macemu/SheepShaver/src/Unix/main_unix.cpp

1806 lines
48 KiB
C++

/*
* main_unix.cpp - Emulation core, Unix implementation
*
* SheepShaver (C) 1997-2002 Christian Bauer and Marc Hellwig
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/*
* NOTES:
*
* See main_beos.cpp for a description of the three operating modes.
*
* In addition to that, we have to handle the fact that the MacOS ABI
* is slightly different from the SysV ABI used by Linux:
* - Stack frames are different (e.g. LR is stored in 8(r1) under
* MacOS, but in 4(r1) under Linux)
* - There is no TOC under Linux; r2 is free for the user
* - r13 is used as a small data pointer under Linux (but appearently
* it is not used this way? To be sure, we specify -msdata=none
* in the Makefile)
* - As there is no TOC, there are also no TVECTs under Linux;
* function pointers point directly to the function code
* The Execute*() functions have to account for this. Additionally, we
* cannot simply call MacOS functions by getting their TVECT and jumping
* to it. Such calls are done via the call_macos*() functions in
* asm_linux.S that create a MacOS stack frame, load the TOC pointer
* and put the arguments into the right registers.
*
* As on the BeOS, we have to specify an alternate signal stack because
* interrupts (and, under Linux, Low Memory accesses) may occur when r1
* is pointing to the Kernel Data or to Low Memory. There is one
* problem, however, due to the alternate signal stack being global to
* all signal handlers. Consider the following scenario:
* - The main thread is executing some native PPC MacOS code in
* MODE_NATIVE, running on the MacOS stack (somewhere in the Mac RAM).
* - A SIGUSR2 interrupt occurs. The kernel switches to the signal
* stack and starts executing the SIGUSR2 signal handler.
* - The signal handler sees the MODE_NATIVE and calls ppc_interrupt()
* to handle a native interrupt.
* - ppc_interrupt() sets r1 to point to the Kernel Data and jumps to
* the nanokernel.
* - The nanokernel accesses a Low Memory global (most likely one of
* the XLMs), a SIGSEGV occurs.
* - The kernel sees that r1 does not point to the signal stack and
* switches to the signal stack again, thus overwriting the data that
* the SIGUSR2 handler put there.
* The same problem arises when calling ExecutePPC() inside the MODE_EMUL_OP
* interrupt handler.
*
* The solution is to set the signal stack to a second, "extra" stack
* inside the SIGUSR2 handler before entering the Nanokernel or calling
* ExecutePPC (or any function that might cause a mode switch). The signal
* stack is restored before exiting the SIGUSR2 handler.
*
* TODO:
* check if SIGSEGV handler works for all registers (including FP!)
*/
#include <unistd.h>
#include <fcntl.h>
#include <time.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <pthread.h>
#include <sys/mman.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <signal.h>
#include "sysdeps.h"
#include "main.h"
#include "version.h"
#include "prefs.h"
#include "prefs_editor.h"
#include "cpu_emulation.h"
#include "emul_op.h"
#include "xlowmem.h"
#include "xpram.h"
#include "timer.h"
#include "adb.h"
#include "sony.h"
#include "disk.h"
#include "cdrom.h"
#include "scsi.h"
#include "video.h"
#include "audio.h"
#include "ether.h"
#include "serial.h"
#include "clip.h"
#include "extfs.h"
#include "sys.h"
#include "macos_util.h"
#include "rom_patches.h"
#include "user_strings.h"
#define DEBUG 0
#include "debug.h"
#include <X11/Xlib.h>
#ifdef ENABLE_GTK
#include <gtk/gtk.h>
#endif
#ifdef ENABLE_XF86_DGA
#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <X11/extensions/xf86dga.h>
#endif
#ifdef ENABLE_MON
#include "mon.h"
#endif
// Enable Execute68k() safety checks?
#define SAFE_EXEC_68K 0
// Interrupts in EMUL_OP mode?
#define INTERRUPTS_IN_EMUL_OP_MODE 1
// Interrupts in native mode?
#define INTERRUPTS_IN_NATIVE_MODE 1
// Constants
const char ROM_FILE_NAME[] = "ROM";
const char ROM_FILE_NAME2[] = "Mac OS ROM";
const uint32 ROM_AREA_SIZE = 0x500000; // Size of ROM area
const uint32 ROM_END = ROM_BASE + ROM_SIZE; // End of ROM
const uint32 KERNEL_DATA_BASE = 0x68ffe000; // Address of Kernel Data
const uint32 KERNEL_DATA2_BASE = 0x5fffe000; // Alternate address of Kernel Data
const uint32 KERNEL_AREA_SIZE = 0x2000; // Size of Kernel Data area
const uint32 SIG_STACK_SIZE = 0x10000; // Size of signal stack
// 68k Emulator Data
struct EmulatorData {
uint32 v[0x400];
};
// Kernel Data
struct KernelData {
uint32 v[0x400];
EmulatorData ed;
};
#if !EMULATED_PPC
// Structure in which registers are saved in a signal handler;
// sigcontext->regs points to it
// (see arch/ppc/kernel/signal.c)
typedef struct {
uint32 u[4];
} __attribute((aligned(16))) vector128;
#include <linux/elf.h>
struct sigregs {
elf_gregset_t gp_regs; // Identical to pt_regs
double fp_regs[ELF_NFPREG]; // f0..f31 and fpsrc
//more (uninteresting) stuff following here
};
#endif
// Global variables (exported)
#if !EMULATED_PPC
void *TOC; // Small data pointer (r13)
#endif
uint32 RAMBase; // Base address of Mac RAM
uint32 RAMSize; // Size of Mac RAM
uint32 KernelDataAddr; // Address of Kernel Data
uint32 BootGlobsAddr; // Address of BootGlobs structure at top of Mac RAM
uint32 PVR; // Theoretical PVR
int64 CPUClockSpeed; // Processor clock speed (Hz)
int64 BusClockSpeed; // Bus clock speed (Hz)
// Global variables
static char *x_display_name = NULL; // X11 display name
Display *x_display = NULL; // X11 display handle
static int zero_fd = 0; // FD of /dev/zero
static bool lm_area_mapped = false; // Flag: Low Memory area mmap()ped
static int kernel_area = -1; // SHM ID of Kernel Data area
static bool rom_area_mapped = false; // Flag: Mac ROM mmap()ped
static bool ram_area_mapped = false; // Flag: Mac RAM mmap()ped
static void *mmap_RAMBase = NULL; // Base address of mmap()ed RAM area
