macemu/SheepShaver/src/Unix/main_unix.cpp

2293 lines
61 KiB
C++

/*
* main_unix.cpp - Emulation core, Unix implementation
*
* SheepShaver (C) Christian Bauer and Marc Hellwig
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/*
* NOTES:
*
* See main_beos.cpp for a description of the three operating modes.
*
* In addition to that, we have to handle the fact that the MacOS ABI
* is slightly different from the SysV ABI used by Linux:
* - Stack frames are different (e.g. LR is stored in 8(r1) under
* MacOS, but in 4(r1) under Linux)
* - There is a pointer to Thread Local Storage (TLS) under Linux with
* recent enough glibc. This is r2 in 32-bit mode and r13 in
* 64-bit mode (PowerOpen/AIX ABI)
* - r13 is used as a small data pointer under Linux (but appearently
* it is not used this way? To be sure, we specify -msdata=none
* in the Makefile)
* - There are no TVECTs under Linux; function pointers point
* directly to the function code
* The Execute*() functions have to account for this. Additionally, we
* cannot simply call MacOS functions by getting their TVECT and jumping
* to it. Such calls are done via the call_macos*() functions in
* asm_linux.S that create a MacOS stack frame, load the TOC pointer
* and put the arguments into the right registers.
*
* As on the BeOS, we have to specify an alternate signal stack because
* interrupts (and, under Linux, Low Memory accesses) may occur when r1
* is pointing to the Kernel Data or to Low Memory. There is one
* problem, however, due to the alternate signal stack being global to
* all signal handlers. Consider the following scenario:
* - The main thread is executing some native PPC MacOS code in
* MODE_NATIVE, running on the MacOS stack (somewhere in the Mac RAM).
* - A SIGUSR2 interrupt occurs. The kernel switches to the signal
* stack and starts executing the SIGUSR2 signal handler.
* - The signal handler sees the MODE_NATIVE and calls ppc_interrupt()
* to handle a native interrupt.
* - ppc_interrupt() sets r1 to point to the Kernel Data and jumps to
* the nanokernel.
* - The nanokernel accesses a Low Memory global (most likely one of
* the XLMs), a SIGSEGV occurs.
* - The kernel sees that r1 does not point to the signal stack and
* switches to the signal stack again, thus overwriting the data that
* the SIGUSR2 handler put there.
* The same problem arises when calling ExecutePPC() inside the MODE_EMUL_OP
* interrupt handler.
*
* The solution is to set the signal stack to a second, "extra" stack
* inside the SIGUSR2 handler before entering the Nanokernel or calling
* ExecutePPC (or any function that might cause a mode switch). The signal
* stack is restored before exiting the SIGUSR2 handler.
*
* Note that POSIX standard says you can't modify the alternate
* signal stack while the process is executing on it. There is a
* hackaround though: we install a trampoline SIGUSR2 handler that
* sets up an alternate stack itself and calls the real handler.
* Then, when we call sigaltstack() there, we no longer get an EPERM,
* i.e. it now works.
*
* TODO:
* check if SIGSEGV handler works for all registers (including FP!)
*/
#include <unistd.h>
#include <fcntl.h>
#include <time.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <pthread.h>
#include <sys/mman.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/stat.h>
#include <sys/param.h>
#include <signal.h>
#include "sysdeps.h"
#include "main.h"
#include "version.h"
#include "prefs.h"
#include "prefs_editor.h"
#include "cpu_emulation.h"
#include "emul_op.h"
#include "xlowmem.h"
#include "xpram.h"
#include "timer.h"
#include "adb.h"
#include "video.h"
#include "sys.h"
#include "macos_util.h"
#include "rom_patches.h"
#include "user_strings.h"
#include "vm_alloc.h"
#include "sigsegv.h"
#include "sigregs.h"
#include "rpc.h"
#define DEBUG 0
#include "debug.h"
#ifdef HAVE_DIRENT_H
#include <dirent.h>
#endif
#ifdef USE_SDL
#include <SDL.h>
#endif
#ifndef USE_SDL_VIDEO
#include <X11/Xlib.h>
#endif
#ifdef ENABLE_GTK
#include <gtk/gtk.h>
#endif
#ifdef ENABLE_XF86_DGA
#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <X11/extensions/Xxf86dga.h>
#endif
#ifdef ENABLE_MON
#include "mon.h"
#endif
// Enable emulation of unaligned lmw/stmw?
#define EMULATE_UNALIGNED_LOADSTORE_MULTIPLE 1
// Enable Execute68k() safety checks?
