the status reg
make_fpsr(FPU registers[reg]);
break;
case 0x01: /* FINT */
fpu_debug(("FINT %.04f\n",(double)src));
// FPU registers[reg] = (int) (src + 0.5);
// FIXME: use native rounding mode flags
switch (get_fpcr() & FPCR_ROUNDING_MODE) {
case FPCR_ROUND_ZERO:
FPU registers[reg] = round_to_zero(src);
break;
case FPCR_ROUND_MINF:
FPU registers[reg] = floor(src);
break;
case FPCR_ROUND_NEAR:
FPU registers[reg] = round_to_nearest(src);
break;
case FPCR_ROUND_PINF:
FPU registers[reg] = ceil(src);
break;
}
make_fpsr(FPU registers[reg]);
break;
case 0x02: /* FSINH */
fpu_debug(("FSINH %.04f\n",(double)src));
FPU registers[reg] = sinh (src);
make_fpsr(FPU registers[reg]);
break;
case 0x03: /* FINTRZ */
fpu_debug(("FINTRZ %.04f\n",(double)src));
// FPU registers[reg] = (int) src;
FPU registers[reg] = round_to_zero(src);
make_fpsr(FPU registers[reg]);
break;
case 0x04: /* FSQRT */
fpu_debug(("FSQRT %.04f\n",(double)src));
FPU registers[reg] = sqrt (src);
make_fpsr(FPU registers[reg]);
break;
case 0x06: /* FLOGNP1 */
fpu_debug(("FLOGNP1 %.04f\n",(double)src));
FPU registers[reg] = log (src + 1.0);
make_fpsr(FPU registers[reg]);
break;
case 0x08: /* FETOXM1 */
fpu_debug(("FETOXM1 %.04f\n",(double)src));
FPU registers[reg] = exp (src) - 1.0;
make_fpsr(FPU registers[reg]);
break;
case 0x09: /* FTANH */
fpu_debug(("FTANH %.04f\n",(double)src));
FPU registers[reg] = tanh (src);
make_fpsr(FPU registers[reg]);
break;
case 0x0a: /* FATAN */
fpu_debug(("FATAN %.04f\n",(double)src));
FPU registers[reg] = atan (src);
make_fpsr(FPU registers[reg]);
break;
case 0x0c: /* FASIN */
fpu_debug(("FASIN %.04f\n",(double)src));
FPU registers[reg] = asin (src);
make_fpsr(FPU registers[reg]);
break;
case 0x0d: /* FATANH */
fpu_debug(("FATANH %.04f\n",(double)src));
#if HAVE_ATANH
FPU registers[reg] = atanh (src);
#else
/* The BeBox doesn't have atanh, and it isn't in the HPUX libm either */
FPU registers[reg] = log ((1 + src) / (1 - src)) / 2;
#endif
make_fpsr(FPU registers[reg]);
break;
case 0x0e: /* FSIN */
fpu_debug(("FSIN %.04f\n",(double)src));
FPU registers[reg] = sin (src);
make_fpsr(FPU registers[reg]);
break;
case 0x0f: /* FTAN */
fpu_debug(("FTAN %.04f\n",(double)src));
FPU registers[reg] = tan (src);
make_fpsr(FPU registers[reg]);
break;
case 0x10: /* FETOX */
fpu_debug(("FETOX %.04f\n",(double)src));
FPU registers[reg] = exp (src);
make_fpsr(FPU registers[reg]);
break;
case 0x11: /* FTWOTOX */
fpu_debug(("FTWOTOX %.04f\n",(double)src));
FPU registers[reg] = pow(2.0, src);
make_fpsr(FPU registers[reg]);
break;
case 0x12: /* FTENTOX */
fpu_debug(("FTENTOX %.04f\n",(double)src));
FPU registers[reg] = pow(10.0, src);
make_fpsr(FPU registers[reg]);
break;
case 0x14: /* FLOGN */
fpu_debug(("FLOGN %.04f\n",(double)src));
FPU registers[reg] = log (src);
make_fpsr(FPU registers[reg]);
break;
case 0x15: /* FLOG10 */
fpu_debug(("FLOG10 %.04f\n",(double)src));
FPU registers[reg] = log10 (src);
make_fpsr(FPU registers[reg]);
break;
case 0x16: /* FLOG2 */
fpu_debug(("FLOG2 %.04f\n",(double)src));
FPU registers[reg] = log (src) / log (2.0);
make_fpsr(FPU registers[reg]);
break;
case 0x18: /* FABS */
case 0x58: /* single precision rounding */
case 0x5C: /* double precision rounding */
fpu_debug(("FABS %.04f\n",(double)src));
FPU registers[reg] = src < 0 ? -src : src;
make_fpsr(FPU registers[reg]);
break;
case 0x19: /* FCOSH */
fpu_debug(("FCOSH %.04f\n",(double)src));
FPU registers[reg] = cosh(src);
make_fpsr(FPU registers[reg]);
break;
case 0x1a: /* FNEG */
fpu_debug(("FNEG %.04f\n",(double)src));
if (iszero(src))
make_zero(FPU registers[reg], !isneg(src));