static KernelData *kernel_data; // Pointer to Kernel Data
static EmulatorData *emulator_data;
static uint8 last_xpram[XPRAM_SIZE]; // Buffer for monitoring XPRAM changes
static bool nvram_thread_active = false; // Flag: NVRAM watchdog installed
static pthread_t nvram_thread; // NVRAM watchdog
static bool tick_thread_active = false; // Flag: MacOS thread installed
static pthread_t tick_thread; // 60Hz thread
static pthread_t emul_thread; // MacOS thread
static bool ready_for_signals = false; // Handler installed, signals can be sent
static int64 num_segv = 0; // Number of handled SEGV signals
#if !EMULATED_PPC
static struct sigaction sigusr2_action; // Interrupt signal (of emulator thread)
static struct sigaction sigsegv_action; // Data access exception signal (of emulator thread)
static struct sigaction sigill_action; // Illegal instruction signal (of emulator thread)
static void *sig_stack = NULL; // Stack for signal handlers
static void *extra_stack = NULL; // Stack for SIGSEGV inside interrupt handler
static bool emul_thread_fatal = false; // Flag: MacOS thread crashed, tick thread shall dump debug output
static sigregs sigsegv_regs; // Register dump when crashed
#endif
// Prototypes
static void Quit(void);
static void *emul_func(void *arg);
static void *nvram_func(void *arg);
static void *tick_func(void *arg);
#if !EMULATED_PPC
static void sigusr2_handler(int sig, sigcontext_struct *sc);
static void sigsegv_handler(int sig, sigcontext_struct *sc);
static void sigill_handler(int sig, sigcontext_struct *sc);
#endif
// From asm_linux.S
#if EMULATED_PPC
extern int atomic_add(int *var, int v);
extern int atomic_and(int *var, int v);
extern int atomic_or(int *var, int v);
#else
extern "C" void *get_toc(void);
extern "C" void *get_sp(void);
extern "C" void flush_icache_range(void *start, void *end);
extern "C" void jump_to_rom(uint32 entry, uint32 context);
extern "C" void quit_emulator(void);
extern "C" void execute_68k(uint32 pc, M68kRegisters *r);
extern "C" void ppc_interrupt(uint32 entry, uint32 kernel_data);
extern "C" int atomic_add(int *var, int v);
extern "C" int atomic_and(int *var, int v);
extern "C" int atomic_or(int *var, int v);
extern void paranoia_check(void);
#endif
// Decode LZSS data
static void decode_lzss(const uint8 *src, uint8 *dest, int size)
{
char dict[0x1000];
int run_mask = 0, dict_idx = 0xfee;
for (;;) {
if (run_mask < 0x100) {
// Start new run
if (--size < 0)
break;
run_mask = *src++ | 0xff00;
}
bool bit = run_mask & 1;
run_mask >>= 1;
if (bit) {
// Verbatim copy
if (--size < 0)
break;
int c = *src++;
dict[dict_idx++] = c;
*dest++ = c;
dict_idx &= 0xfff;
} else {
// Copy from dictionary
if (--size < 0)
break;
int idx = *src++;
if (--size < 0)
break;
int cnt = *src++;
idx |= (cnt << 4) & 0xf00;
cnt = (cnt & 0x0f) + 3;
while (cnt--) {
char c = dict[idx++];
dict[dict_idx++] = c;
*dest++ = c;
idx &= 0xfff;
dict_idx &= 0xfff;
}
}
}
}
/*
* Main program
*/
static void usage(const char *prg_name)
{
printf("Usage: %s [OPTION...]\n", prg_name);
printf("\nUnix options:\n");
printf(" --display STRING\n X display to use\n");
PrefsPrintUsage();
exit(0);
}
int main(int argc, char **argv)
{
char str[256];
uint32 *boot_globs;
int16 i16;
int drive, driver;
int rom_fd;
FILE *proc_file;
const char *rom_path;
uint32 rom_size, actual;
uint8 *rom_tmp;
time_t now, expire;
// Initialize variables
RAMBase = 0;
mmap_RAMBase = NULL;
tzset();
// Print some info
printf(GetString(STR_ABOUT_TEXT1), VERSION_MAJOR, VERSION_MINOR);
printf(" %s\n", GetString(STR_ABOUT_TEXT2));
#if !EMULATED_PPC
// Get TOC pointer
TOC = get_toc();
#endif
#ifdef ENABLE_GTK
// Init GTK
gtk_set_locale();
gtk_init(&argc, &argv);
#endif
// Read preferences
PrefsInit(argc, argv);
// Parse command line arguments
for (int i=1; i<argc; i++) {
if (strcmp(argv[i], "--help") == 0) {
usage(argv[0]);
} else if (strcmp(argv[i], "--display") == 0) {
i++;
if (i < argc)
x_display_name = strdup(argv[i]);
} else if (argv[i][0] == '-') {
fprintf(stderr, "Unrecognized option '%s'\n", argv[i]);
usage(argv[0]);
}
}
// Open display
x_display = XOpenDisplay(x_display_name);
if (x_display == NULL) {
char str[256];
sprintf(str, GetString(STR_NO_XSERVER_ERR), XDisplayName(x_display_name));
ErrorAlert(str);
goto quit;
}
#if defined(ENABLE_XF86_DGA) && !defined(ENABLE_MON)
// Fork out, so we can return from fullscreen mode when things get ugly
XF86DGAForkApp(DefaultScreen(x_display));
#endif
#ifdef ENABLE_MON
// Initialize mon
mon_init();
#endif
// Get system info
PVR = 0x00040000; // Default: 604
CPUClockSpeed = 100000000; // Default: 100MHz
BusClockSpeed = 100000000; // Default: 100MHz
#if !EMULATED_PPC
proc_file = fopen("/proc/cpuinfo", "r");
if (proc_file) {
char line[256];
while(fgets(line, 255, proc_file)) {
// Read line
int len = strlen(line);
if (len == 0)
continue;
line[len-1] = 0;
// Parse line
int i;
char value[256];
if (sscanf(line, "cpu : %s", value) == 1) {
if (strcmp(value, "601") == 0)
PVR = 0x00010000;
else if (strcmp(value, "603") == 0)
PVR = 0x00030000;
else if (strcmp(value, "604") == 0)
PVR = 0x00040000;
else if (strcmp(value, "603e") == 0)
PVR = 0x00060000;
else if (strcmp(value, "603ev") == 0)
PVR = 0x00070000;
else if (strcmp(value, "604e") == 0)
PVR = 0x00090000;
else if (strcmp(value, "604ev5") == 0)
PVR = 0x000a0000;
else if (strcmp(value, "750") == 0)
PVR = 0x00080000;
else if (strcmp(value, "821") == 0)
PVR = 0x00320000;
else if (strcmp(value, "860") == 0)
PVR = 0x00500000;
else
printf("WARNING: Unknown CPU type '%s', assuming 604\n", value);
}
if (sscanf(line, "clock : %dMHz", &i) == 1)
CPUClockSpeed = BusClockSpeed = i * 1000000;
}
fclose(proc_file);
} else {
sprintf(str, GetString(STR_PROC_CPUINFO_WARN), strerror(errno));
WarningAlert(str);
}
#endif
D(bug("PVR: %08x (assumed)\n", PVR));
// Init system routines
SysInit();