#define SAFE_EXEC_68K 0
// Interrupts in EMUL_OP mode?
#define INTERRUPTS_IN_EMUL_OP_MODE 1
// Interrupts in native mode?
#define INTERRUPTS_IN_NATIVE_MODE 1
// Constants
const char ROM_FILE_NAME[] = "ROM";
const char ROM_FILE_NAME2[] = "Mac OS ROM";
#if !REAL_ADDRESSING
// FIXME: needs to be >= 0x04000000
const uintptr RAM_BASE = 0x10000000; // Base address of RAM
#endif
const uintptr ROM_BASE = 0x40800000; // Base address of ROM
#if REAL_ADDRESSING
const uint32 ROM_ALIGNMENT = 0x100000; // ROM must be aligned to a 1MB boundary
#endif
const uint32 SIG_STACK_SIZE = 0x10000; // Size of signal stack
// Global variables (exported)
#if !EMULATED_PPC
void *TOC = NULL; // Pointer to Thread Local Storage (r2)
void *R13 = NULL; // Pointer to .sdata section (r13 under Linux)
#endif
uint32 RAMBase; // Base address of Mac RAM
uint32 RAMSize; // Size of Mac RAM
uint32 ROMBase; // Base address of Mac ROM
uint32 KernelDataAddr; // Address of Kernel Data
uint32 BootGlobsAddr; // Address of BootGlobs structure at top of Mac RAM
uint32 DRCacheAddr; // Address of DR Cache
uint32 PVR; // Theoretical PVR
int64 CPUClockSpeed; // Processor clock speed (Hz)
int64 BusClockSpeed; // Bus clock speed (Hz)
int64 TimebaseSpeed; // Timebase clock speed (Hz)
uint8 *RAMBaseHost; // Base address of Mac RAM (host address space)
uint8 *ROMBaseHost; // Base address of Mac ROM (host address space)
// Global variables
#ifndef USE_SDL_VIDEO
char *x_display_name = NULL; // X11 display name
Display *x_display = NULL; // X11 display handle
#ifdef X11_LOCK_TYPE
X11_LOCK_TYPE x_display_lock = X11_LOCK_INIT; // X11 display lock
#endif
#endif
static int zero_fd = 0; // FD of /dev/zero
static bool lm_area_mapped = false; // Flag: Low Memory area mmap()ped
static bool rom_area_mapped = false; // Flag: Mac ROM mmap()ped
static bool ram_area_mapped = false; // Flag: Mac RAM mmap()ped
static bool dr_cache_area_mapped = false; // Flag: Mac DR Cache mmap()ped
static bool dr_emulator_area_mapped = false;// Flag: Mac DR Emulator mmap()ped
static KernelData *kernel_data; // Pointer to Kernel Data
static EmulatorData *emulator_data;
static uint8 last_xpram[XPRAM_SIZE]; // Buffer for monitoring XPRAM changes
static bool nvram_thread_active = false; // Flag: NVRAM watchdog installed
static volatile bool nvram_thread_cancel; // Flag: Cancel NVRAM thread
static pthread_t nvram_thread; // NVRAM watchdog
static bool tick_thread_active = false; // Flag: MacOS thread installed
static volatile bool tick_thread_cancel; // Flag: Cancel 60Hz thread
static pthread_t tick_thread; // 60Hz thread
static pthread_t emul_thread; // MacOS thread
static bool ready_for_signals = false; // Handler installed, signals can be sent
#if EMULATED_PPC
static uintptr sig_stack = 0; // Stack for PowerPC interrupt routine
#else
static struct sigaction sigusr2_action; // Interrupt signal (of emulator thread)
static struct sigaction sigsegv_action; // Data access exception signal (of emulator thread)
static struct sigaction sigill_action; // Illegal instruction signal (of emulator thread)
static stack_t sig_stack; // Stack for signal handlers
static stack_t extra_stack; // Stack for SIGSEGV inside interrupt handler
static bool emul_thread_fatal = false; // Flag: MacOS thread crashed, tick thread shall dump debug output
static sigregs sigsegv_regs; // Register dump when crashed