else
FPU registers[reg] = -src;
make_fpsr(FPU registers[reg]);
break;
case 0x1c: /* FACOS */
fpu_debug(("FACOS %.04f\n",(double)src));
FPU registers[reg] = acos(src);
make_fpsr(FPU registers[reg]);
break;
case 0x1d: /* FCOS */
fpu_debug(("FCOS %.04f\n",(double)src));
FPU registers[reg] = cos(src);
make_fpsr(FPU registers[reg]);
break;
case 0x1e: /* FGETEXP */
fpu_debug(("FGETEXP %.04f\n",(double)src));
#if FPU_HAVE_IEEE_DOUBLE
if( isinf(src) ) {
make_nan( FPU registers[reg], isneg(src) );
}
else {
FPU registers[reg] = fast_fgetexp( src );
}
#else
if(src == 0) {
FPU registers[reg] = (fpu_register)0;
}
else {
int expon;
frexp (src, &expon);
FPU registers[reg] = (fpu_register) (expon - 1);
}
#endif
make_fpsr(FPU registers[reg]);
break;
case 0x1f: /* FGETMAN */
fpu_debug(("FGETMAN %.04f\n",(double)src));
#if FPU_HAVE_IEEE_DOUBLE
if( src == 0 ) {
FPU registers[reg] = 0;
}
else if( isinf(src) ) {
make_nan( FPU registers[reg], isneg(src) );
}
else {
FPU registers[reg] = src;
fast_remove_exponent( FPU registers[reg] );
}
#else
{
int expon;
FPU registers[reg] = frexp (src, &expon) * 2.0;
}
#endif
make_fpsr(FPU registers[reg]);
break;
case 0x20: /* FDIV */
fpu_debug(("FDIV %.04f\n",(double)src));
FPU registers[reg] /= src;
make_fpsr(FPU registers[reg]);
break;
case 0x21: /* FMOD */
fpu_debug(("FMOD %.04f\n",(double)src));
// FPU registers[reg] = FPU registers[reg] - (fpu_register) ((int) (FPU registers[reg] / src)) * src;
{
fpu_register quot = round_to_zero(FPU registers[reg] / src);
#if FPU_HAVE_IEEE_DOUBLE
uae_u32 sign = get_quotient_sign(FPU registers[reg],src);
#endif
FPU registers[reg] = FPU registers[reg] - quot * src;
make_fpsr(FPU registers[reg]);
#if FPU_HAVE_IEEE_DOUBLE
make_quotient(quot, sign);
#endif
}
break;
case 0x22: /* FADD */
case 0x62: /* single */
case 0x66: /* double */
fpu_debug(("FADD %.04f\n",(double)src));
FPU registers[reg] += src;
make_fpsr(FPU registers[reg]);
break;
case 0x23: /* FMUL */
fpu_debug(("FMUL %.04f\n",(double)src));
#if FPU_HAVE_IEEE_DOUBLE
get_dest_flags(FPU registers[reg]);
get_source_flags(src);
if(fl_dest.in_range && fl_source.in_range) {
FPU registers[reg] *= src;
}
else if (fl_dest.nan || fl_source.nan ||
(fl_dest.zero && fl_source.infinity) ||
(fl_dest.infinity && fl_source.zero) ) {
make_nan( FPU registers[reg], fl_dest.negative );
}
else if (fl_dest.zero || fl_source.zero ) {
make_zero(FPU registers[reg], fl_dest.negative != fl_source.negative);
}
else {
make_inf(FPU registers[reg], fl_dest.negative != fl_source.negative);
}
#else
fpu_debug(("FMUL %.04f\n",(double)src));
FPU registers[reg] *= src;
#endif
make_fpsr(FPU registers[reg]);
break;
case 0x24: /* FSGLDIV */
fpu_debug(("FSGLDIV %.04f\n",(double)src));
// TODO: round to float.
FPU registers[reg] /= src;
make_fpsr(FPU registers[reg]);
break;
case 0x25: /* FREM */
fpu_debug(("FREM %.04f\n",(double)src));
// FPU registers[reg] = FPU registers[reg] - (double) ((int) (FPU registers[reg] / src + 0.5)) * src;
{
fpu_register quot = round_to_nearest(FPU registers[reg] / src);
#if FPU_HAVE_IEEE_DOUBLE
uae_u32 sign = get_quotient_sign(FPU registers[reg],src);
#endif
FPU registers[reg] = FPU registers[reg] - quot * src;
make_fpsr(FPU registers[reg]);
#if FPU_HAVE_IEEE_DOUBLE
make_quotient(quot,sign);
#endif
}
break;
case 0x26: /* FSCALE */
fpu_debug(("FSCALE %.04f\n",(double)src));
// TODO:
// Overflow, underflow
#if FPU_HAVE_IEEE_DOUBLE
if( isinf(src) ) {
make_nan( FPU registers[reg], isneg(src) );
}
else {
// When the absolute value of the source operand is >= 2^14,
// an overflow or underflow always results.