// Show preferences editor
if (!PrefsFindBool("nogui"))
if (!PrefsEditor())
goto quit;
#if !EMULATED_PPC
// Check some things
paranoia_check();
#endif
// Open /dev/zero
zero_fd = open("/dev/zero", O_RDWR);
if (zero_fd < 0) {
sprintf(str, GetString(STR_NO_DEV_ZERO_ERR), strerror(errno));
ErrorAlert(str);
goto quit;
}
// Create Low Memory area (0x0000..0x3000)
if (mmap((char *)0x0000, 0x3000, PROT_READ | PROT_WRITE, MAP_FIXED | MAP_PRIVATE, zero_fd, 0) == (void *)-1) {
sprintf(str, GetString(STR_LOW_MEM_MMAP_ERR), strerror(errno));
ErrorAlert(str);
goto quit;
}
lm_area_mapped = true;
// Create areas for Kernel Data
kernel_area = shmget(IPC_PRIVATE, KERNEL_AREA_SIZE, 0600);
if (kernel_area == -1) {
sprintf(str, GetString(STR_KD_SHMGET_ERR), strerror(errno));
ErrorAlert(str);
goto quit;
}
if (shmat(kernel_area, (void *)KERNEL_DATA_BASE, 0) < 0) {
sprintf(str, GetString(STR_KD_SHMAT_ERR), strerror(errno));
ErrorAlert(str);
goto quit;
}
if (shmat(kernel_area, (void *)KERNEL_DATA2_BASE, 0) < 0) {
sprintf(str, GetString(STR_KD2_SHMAT_ERR), strerror(errno));
ErrorAlert(str);
goto quit;
}
kernel_data = (KernelData *)0x68ffe000;
emulator_data = &kernel_data->ed;
KernelDataAddr = (uint32)kernel_data;
D(bug("Kernel Data at %p, Emulator Data at %p\n", kernel_data, emulator_data));
// Create area for Mac ROM
if (mmap((char *)ROM_BASE, ROM_AREA_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_FIXED | MAP_PRIVATE, zero_fd, 0) == (void *)-1) {
sprintf(str, GetString(STR_ROM_MMAP_ERR), strerror(errno));
ErrorAlert(str);
goto quit;
}
rom_area_mapped = true;
D(bug("ROM area at %08x\n", ROM_BASE));
// Create area for Mac RAM
RAMSize = PrefsFindInt32("ramsize");
if (RAMSize < 8*1024*1024) {
WarningAlert(GetString(STR_SMALL_RAM_WARN));
RAMSize = 8*1024*1024;
}
mmap_RAMBase = mmap((void *)0x20000000, RAMSize, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_FIXED | MAP_PRIVATE, zero_fd, 0);
if (mmap_RAMBase == (void *)-1) {
sprintf(str, GetString(STR_RAM_MMAP_ERR), strerror(errno));
ErrorAlert(str);
goto quit;
}
RAMBase = (uint32)mmap_RAMBase;
ram_area_mapped = true;
D(bug("RAM area at %08x\n", RAMBase));
if (RAMBase > ROM_BASE) {
ErrorAlert(GetString(STR_RAM_HIGHER_THAN_ROM_ERR));
goto quit;
}
// Load Mac ROM
rom_path = PrefsFindString("rom");
rom_fd = open(rom_path ? rom_path : ROM_FILE_NAME, O_RDONLY);
if (rom_fd < 0) {
rom_fd = open(rom_path ? rom_path : ROM_FILE_NAME2, O_RDONLY);
if (rom_fd < 0) {
ErrorAlert(GetString(STR_NO_ROM_FILE_ERR));
goto quit;
}
}
printf(GetString(STR_READING_ROM_FILE));
rom_size = lseek(rom_fd, 0, SEEK_END);
lseek(rom_fd, 0, SEEK_SET);
rom_tmp = new uint8[ROM_SIZE];
actual = read(rom_fd, (void *)rom_tmp, ROM_SIZE);
close(rom_fd);
if (actual == ROM_SIZE) {
// Plain ROM image
memcpy((void *)ROM_BASE, rom_tmp, ROM_SIZE);
delete[] rom_tmp;
} else {
if (strncmp((char *)rom_tmp, "<CHRP-BOOT>", 11) == 0) {
// CHRP compressed ROM image
D(bug("CHRP ROM image\n"));
uint32 lzss_offset, lzss_size;
char *s = strstr((char *)rom_tmp, "constant lzss-offset");
if (s == NULL) {
ErrorAlert(GetString(STR_ROM_SIZE_ERR));
goto quit;
}
s -= 7;
if (sscanf(s, "%06x", &lzss_offset) != 1) {
ErrorAlert(GetString(STR_ROM_SIZE_ERR));
goto quit;
}
s = strstr((char *)rom_tmp, "constant lzss-size");
if (s == NULL) {
ErrorAlert(GetString(STR_ROM_SIZE_ERR));
goto quit;
}
s -= 7;
if (sscanf(s, "%06x", &lzss_size) != 1) {
ErrorAlert(GetString(STR_ROM_SIZE_ERR));
goto quit;
}
D(bug("Offset of compressed data: %08x\n", lzss_offset));
D(bug("Size of compressed data: %08x\n", lzss_size));
D(bug("Uncompressing ROM...\n"));
decode_lzss(rom_tmp + lzss_offset, (uint8 *)ROM_BASE, lzss_size);
delete[] rom_tmp;
} else if (rom_size != 4*1024*1024) {
ErrorAlert(GetString(STR_ROM_SIZE_ERR));
goto quit;
} else {
ErrorAlert(GetString(STR_ROM_FILE_READ_ERR));
goto quit;
}
}
// Load NVRAM
XPRAMInit();
// Set boot volume
drive = PrefsFindInt32("bootdrive");
XPRAM[0x1378] = i16 >> 8;
XPRAM[0x1379] = i16 & 0xff;
driver = PrefsFindInt32("bootdriver");
XPRAM[0x137a] = i16 >> 8;
XPRAM[0x137b] = i16 & 0xff;
// Create BootGlobs at top of Mac memory
memset((void *)(RAMBase + RAMSize - 4096), 0, 4096);
BootGlobsAddr = RAMBase + RAMSize - 0x1c;
boot_globs = (uint32 *)BootGlobsAddr;
boot_globs[-5] = htonl(RAMBase + RAMSize); // MemTop
boot_globs[0] = htonl(RAMBase); // First RAM bank
boot_globs[1] = htonl(RAMSize);
boot_globs[2] = htonl((uint32)-1); // End of bank table
// Init drivers
SonyInit();
DiskInit();
CDROMInit();
SCSIInit();
// Init external file system
ExtFSInit();
// Init audio
AudioInit();
// Init network
EtherInit();
// Init serial ports
SerialInit();
// Init Time Manager
TimerInit();
// Init clipboard
ClipInit();
// Init video
if (!VideoInit())
goto quit;
// Install ROM patches
if (!PatchROM()) {
ErrorAlert(GetString(STR_UNSUPPORTED_ROM_TYPE_ERR));
goto quit;
}
// Clear caches (as we loaded and patched code) and write protect ROM
#if !EMULATED_PPC
MakeExecutable(0, (void *)ROM_BASE, ROM_AREA_SIZE);
#endif
mprotect((char *)ROM_BASE, ROM_AREA_SIZE, PROT_EXEC | PROT_READ);
// Initialize Kernel Data
memset(kernel_data, 0, sizeof(KernelData));
if (ROMType == ROMTYPE_NEWWORLD) {
static uint32 of_dev_tree[4] = {0, 0, 0, 0};
static uint8 vector_lookup_tbl[128];
static uint8 vector_mask_tbl[64];
memset((uint8 *)kernel_data + 0xb80, 0x3d, 0x80);
memset(vector_lookup_tbl, 0, 128);
memset(vector_mask_tbl, 0, 64);
kernel_data->v[0xb80 >> 2] = htonl(ROM_BASE);
kernel_data->v[0xb84 >> 2] = htonl((uint32)of_dev_tree); // OF device tree base
kernel_data->v[0xb90 >> 2] = htonl((uint32)vector_lookup_tbl);
kernel_data->v[0xb94 >> 2] = htonl((uint32)vector_mask_tbl);
kernel_data->v[0xb98 >> 2] = htonl(ROM_BASE); // OpenPIC base
kernel_data->v[0xbb0 >> 2] = htonl(0); // ADB base
kernel_data->v[0xc20 >> 2] = htonl(RAMSize);
kernel_data->v[0xc24 >> 2] = htonl(RAMSize);