static const char *crash_reason = NULL; // Reason of the crash (SIGSEGV, SIGBUS, SIGILL)
#endif
static rpc_connection_t *gui_connection = NULL; // RPC connection to the GUI
static const char *gui_connection_path = NULL; // GUI connection identifier
uint32 SheepMem::page_size; // Size of a native page
uintptr SheepMem::zero_page = 0; // Address of ro page filled in with zeros
uintptr SheepMem::base = 0x60000000; // Address of SheepShaver data
uintptr SheepMem::proc; // Bottom address of SheepShave procedures
uintptr SheepMem::data; // Top of SheepShaver data (stack like storage)
// Prototypes
static bool kernel_data_init(void);
static bool shm_map_address(int kernel_area, uint32 addr);
static void Quit(void);
static void *emul_func(void *arg);
static void *nvram_func(void *arg);
static void *tick_func(void *arg);
#if EMULATED_PPC
extern void emul_ppc(uint32 start);
extern void init_emul_ppc(void);
extern void exit_emul_ppc(void);
sigsegv_return_t sigsegv_handler(sigsegv_info_t *sip);
#else
extern "C" void sigusr2_handler_init(int sig, siginfo_t *sip, void *scp);
extern "C" void sigusr2_handler(int sig, siginfo_t *sip, void *scp);
static void sigsegv_handler(int sig, siginfo_t *sip, void *scp);
static void sigill_handler(int sig, siginfo_t *sip, void *scp);
#endif
// From asm_linux.S
#if !EMULATED_PPC
extern "C" void *get_sp(void);
extern "C" void *get_r2(void);
extern "C" void set_r2(void *);
extern "C" void *get_r13(void);
extern "C" void set_r13(void *);
extern "C" void flush_icache_range(uint32 start, uint32 end);
extern "C" void jump_to_rom(uint32 entry, uint32 context);
extern "C" void quit_emulator(void);
extern "C" void execute_68k(uint32 pc, M68kRegisters *r);
extern "C" void ppc_interrupt(uint32 entry, uint32 kernel_data);
extern "C" int atomic_add(int *var, int v);
extern "C" int atomic_and(int *var, int v);
extern "C" int atomic_or(int *var, int v);
extern void paranoia_check(void);
#endif
#if EMULATED_PPC
/*
* Return signal stack base
*/
uintptr SignalStackBase(void)
{
return sig_stack + SIG_STACK_SIZE;
}
/*
* Atomic operations
*/
#if HAVE_SPINLOCKS
static spinlock_t atomic_ops_lock = SPIN_LOCK_UNLOCKED;
#else
#define spin_lock(LOCK)
#define spin_unlock(LOCK)
#endif
int atomic_add(int *var, int v)
{
spin_lock(&atomic_ops_lock);
int ret = *var;
*var += v;
spin_unlock(&atomic_ops_lock);
return ret;
}
int atomic_and(int *var, int v)
{
spin_lock(&atomic_ops_lock);
int ret = *var;
*var &= v;
spin_unlock(&atomic_ops_lock);
return ret;
}
int atomic_or(int *var, int v)
{
spin_lock(&atomic_ops_lock);
int ret = *var;
*var |= v;
spin_unlock(&atomic_ops_lock);
return ret;
}
#endif
/*
* Memory management helpers
*/
static inline uint8 *vm_mac_acquire(uint32 size)
{
return (uint8 *)vm_acquire(size);
}
static inline int vm_mac_acquire_fixed(uint32 addr, uint32 size)
{
return vm_acquire_fixed(Mac2HostAddr(addr), size);
}
static inline int vm_mac_release(uint32 addr, uint32 size)
{
return vm_release(Mac2HostAddr(addr), size);
}
/*
* Main program
*/
static void usage(const char *prg_name)
{
printf("Usage: %s [OPTION...]\n", prg_name);
printf("\nUnix options:\n");
printf(" --display STRING\n X display to use\n");
PrefsPrintUsage();
exit(0);
}
static bool valid_vmdir(const char *path)
{
const int suffix_len = sizeof(".sheepvm") - 1;
int len = strlen(path);
if (len && path[len - 1] == '/') // to support both ".sheepvm" and ".sheepvm/"
len--;