// Here (int) cast is okay.
fast_scale( FPU registers[reg], (int)round_to_zero(src) );
}
#else
if (src != 0) { // Manual says: src==0 -> FPn
FPU registers[reg] *= exp (log (2.0) * src);
}
#endif
make_fpsr(FPU registers[reg]);
break;
case 0x27: /* FSGLMUL */
fpu_debug(("FSGLMUL %.04f\n",(double)src));
FPU registers[reg] *= src;
make_fpsr(FPU registers[reg]);
break;
case 0x28: /* FSUB */
fpu_debug(("FSUB %.04f\n",(double)src));
FPU registers[reg] -= src;
make_fpsr(FPU registers[reg]);
break;
case 0x30: /* FSINCOS */
case 0x31:
case 0x32:
case 0x33:
case 0x34:
case 0x35:
case 0x36:
case 0x37:
fpu_debug(("FSINCOS %.04f\n",(double)src));
// Cosine must be calculated first if same register
FPU registers[extra & 7] = cos(src);
FPU registers[reg] = sin (src);
// Set FPU fpsr according to the sine result
make_fpsr(FPU registers[reg]);
break;
case 0x38: /* FCMP */
fpu_debug(("FCMP %.04f\n",(double)src));
// The infinity bit is always cleared by the FCMP
// instruction since it is not used by any of the
// conditional predicate equations.
#if FPU_HAVE_IEEE_DOUBLE
if( isinf(src) ) {
if( isneg(src) ) {
// negative infinity
if( isinf(FPU registers[reg]) && isneg(FPU registers[reg]) ) {
// Zero, Negative
FPU fpsr.condition_codes = NATIVE_FFLAG_ZERO | NATIVE_FFLAG_NEGATIVE;
fpu_debug(("-INF cmp -INF -> NZ\n"));
}
else {
// None
FPU fpsr.condition_codes = 0;
fpu_debug(("x cmp -INF -> None\n"));
}
}
else {
// positive infinity
if( isinf(FPU registers[reg]) && !isneg(FPU registers[reg]) ) {
// Zero
FPU fpsr.condition_codes = NATIVE_FFLAG_ZERO;
fpu_debug(("+INF cmp +INF -> Z\n"));
}
else {
// Negative
FPU fpsr.condition_codes = NATIVE_FFLAG_NEGATIVE;
fpu_debug(("X cmp +INF -> N\n"));
}
}
}
else {
fpu_register tmp = FPU registers[reg] - src;
FPU fpsr.condition_codes
= (iszero(tmp) ? NATIVE_FFLAG_ZERO : 0)
| (isneg(tmp) ? NATIVE_FFLAG_NEGATIVE : 0)
;
}
#else
{
fpu_register tmp = FPU registers[reg] - src;
make_fpsr(tmp);
}
#endif
break;
case 0x3a: /* FTST */
fpu_debug(("FTST %.04f\n",(double)src));
// make_fpsr(FPU registers[reg]);
make_fpsr(src);
break;
default:
fpu_debug(("ILLEGAL F OP %X\n",opcode));
m68k_setpc (m68k_getpc () - 4);
op_illg (opcode);
break;
}
fpu_debug(("END m68k_getpc()=%X\n",m68k_getpc()));
dump_registers( "END ");
return;
}
fpu_debug(("ILLEGAL F OP 2 %X\n",opcode));
m68k_setpc (m68k_getpc () - 4);
op_illg (opcode);
dump_registers( "END ");
}
void fpu_set_fpsr(uae_u32 new_fpsr)
{
set_fpsr(new_fpsr);
}
uae_u32 fpu_get_fpsr(void)
{
return get_fpsr();
}
void fpu_set_fpcr(uae_u32 new_fpcr)
{
set_fpcr(new_fpcr);
}
uae_u32 fpu_get_fpcr(void)
{
return get_fpcr();
}
/* -------------------------- Initialization -------------------------- */
void FFPU fpu_init (bool integral_68040)
{
fpu_debug(("fpu_init\n"));
static bool initialized_lookup_tables = false;
if (!initialized_lookup_tables) {
fpu_init_native_fflags();
fpu_init_native_exceptions();
fpu_init_native_accrued_exceptions();
initialized_lookup_tables = true;
}
FPU is_integral = integral_68040;
set_fpcr(0);
set_fpsr(0);
FPU instruction_address = 0;
}
void FFPU fpu_exit (void)
{
fpu_debug(("fpu_exit\n"));
}
void FFPU fpu_reset (void)
{
fpu_debug(("fpu_reset\n"));
fpu_exit();
fpu_init(FPU is_integral);
}