kernel_data->v[0xc30 >> 2] = htonl(RAMSize);
kernel_data->v[0xc34 >> 2] = htonl(RAMSize);
kernel_data->v[0xc38 >> 2] = htonl(0x00010020);
kernel_data->v[0xc3c >> 2] = htonl(0x00200001);
kernel_data->v[0xc40 >> 2] = htonl(0x00010000);
kernel_data->v[0xc50 >> 2] = htonl(RAMBase);
kernel_data->v[0xc54 >> 2] = htonl(RAMSize);
kernel_data->v[0xf60 >> 2] = htonl(PVR);
kernel_data->v[0xf64 >> 2] = htonl(CPUClockSpeed);
kernel_data->v[0xf68 >> 2] = htonl(BusClockSpeed);
kernel_data->v[0xf6c >> 2] = htonl(CPUClockSpeed);
} else {
kernel_data->v[0xc80 >> 2] = htonl(RAMSize);
kernel_data->v[0xc84 >> 2] = htonl(RAMSize);
kernel_data->v[0xc90 >> 2] = htonl(RAMSize);
kernel_data->v[0xc94 >> 2] = htonl(RAMSize);
kernel_data->v[0xc98 >> 2] = htonl(0x00010020);
kernel_data->v[0xc9c >> 2] = htonl(0x00200001);
kernel_data->v[0xca0 >> 2] = htonl(0x00010000);
kernel_data->v[0xcb0 >> 2] = htonl(RAMBase);
kernel_data->v[0xcb4 >> 2] = htonl(RAMSize);
kernel_data->v[0xf80 >> 2] = htonl(PVR);
kernel_data->v[0xf84 >> 2] = htonl(CPUClockSpeed);
kernel_data->v[0xf88 >> 2] = htonl(BusClockSpeed);
kernel_data->v[0xf8c >> 2] = htonl(CPUClockSpeed);
}
// Initialize extra low memory
D(bug("Initializing Low Memory...\n"));
memset(NULL, 0, 0x3000);
WriteMacInt32(XLM_SIGNATURE, FOURCC('B','a','a','h')); // Signature to detect SheepShaver
WriteMacInt32(XLM_KERNEL_DATA, (uint32)kernel_data); // For trap replacement routines
WriteMacInt32(XLM_PVR, PVR); // Theoretical PVR
WriteMacInt32(XLM_BUS_CLOCK, BusClockSpeed); // For DriverServicesLib patch
WriteMacInt16(XLM_EXEC_RETURN_OPCODE, M68K_EXEC_RETURN); // For Execute68k() (RTS from the executed 68k code will jump here and end 68k mode)
#if !EMULATED_PPC
WriteMacInt32(XLM_TOC, (uint32)TOC); // TOC pointer of emulator
WriteMacInt32(XLM_ETHER_INIT, (uint32)InitStreamModule); // DLPI ethernet driver functions
WriteMacInt32(XLM_ETHER_TERM, (uint32)TerminateStreamModule);
WriteMacInt32(XLM_ETHER_OPEN, (uint32)ether_open);
WriteMacInt32(XLM_ETHER_CLOSE, (uint32)ether_close);
WriteMacInt32(XLM_ETHER_WPUT, (uint32)ether_wput);
WriteMacInt32(XLM_ETHER_RSRV, (uint32)ether_rsrv);
WriteMacInt32(XLM_VIDEO_DOIO, (uint32)VideoDoDriverIO);
#endif
D(bug("Low Memory initialized\n"));
// Start 60Hz thread
tick_thread_active = (pthread_create(&tick_thread, NULL, tick_func, NULL) == 0);
D(bug("Tick thread installed (%ld)\n", tick_thread));
// Start NVRAM watchdog thread
memcpy(last_xpram, XPRAM, XPRAM_SIZE);
nvram_thread_active = (pthread_create(&nvram_thread, NULL, nvram_func, NULL) == 0);
D(bug("NVRAM thread installed (%ld)\n", nvram_thread));
#if !EMULATED_PPC
// Create and install stacks for signal handlers
sig_stack = malloc(SIG_STACK_SIZE);
D(bug("Signal stack at %p\n", sig_stack));
if (sig_stack == NULL) {
ErrorAlert(GetString(STR_NOT_ENOUGH_MEMORY_ERR));
goto quit;
}
extra_stack = malloc(SIG_STACK_SIZE);
D(bug("Extra stack at %p\n", extra_stack));
if (extra_stack == NULL) {
ErrorAlert(GetString(STR_NOT_ENOUGH_MEMORY_ERR));
goto quit;
}
struct sigaltstack new_stack;
new_stack.ss_sp = sig_stack;
new_stack.ss_flags = 0;
new_stack.ss_size = SIG_STACK_SIZE;
if (sigaltstack(&new_stack, NULL) < 0) {
sprintf(str, GetString(STR_SIGALTSTACK_ERR), strerror(errno));
ErrorAlert(str);
goto quit;
}
#endif
#if !EMULATED_PPC
// Install SIGSEGV handler
sigemptyset(&sigsegv_action.sa_mask); // Block interrupts during SEGV handling
sigaddset(&sigsegv_action.sa_mask, SIGUSR2);
sigsegv_action.sa_handler = (__sighandler_t)sigsegv_handler;
sigsegv_action.sa_flags = SA_ONSTACK;
sigsegv_action.sa_restorer = NULL;
if (sigaction(SIGSEGV, &sigsegv_action, NULL) < 0) {
sprintf(str, GetString(STR_SIGSEGV_INSTALL_ERR), strerror(errno));
ErrorAlert(str);
goto quit;
}
// Install SIGILL handler
sigemptyset(&sigill_action.sa_mask); // Block interrupts during ILL handling
sigaddset(&sigill_action.sa_mask, SIGUSR2);
sigill_action.sa_handler = (__sighandler_t)sigill_handler;
sigill_action.sa_flags = SA_ONSTACK;
sigill_action.sa_restorer = NULL;
if (sigaction(SIGILL, &sigill_action, NULL) < 0) {
sprintf(str, GetString(STR_SIGILL_INSTALL_ERR), strerror(errno));
ErrorAlert(str);
goto quit;
}
// Install interrupt signal handler
sigemptyset(&sigusr2_action.sa_mask);
sigusr2_action.sa_handler = (__sighandler_t)sigusr2_handler;
sigusr2_action.sa_flags = SA_ONSTACK | SA_RESTART;
sigusr2_action.sa_restorer = NULL;
if (sigaction(SIGUSR2, &sigusr2_action, NULL) < 0) {
sprintf(str, GetString(STR_SIGUSR2_INSTALL_ERR), strerror(errno));
ErrorAlert(str);
goto quit;
}
#endif
// Get my thread ID and execute MacOS thread function
emul_thread = pthread_self();
D(bug("MacOS thread is %ld\n", emul_thread));
emul_func(NULL);
quit:
Quit();
return 0;
}
/*
* Cleanup and quit
*/
static void Quit(void)
{
// Stop 60Hz thread
if (tick_thread_active) {
pthread_cancel(tick_thread);
pthread_join(tick_thread, NULL);
}
// Stop NVRAM watchdog thread
if (nvram_thread_active) {
pthread_cancel(nvram_thread);
pthread_join(nvram_thread, NULL);
}
#if !EMULATED_PPC
// Uninstall SIGSEGV handler
sigemptyset(&sigsegv_action.sa_mask);
sigsegv_action.sa_handler = SIG_DFL;
sigsegv_action.sa_flags = 0;
sigaction(SIGSEGV, &sigsegv_action, NULL);
// Uninstall SIGILL handler
sigemptyset(&sigill_action.sa_mask);
sigill_action.sa_handler = SIG_DFL;
sigill_action.sa_flags = 0;
sigaction(SIGILL, &sigill_action, NULL);
#endif
// Save NVRAM
XPRAMExit();
// Exit clipboard
ClipExit();
// Exit Time Manager
TimerExit();
// Exit serial
SerialExit();
// Exit network
EtherExit();
// Exit audio
AudioExit();
// Exit video
VideoExit();
// Exit external file system
ExtFSExit();
// Exit drivers
SCSIExit();
CDROMExit();
DiskExit();
SonyExit();
// Delete RAM area
if (ram_area_mapped)
munmap(mmap_RAMBase, RAMSize);
// Delete ROM area
if (rom_area_mapped)
munmap((char *)ROM_BASE, ROM_AREA_SIZE);
// Delete Kernel Data area