if (len > suffix_len && !strncmp(path + len - suffix_len, ".sheepvm", suffix_len)) {
struct stat d;
if (!stat(path, &d) && S_ISDIR(d.st_mode)) {
return true;
}
}
return false;
}
static void get_system_info(void)
{
#if !EMULATED_PPC
FILE *proc_file;
#endif
PVR = 0x00040000; // Default: 604
CPUClockSpeed = 100000000; // Default: 100MHz
BusClockSpeed = 100000000; // Default: 100MHz
TimebaseSpeed = 25000000; // Default: 25MHz
#if EMULATED_PPC
PVR = 0x000c0000; // Default: 7400 (with AltiVec)
#elif defined(__APPLE__) && defined(__MACH__)
proc_file = popen("ioreg -c IOPlatformDevice", "r");
if (proc_file) {
char line[256];
bool powerpc_node = false;
while (fgets(line, sizeof(line) - 1, proc_file)) {
// Read line
int len = strlen(line);
if (len == 0)
continue;
line[len - 1] = 0;
// Parse line
if (strstr(line, "o PowerPC,"))
powerpc_node = true;
else if (powerpc_node) {
uint32 value;
char head[256];
if (sscanf(line, "%[ |]\"cpu-version\" = <%x>", head, &value) == 2)
PVR = value;
else if (sscanf(line, "%[ |]\"clock-frequency\" = <%x>", head, &value) == 2)
CPUClockSpeed = value;
else if (sscanf(line, "%[ |]\"bus-frequency\" = <%x>", head, &value) == 2)
BusClockSpeed = value;
else if (sscanf(line, "%[ |]\"timebase-frequency\" = <%x>", head, &value) == 2)
TimebaseSpeed = value;
else if (strchr(line, '}'))
powerpc_node = false;
}
}
fclose(proc_file);
} else {
char str[256];
sprintf(str, GetString(STR_PROC_CPUINFO_WARN), strerror(errno));
WarningAlert(str);
}
#else
proc_file = fopen("/proc/cpuinfo", "r");
if (proc_file) {
// CPU specs from Linux kernel
// TODO: make it more generic with features (e.g. AltiVec) and
// cache information and friends for NameRegistry
static const struct {
uint32 pvr_mask;
uint32 pvr_value;
const char *cpu_name;
}
cpu_specs[] = {
{ 0xffff0000, 0x00010000, "601" },
{ 0xffff0000, 0x00030000, "603" },
{ 0xffff0000, 0x00060000, "603e" },
{ 0xffff0000, 0x00070000, "603ev" },
{ 0xffff0000, 0x00040000, "604" },
{ 0xfffff000, 0x00090000, "604e" },
{ 0xffff0000, 0x00090000, "604r" },
{ 0xffff0000, 0x000a0000, "604ev" },
{ 0xffffffff, 0x00084202, "740/750" },
{ 0xfffff000, 0x00083000, "745/755" },
{ 0xfffffff0, 0x00080100, "750CX" },
{ 0xfffffff0, 0x00082200, "750CX" },
{ 0xfffffff0, 0x00082210, "750CXe" },
{ 0xffffff00, 0x70000100, "750FX" },
{ 0xffffffff, 0x70000200, "750FX" },
{ 0xffff0000, 0x70000000, "750FX" },
{ 0xffff0000, 0x70020000, "750GX" },
{ 0xffff0000, 0x00080000, "740/750" },
{ 0xffffffff, 0x000c1101, "7400 (1.1)" },
{ 0xffff0000, 0x000c0000, "7400" },
{ 0xffff0000, 0x800c0000, "7410" },
{ 0xffffffff, 0x80000200, "7450" },
{ 0xffffffff, 0x80000201, "7450" },
{ 0xffff0000, 0x80000000, "7450" },
{ 0xffffff00, 0x80010100, "7455" },
{ 0xffffffff, 0x80010200, "7455" },
{ 0xffff0000, 0x80010000, "7455" },
{ 0xffff0000, 0x80020000, "7457" },
{ 0xffff0000, 0x80030000, "7447A" },
{ 0xffff0000, 0x80040000, "7448" },
{ 0x7fff0000, 0x00810000, "82xx" },
{ 0x7fff0000, 0x00820000, "8280" },
{ 0xffff0000, 0x00400000, "Power3 (630)" },
{ 0xffff0000, 0x00410000, "Power3 (630+)" },
{ 0xffff0000, 0x00360000, "I-star" },
{ 0xffff0000, 0x00370000, "S-star" },
{ 0xffff0000, 0x00350000, "Power4" },
{ 0xffff0000, 0x00390000, "PPC970" },
{ 0xffff0000, 0x003c0000, "PPC970FX" },
{ 0xffff0000, 0x00440000, "PPC970MP" },
{ 0xffff0000, 0x003a0000, "POWER5 (gr)" },
{ 0xffff0000, 0x003b0000, "POWER5+ (gs)" },
{ 0xffff0000, 0x003e0000, "POWER6" },