if (kernel_area >= 0) {
shmdt((void *)KERNEL_DATA_BASE);
shmdt((void *)KERNEL_DATA2_BASE);
shmctl(kernel_area, IPC_RMID, NULL);
}
// Delete Low Memory area
if (lm_area_mapped)
munmap((char *)0x0000, 0x3000);
// Close /dev/zero
if (zero_fd > 0)
close(zero_fd);
// Exit system routines
SysExit();
// Exit preferences
PrefsExit();
#ifdef ENABLE_MON
// Exit mon
mon_exit();
#endif
// Close X11 server connection
if (x_display)
XCloseDisplay(x_display);
exit(0);
}
/*
* Jump into Mac ROM, start 680x0 emulator
*/
#if EMULATED_PPC
extern void emul_ppc(uint32 start);
extern void init_emul_ppc(void);
void jump_to_rom(uint32 entry)
{
init_emul_ppc();
emul_ppc(entry);
}
#endif
/*
* Emulator thread function
*/
static void *emul_func(void *arg)
{
// We're now ready to receive signals
ready_for_signals = true;
// Decrease priority, so more time-critical things like audio will work better
nice(1);
// Jump to ROM boot routine
D(bug("Jumping to ROM\n"));
#if EMULATED_PPC
jump_to_rom(ROM_BASE + 0x310000);
#else
jump_to_rom(ROM_BASE + 0x310000, (uint32)emulator_data);
#endif
D(bug("Returned from ROM\n"));
// We're no longer ready to receive signals
ready_for_signals = false;
return NULL;
}
#if !EMULATED_PPC
/*
* Execute 68k subroutine (must be ended with RTS)
* This must only be called by the emul_thread when in EMUL_OP mode
* r->a[7] is unused, the routine runs on the caller's stack
*/
void Execute68k(uint32 pc, M68kRegisters *r)
{
#if SAFE_EXEC_68K
if (ReadMacInt32(XLM_RUN_MODE) != MODE_EMUL_OP)
printf("FATAL: Execute68k() not called from EMUL_OP mode\n");
if (!pthread_equal(pthread_self(), emul_thread))
printf("FATAL: Execute68k() not called from emul_thread\n");
#endif
execute_68k(pc, r);
}
/*
* Execute 68k A-Trap from EMUL_OP routine
* r->a[7] is unused, the routine runs on the caller's stack
*/
void Execute68kTrap(uint16 trap, M68kRegisters *r)
{
uint16 proc[2] = {trap, M68K_RTS};
Execute68k((uint32)proc, r);
}
#endif
/*
* Execute PPC code from EMUL_OP routine (real mode switch)
*/
void ExecutePPC(void (*func)())
{
uint32 tvect[2] = {(uint32)func, 0}; // Fake TVECT
RoutineDescriptor desc = BUILD_PPC_ROUTINE_DESCRIPTOR(0, tvect);
M68kRegisters r;
Execute68k((uint32)&desc, &r);
}
/*
* Quit emulator (cause return from jump_to_rom)
*/
void QuitEmulator(void)
{
#if EMULATED_PPC
Quit();
#else
quit_emulator();
#endif
}
/*
* Pause/resume emulator
*/
void PauseEmulator(void)
{
pthread_kill(emul_thread, SIGSTOP);
}
void ResumeEmulator(void)
{
pthread_kill(emul_thread, SIGCONT);
}
/*
* Dump 68k registers
*/
void Dump68kRegs(M68kRegisters *r)
{
// Display 68k registers
for (int i=0; i<8; i++) {
printf("d%d: %08x", i, r->d[i]);
if (i == 3 || i == 7)
printf("\n");
else
printf(", ");
}
for (int i=0; i<8; i++) {
printf("a%d: %08x", i, r->a[i]);
if (i == 3 || i == 7)
printf("\n");
else
printf(", ");
}
}
/*
* Make code executable
*/
void MakeExecutable(int dummy, void *start, uint32 length)
{
#if !EMULATED_PPC
if (((uint32)start >= ROM_BASE) && ((uint32)start < (ROM_BASE + ROM_SIZE)))
return;
flush_icache_range(start, (void *)((uint32)start + length));
#endif
}
/*
* Patch things after system startup (gets called by disk driver accRun routine)
*/
void PatchAfterStartup(void)
{
ExecutePPC(VideoInstallAccel);
InstallExtFS();
}
/*
* NVRAM watchdog thread (saves NVRAM every minute)
*/
static void *nvram_func(void *arg)
{
struct timespec req = {60, 0}; // 1 minute
for (;;) {
pthread_testcancel();
nanosleep(&req, NULL);
pthread_testcancel();
if (memcmp(last_xpram, XPRAM, XPRAM_SIZE)) {
memcpy(last_xpram, XPRAM, XPRAM_SIZE);
SaveXPRAM();
}
}
return NULL;
}
/*
* 60Hz thread (really 60.15Hz)
*/
static void *tick_func(void *arg)
{
int tick_counter = 0;
struct timespec req = {0, 16625000};
for (;;) {
// Wait
nanosleep(&req, NULL);
#if !EMULATED_PPC
// Did we crash?
if (emul_thread_fatal) {
// Yes, dump registers
pt_regs *r = (pt_regs *)&sigsegv_regs;
char str[256];
sprintf(str, "SIGSEGV\n"
" pc %08lx lr %08lx ctr %08lx msr %08lx\n"
" xer %08lx cr %08lx \n"
" r0 %08lx r1 %08lx r2 %08lx r3 %08lx\n"
" r4 %08lx r5 %08lx r6 %08lx r7 %08lx\n"
" r8 %08lx r9 %08lx r10 %08lx r11 %08lx\n"
" r12 %08lx r13 %08lx r14 %08lx r15 %08lx\n"
" r16 %08lx r17 %08lx r18 %08lx r19 %08lx\n"
" r20 %08lx r21 %08lx r22 %08lx r23 %08lx\n"
" r24 %08lx r25 %08lx r26 %08lx r27 %08lx\n"
" r28 %08lx r29 %08lx r30 %08lx r31 %08lx\n",
r->nip, r->link, r->ctr, r->msr,
r->xer, r->ccr,
r->gpr[0], r->gpr[1], r->gpr[2], r->gpr[3],
r->gpr[4], r->gpr[5], r->gpr[6], r->gpr[7],
r->gpr[8], r->gpr[9], r->gpr[10], r->gpr[11],
r->gpr[12], r->gpr[13], r->gpr[14], r->gpr[15],
r->gpr[16], r->gpr[17], r->gpr[18], r->gpr[19],
r->gpr[20], r->gpr[21], r->gpr[22], r->gpr[23],
r->gpr[24], r->gpr[25], r->gpr[26], r->gpr[27],
r->gpr[28], r->gpr[29], r->gpr[30], r->gpr[31]);
printf(str);
VideoQuitFullScreen();
#ifdef ENABLE_MON
// Start up mon in real-mode
printf("Welcome to the sheep factory.\n");
char *arg[4] = {"mon", "-m", "-r", NULL};
mon(3, arg);
#endif
return NULL;
}
#endif
// Pseudo Mac 1Hz interrupt, update local time
if (++tick_counter > 60) {
tick_counter = 0;
WriteMacInt32(0x20c, TimerDateTime());
}
// Trigger 60Hz interrupt
if (ReadMacInt32(XLM_IRQ_NEST) == 0) {
SetInterruptFlag(INTFLAG_VIA);
TriggerInterrupt();
}
}
return NULL;
}
/*
* Mutexes
*/
struct B2_mutex {
int dummy;
};
B2_mutex *B2_create_mutex(void)
{
return new B2_mutex;
}
void B2_lock_mutex(B2_mutex *mutex)
{
}
void B2_unlock_mutex(B2_mutex *mutex)
{
}
void B2_delete_mutex(B2_mutex *mutex)
{
delete mutex;
}
/*
* Trigger signal USR2 from another thread
*/
void TriggerInterrupt(void)
{
#if EMULATED_PPC
WriteMacInt32(0x16a, ReadMacInt32(0x16a) + 1);
#else
#if 0
WriteMacInt32(0x16a, ReadMacInt32(0x16a) + 1);
#else
if (ready_for_signals)
pthread_kill(emul_thread, SIGUSR2);
#endif
#endif
}
/*
* Interrupt flags (must be handled atomically!)
*/
volatile uint32 InterruptFlags = 0;
void SetInterruptFlag(uint32 flag)
{
atomic_or((int *)&InterruptFlags, flag);
}
void ClearInterruptFlag(uint32 flag)
{
atomic_and((int *)&InterruptFlags, ~flag);
}
/*
* Disable interrupts
*/
void DisableInterrupt(void)
{
atomic_add((int *)XLM_IRQ_NEST, 1);
}
/*
* Enable interrupts
*/
void EnableInterrupt(void)
{
atomic_add((int *)XLM_IRQ_NEST, -1);
}
#if !EMULATED_PPC
/*
* USR2 handler
*/
static void sigusr2_handler(int sig, sigcontext_struct *sc)
{
pt_regs *r = sc->regs;
// Do nothing if interrupts are disabled
if (*(int32 *)XLM_IRQ_NEST > 0)
return;
// Disable MacOS stack sniffer
WriteMacInt32(0x110, 0);
// Interrupt action depends on current run mode
switch (ReadMacInt32(XLM_RUN_MODE)) {
case MODE_68K:
// 68k emulator active, trigger 68k interrupt level 1
WriteMacInt16(ntohl(kernel_data->v[0x67c >> 2]), 1);
r->ccr |= ntohl(kernel_data->v[0x674 >> 2]);
break;
#if INTERRUPTS_IN_NATIVE_MODE
case MODE_NATIVE:
// 68k emulator inactive, in nanokernel?
if (r->gpr[1] != KernelDataAddr) {
// Prepare for 68k interrupt level 1
WriteMacInt16(ntohl(kernel_data->v[0x67c >> 2]), 1);
WriteMacInt32(ntohl(kernel_data->v[0x658 >> 2]) + 0xdc, ReadMacInt32(ntohl(kernel_data->v[0x658 >> 2]) + 0xdc) | ntohl(kernel_data->v[0x674 >> 2]));
// Execute nanokernel interrupt routine (this will activate the 68k emulator)
atomic_add((int32 *)XLM_IRQ_NEST, 1);
if (ROMType == ROMTYPE_NEWWORLD)
ppc_interrupt(ROM_BASE + 0x312b1c, KernelDataAddr);
else
ppc_interrupt(ROM_BASE + 0x312a3c, KernelDataAddr);
}
break;
#endif
#if INTERRUPTS_IN_EMUL_OP_MODE
case MODE_EMUL_OP:
// 68k emulator active, within EMUL_OP routine, execute 68k interrupt routine directly when interrupt level is 0
if ((ReadMacInt32(XLM_68K_R25) & 7) == 0) {
// Set extra stack for SIGSEGV handler
struct sigaltstack new_stack;
new_stack.ss_sp = extra_stack;
new_stack.ss_flags = 0;
new_stack.ss_size = SIG_STACK_SIZE;
sigaltstack(&new_stack, NULL);
#if 1
// Execute full 68k interrupt routine
M68kRegisters r;
uint32 old_r25 = ReadMacInt32(XLM_68K_R25); // Save interrupt level
WriteMacInt32(XLM_68K_R25, 0x21); // Execute with interrupt level 1
static const uint16 proc[] = {
0x3f3c, 0x0000, // move.w #$0000,-(sp) (fake format word)
0x487a, 0x000a, // pea @1(pc) (return address)
0x40e7, // move sr,-(sp) (saved SR)
0x2078, 0x0064, // move.l $64,a0
0x4ed0, // jmp (a0)
M68K_RTS // @1
};
Execute68k((uint32)proc, &r);
WriteMacInt32(XLM_68K_R25, old_r25); // Restore interrupt level
#else
// Only update cursor
if (HasMacStarted()) {
if (InterruptFlags & INTFLAG_VIA) {
ClearInterruptFlag(INTFLAG_VIA);
ADBInterrupt();
ExecutePPC(VideoVBL);
}
}
#endif
// Reset normal signal stack
new_stack.ss_sp = sig_stack;
new_stack.ss_flags = 0;
new_stack.ss_size = SIG_STACK_SIZE;
sigaltstack(&new_stack, NULL);
}
break;
#endif
}
}
/*
* SIGSEGV handler
*/
static void sigsegv_handler(int sig, sigcontext_struct *sc)
{
pt_regs *r = sc->regs;
num_segv++;
// Fault in Mac ROM or RAM?
bool mac_fault = (r->nip >= ROM_BASE) && (r->nip < (ROM_BASE + ROM_AREA_SIZE)) || (r->nip >= RAMBase) && (r->nip < (RAMBase + RAMSize));
if (mac_fault) {
// Get opcode and divide into fields
uint32 opcode = *((uint32 *)r->nip);
uint32 primop = opcode >> 26;
uint32 exop = (opcode >> 1) & 0x3ff;
uint32 ra = (opcode >> 16) & 0x1f;
uint32 rb = (opcode >> 11) & 0x1f;
uint32 rd = (opcode >> 21) & 0x1f;
int32 imm = (int16)(opcode & 0xffff);
// "VM settings" during MacOS 8 installation
if (r->nip == ROM_BASE + 0x488160 && r->gpr[20] == 0xf8000000) {
r->nip += 4;
r->gpr[8] = 0;
return;
// MacOS 8.5 installation
} else if (r->nip == ROM_BASE + 0x488140 && r->gpr[16] == 0xf8000000) {
r->nip += 4;
r->gpr[8] = 0;
return;
// MacOS 8 serial drivers on startup
} else if (r->nip == ROM_BASE + 0x48e080 && (r->gpr[8] == 0xf3012002 || r->gpr[8] == 0xf3012000)) {
r->nip += 4;
r->gpr[8] = 0;
return;
// MacOS 8.1 serial drivers on startup
} else if (r->nip == ROM_BASE + 0x48c5e0 && (r->gpr[20] == 0xf3012002 || r->gpr[20] == 0xf3012000)) {
r->nip += 4;
return;
} else if (r->nip == ROM_BASE + 0x4a10a0 && (r->gpr[20] == 0xf3012002 || r->gpr[20] == 0xf3012000)) {
r->nip += 4;
return;
}
// Analyze opcode
enum {
TYPE_UNKNOWN,
TYPE_LOAD,
TYPE_STORE
} transfer_type = TYPE_UNKNOWN;
enum {
SIZE_UNKNOWN,
SIZE_BYTE,
SIZE_HALFWORD,
SIZE_WORD
} transfer_size = SIZE_UNKNOWN;
enum {
MODE_UNKNOWN,
MODE_NORM,
MODE_U,
MODE_X,
MODE_UX
} addr_mode = MODE_UNKNOWN;
switch (primop) {
case 31:
switch (exop) {
case 23: // lwzx
transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
case 55: // lwzux
transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
case 87: // lbzx
transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
case 119: // lbzux
transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
case 151: // stwx
transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
case 183: // stwux
transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
case 215: // stbx
transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
case 247: // stbux
transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
case 279: // lhzx
transfer_type = TYPE_LOAD; transfer_size = SIZE_HALFWORD; addr_mode = MODE_X; break;
case 311: // lhzux
transfer_type = TYPE_LOAD; transfer_size = SIZE_HALFWORD; addr_mode = MODE_UX; break;
case 343: // lhax
transfer_type = TYPE_LOAD; transfer_size = SIZE_HALFWORD; addr_mode = MODE_X; break;
case 375: // lhaux
transfer_type = TYPE_LOAD; transfer_size = SIZE_HALFWORD; addr_mode = MODE_UX; break;
case 407: // sthx
transfer_type = TYPE_STORE; transfer_size = SIZE_HALFWORD; addr_mode = MODE_X; break;
case 439: // sthux
transfer_type = TYPE_STORE; transfer_size = SIZE_HALFWORD; addr_mode = MODE_UX; break;
}
break;
case 32: // lwz
transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
case 33: // lwzu
transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
case 34: // lbz
transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
case 35: // lbzu
transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
case 36: // stw
transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
case 37: // stwu
transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
case 38: // stb
transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
case 39: // stbu
transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
case 40: // lhz
transfer_type = TYPE_LOAD; transfer_size = SIZE_HALFWORD; addr_mode = MODE_NORM; break;
case 41: // lhzu
transfer_type = TYPE_LOAD; transfer_size = SIZE_HALFWORD; addr_mode = MODE_U; break;
case 42: // lha
transfer_type = TYPE_LOAD; transfer_size = SIZE_HALFWORD; addr_mode = MODE_NORM; break;
case 43: // lhau
transfer_type = TYPE_LOAD; transfer_size = SIZE_HALFWORD; addr_mode = MODE_U; break;
case 44: // sth
transfer_type = TYPE_STORE; transfer_size = SIZE_HALFWORD; addr_mode = MODE_NORM; break;
case 45: // sthu
transfer_type = TYPE_STORE; transfer_size = SIZE_HALFWORD; addr_mode = MODE_U; break;
}
// Calculate effective address
uint32 addr = 0;
switch (addr_mode) {
case MODE_X:
case MODE_UX:
if (ra == 0)
addr = r->gpr[rb];
else
addr = r->gpr[ra] + r->gpr[rb];
break;
case MODE_NORM:
case MODE_U:
if (ra == 0)
addr = (int32)(int16)imm;
else
addr = r->gpr[ra] + (int32)(int16)imm;
break;
default:
break;
}
// Ignore ROM writes
if (transfer_type == TYPE_STORE && addr >= ROM_BASE && addr < ROM_BASE + ROM_SIZE) {
// D(bug("WARNING: %s write access to ROM at %08lx, pc %08lx\n", transfer_size == SIZE_BYTE ? "Byte" : transfer_size == SIZE_HALFWORD ? "Halfword" : "Word", addr, r->nip));
if (addr_mode == MODE_U || addr_mode == MODE_UX)
r->gpr[ra] = addr;
r->nip += 4;
goto rti;
}
// Ignore illegal memory accesses?
if (PrefsFindBool("ignoresegv")) {
if (addr_mode == MODE_U || addr_mode == MODE_UX)
r->gpr[ra] = addr;
if (transfer_type == TYPE_LOAD)
r->gpr[rd] = 0;
r->nip += 4;
goto rti;
}
// In GUI mode, show error alert
if (!PrefsFindBool("nogui")) {
char str[256];
if (transfer_type == TYPE_LOAD || transfer_type == TYPE_STORE)
sprintf(str, GetString(STR_MEM_ACCESS_ERR), transfer_size == SIZE_BYTE ? "byte" : transfer_size == SIZE_HALFWORD ? "halfword" : "word", transfer_type == TYPE_LOAD ? GetString(STR_MEM_ACCESS_READ) : GetString(STR_MEM_ACCESS_WRITE), addr, r->nip, r->gpr[24], r->gpr[1]);
else
sprintf(str, GetString(STR_UNKNOWN_SEGV_ERR), r->nip, r->gpr[24], r->gpr[1], opcode);
ErrorAlert(str);
QuitEmulator();
return;
}
}
// For all other errors, jump into debugger (sort of...)
if (!ready_for_signals) {
printf("SIGSEGV\n");
printf(" sigcontext %p, pt_regs %p\n", sc, r);
printf(
" pc %08lx lr %08lx ctr %08lx msr %08lx\n"
" xer %08lx cr %08lx \n"
" r0 %08lx r1 %08lx r2 %08lx r3 %08lx\n"
" r4 %08lx r5 %08lx r6 %08lx r7 %08lx\n"
" r8 %08lx r9 %08lx r10 %08lx r11 %08lx\n"
" r12 %08lx r13 %08lx r14 %08lx r15 %08lx\n"
" r16 %08lx r17 %08lx r18 %08lx r19 %08lx\n"
" r20 %08lx r21 %08lx r22 %08lx r23 %08lx\n"
" r24 %08lx r25 %08lx r26 %08lx r27 %08lx\n"
" r28 %08lx r29 %08lx r30 %08lx r31 %08lx\n",
r->nip, r->link, r->ctr, r->msr,
r->xer, r->ccr,
r->gpr[0], r->gpr[1], r->gpr[2], r->gpr[3],
r->gpr[4], r->gpr[5], r->gpr[6], r->gpr[7],
r->gpr[8], r->gpr[9], r->gpr[10], r->gpr[11],
r->gpr[12], r->gpr[13], r->gpr[14], r->gpr[15],
r->gpr[16], r->gpr[17], r->gpr[18], r->gpr[19],
r->gpr[20], r->gpr[21], r->gpr[22], r->gpr[23],
r->gpr[24], r->gpr[25], r->gpr[26], r->gpr[27],
r->gpr[28], r->gpr[29], r->gpr[30], r->gpr[31]);
exit(1);
QuitEmulator();
return;
} else {
// We crashed. Save registers, tell tick thread and loop forever
sigsegv_regs = *(sigregs *)r;
emul_thread_fatal = true;
for (;;) ;
}
rti:;
}
/*
* SIGILL handler
*/
static void sigill_handler(int sig, sigcontext_struct *sc)
{
pt_regs *r = sc->regs;
char str[256];
// Fault in Mac ROM or RAM?
bool mac_fault = (r->nip >= ROM_BASE) && (r->nip < (ROM_BASE + ROM_AREA_SIZE)) || (r->nip >= RAMBase) && (r->nip < (RAMBase + RAMSize));
if (mac_fault) {
// Get opcode and divide into fields
uint32 opcode = *((uint32 *)r->nip);
uint32 primop = opcode >> 26;
uint32 exop = (opcode >> 1) & 0x3ff;
uint32 ra = (opcode >> 16) & 0x1f;
uint32 rb = (opcode >> 11) & 0x1f;
uint32 rd = (opcode >> 21) & 0x1f;
int32 imm = (int16)(opcode & 0xffff);
switch (primop) {
case 9: // POWER instructions
case 22:
power_inst: sprintf(str, GetString(STR_POWER_INSTRUCTION_ERR), r->nip, r->gpr[1], opcode);
ErrorAlert(str);
QuitEmulator();
return;
case 31:
switch (exop) {
case 83: // mfmsr
r->gpr[rd] = 0xf072;
r->nip += 4;
goto rti;
case 210: // mtsr
case 242: // mtsrin
case 306: // tlbie
r->nip += 4;
goto rti;
case 339: { // mfspr
int spr = ra | (rb << 5);
switch (spr) {
case 0: // MQ
case 22: // DEC
case 952: // MMCR0
case 953: // PMC1
case 954: // PMC2
case 955: // SIA
case 956: // MMCR1
case 957: // PMC3
case 958: // PMC4
case 959: // SDA
r->nip += 4;
goto rti;
case 25: // SDR1
r->gpr[rd] = 0xdead001f;
r->nip += 4;
goto rti;
case 287: // PVR
r->gpr[rd] = PVR;
r->nip += 4;
goto rti;
}
break;
}
case 467: { // mtspr
int spr = ra | (rb << 5);
switch (spr) {
case 0: // MQ
case 22: // DEC
case 275: // SPRG3
case 528: // IBAT0U
case 529: // IBAT0L
case 530: // IBAT1U
case 531: // IBAT1L
case 532: // IBAT2U
case 533: // IBAT2L
case 534: // IBAT3U
case 535: // IBAT3L
case 536: // DBAT0U
case 537: // DBAT0L
case 538: // DBAT1U
case 539: // DBAT1L
case 540: // DBAT2U
case 541: // DBAT2L
case 542: // DBAT3U
case 543: // DBAT3L
case 952: // MMCR0
case 953: // PMC1
case 954: // PMC2
case 955: // SIA
case 956: // MMCR1
case 957: // PMC3
case 958: // PMC4
case 959: // SDA
r->nip += 4;
goto rti;
}
break;
}
case 29: case 107: case 152: case 153: // POWER instructions
case 184: case 216: case 217: case 248:
case 264: case 277: case 331: case 360:
case 363: case 488: case 531: case 537:
case 541: case 664: case 665: case 696:
case 728: case 729: case 760: case 920:
case 921: case 952:
goto power_inst;
}
}
// In GUI mode, show error alert
if (!PrefsFindBool("nogui")) {
sprintf(str, GetString(STR_UNKNOWN_SEGV_ERR), r->nip, r->gpr[24], r->gpr[1], opcode);
ErrorAlert(str);
QuitEmulator();
return;
}
}
// For all other errors, jump into debugger (sort of...)
if (!ready_for_signals) {
printf("SIGILL\n");
printf(" sigcontext %p, pt_regs %p\n", sc, r);
printf(
" pc %08lx lr %08lx ctr %08lx msr %08lx\n"
" xer %08lx cr %08lx \n"
" r0 %08lx r1 %08lx r2 %08lx r3 %08lx\n"
" r4 %08lx r5 %08lx r6 %08lx r7 %08lx\n"
" r8 %08lx r9 %08lx r10 %08lx r11 %08lx\n"
" r12 %08lx r13 %08lx r14 %08lx r15 %08lx\n"
" r16 %08lx r17 %08lx r18 %08lx r19 %08lx\n"
" r20 %08lx r21 %08lx r22 %08lx r23 %08lx\n"
" r24 %08lx r25 %08lx r26 %08lx r27 %08lx\n"
" r28 %08lx r29 %08lx r30 %08lx r31 %08lx\n",
r->nip, r->link, r->ctr, r->msr,
r->xer, r->ccr,
r->gpr[0], r->gpr[1], r->gpr[2], r->gpr[3],
r->gpr[4], r->gpr[5], r->gpr[6], r->gpr[7],
r->gpr[8], r->gpr[9], r->gpr[10], r->gpr[11],
r->gpr[12], r->gpr[13], r->gpr[14], r->gpr[15],
r->gpr[16], r->gpr[17], r->gpr[18], r->gpr[19],
r->gpr[20], r->gpr[21], r->gpr[22], r->gpr[23],
r->gpr[24], r->gpr[25], r->gpr[26], r->gpr[27],
r->gpr[28], r->gpr[29], r->gpr[30], r->gpr[31]);
exit(1);
QuitEmulator();
return;
} else {
// We crashed. Save registers, tell tick thread and loop forever
sigsegv_regs = *(sigregs *)r;
emul_thread_fatal = true;
for (;;) ;
}
rti:;
}
#endif
/*
* Display alert
*/
#ifdef ENABLE_GTK
static void dl_destroyed(void)
{
gtk_main_quit();
}
static void dl_quit(GtkWidget *dialog)
{
gtk_widget_destroy(dialog);
}
void display_alert(int title_id, int prefix_id, int button_id, const char *text)
{
char str[256];
sprintf(str, GetString(prefix_id), text);
GtkWidget *dialog = gtk_dialog_new();
gtk_window_set_title(GTK_WINDOW(dialog), GetString(title_id));
gtk_container_border_width(GTK_CONTAINER(dialog), 5);
gtk_widget_set_uposition(GTK_WIDGET(dialog), 100, 150);
gtk_signal_connect(GTK_OBJECT(dialog), "destroy", GTK_SIGNAL_FUNC(dl_destroyed), NULL);
GtkWidget *label = gtk_label_new(str);
gtk_widget_show(label);
gtk_box_pack_start(GTK_BOX(GTK_DIALOG(dialog)->vbox), label, TRUE, TRUE, 0);
GtkWidget *button = gtk_button_new_with_label(GetString(button_id));
gtk_widget_show(button);
gtk_signal_connect_object(GTK_OBJECT(button), "clicked", GTK_SIGNAL_FUNC(dl_quit), GTK_OBJECT(dialog));
gtk_box_pack_start(GTK_BOX(GTK_DIALOG(dialog)->action_area), button, FALSE, FALSE, 0);
GTK_WIDGET_SET_FLAGS(button, GTK_CAN_DEFAULT);
gtk_widget_grab_default(button);
gtk_widget_show(dialog);
gtk_main();
}
#endif
/*
* Display error alert
*/
void ErrorAlert(const char *text)
{
#ifdef ENABLE_GTK
if (PrefsFindBool("nogui") || x_display == NULL) {
printf(GetString(STR_SHELL_ERROR_PREFIX), text);
return;
}
VideoQuitFullScreen();
display_alert(STR_ERROR_ALERT_TITLE, STR_GUI_ERROR_PREFIX, STR_QUIT_BUTTON, text);
#else
printf(GetString(STR_SHELL_ERROR_PREFIX), text);
#endif
}
/*
* Display warning alert
*/
void WarningAlert(const char *text)
{
#ifdef ENABLE_GTK
if (PrefsFindBool("nogui") || x_display == NULL) {
printf(GetString(STR_SHELL_WARNING_PREFIX), text);
return;
}
display_alert(STR_WARNING_ALERT_TITLE, STR_GUI_WARNING_PREFIX, STR_OK_BUTTON, text);
#else
printf(GetString(STR_SHELL_WARNING_PREFIX), text);
#endif
}
/*
* Display choice alert
*/
bool ChoiceAlert(const char *text, const char *pos, const char *neg)
{
printf(GetString(STR_SHELL_WARNING_PREFIX), text);
return false; //!!
}