{ 0xffff0000, 0x00700000, "Cell Broadband Engine" },
{ 0x7fff0000, 0x00900000, "PA6T" },
{ 0, 0, 0 }
};
char line[256];
while(fgets(line, 255, proc_file)) {
// Read line
int len = strlen(line);
if (len == 0)
continue;
line[len-1] = 0;
// Parse line
int i;
float f;
char value[256];
if (sscanf(line, "cpu : %[^,]", value) == 1) {
// Search by name
const char *cpu_name = NULL;
for (int i = 0; cpu_specs[i].pvr_mask != 0; i++) {
if (strcmp(cpu_specs[i].cpu_name, value) == 0) {
cpu_name = cpu_specs[i].cpu_name;
PVR = cpu_specs[i].pvr_value;
break;
}
}
if (cpu_name == NULL)
printf("WARNING: Unknown CPU type '%s', assuming 604\n", value);
else
printf("Found a PowerPC %s processor\n", cpu_name);
}
if (sscanf(line, "clock : %fMHz", &f) == 1)
CPUClockSpeed = BusClockSpeed = ((int64)f) * 1000000;
else if (sscanf(line, "clock : %dMHz", &i) == 1)
CPUClockSpeed = BusClockSpeed = i * 1000000;
}
fclose(proc_file);
} else {
char str[256];
sprintf(str, GetString(STR_PROC_CPUINFO_WARN), strerror(errno));
WarningAlert(str);
}
// Get actual bus frequency
proc_file = fopen("/proc/device-tree/clock-frequency", "r");
if (proc_file) {
union { uint8 b[4]; uint32 l; } value;
if (fread(value.b, sizeof(value), 1, proc_file) == 1)
BusClockSpeed = value.l;
fclose(proc_file);
}
// Get actual timebase frequency
TimebaseSpeed = BusClockSpeed / 4;
DIR *cpus_dir;
if ((cpus_dir = opendir("/proc/device-tree/cpus")) != NULL) {
struct dirent *cpu_entry;
while ((cpu_entry = readdir(cpus_dir)) != NULL) {
if (strstr(cpu_entry->d_name, "PowerPC,") == cpu_entry->d_name) {
char timebase_freq_node[256];
sprintf(timebase_freq_node, "/proc/device-tree/cpus/%s/timebase-frequency", cpu_entry->d_name);
proc_file = fopen(timebase_freq_node, "r");
if (proc_file) {
union { uint8 b[4]; uint32 l; } value;
if (fread(value.b, sizeof(value), 1, proc_file) == 1)
TimebaseSpeed = value.l;
fclose(proc_file);
}
}
}
closedir(cpus_dir);
}
#endif
// Remap any newer G4/G5 processor to plain G4 for compatibility
switch (PVR >> 16) {
case 0x8000: // 7450
case 0x8001: // 7455
case 0x8002: // 7457
case 0x8003: // 7447A
case 0x8004: // 7448
case 0x0039: // 970
case 0x003c: // 970FX
case 0x0044: // 970MP
PVR = 0x000c0000; // 7400
break;
}
D(bug("PVR: %08x (assumed)\n", PVR));
}
static bool load_mac_rom(void)
{
uint32 rom_size, actual;
uint8 *rom_tmp;
const char *rom_path = PrefsFindString("rom");
int rom_fd = open(rom_path && *rom_path ? rom_path : ROM_FILE_NAME, O_RDONLY);
if (rom_fd < 0) {
rom_fd = open(ROM_FILE_NAME2, O_RDONLY);
if (rom_fd < 0) {
ErrorAlert(GetString(STR_NO_ROM_FILE_ERR));
return false;
}
}
printf("%s", GetString(STR_READING_ROM_FILE));
rom_size = lseek(rom_fd, 0, SEEK_END);
lseek(rom_fd, 0, SEEK_SET);
rom_tmp = new uint8[ROM_SIZE];
actual = read(rom_fd, (void *)rom_tmp, ROM_SIZE);
close(rom_fd);
// Decode Mac ROM
if (!DecodeROM(rom_tmp, actual)) {
if (rom_size != 4*1024*1024) {
ErrorAlert(GetString(STR_ROM_SIZE_ERR));
return false;
} else {
ErrorAlert(GetString(STR_ROM_FILE_READ_ERR));
return false;
}
}
delete[] rom_tmp;
return true;
}
static bool install_signal_handlers(void)
{
char str[256];
#if !EMULATED_PPC
// Create and install stacks for signal handlers
sig_stack.ss_sp = malloc(SIG_STACK_SIZE);
D(bug("Signal stack at %p\n", sig_stack.ss_sp));
if (sig_stack.ss_sp == NULL) {
ErrorAlert(GetString(STR_NOT_ENOUGH_MEMORY_ERR));
return false;
}
sig_stack.ss_flags = 0;
sig_stack.ss_size = SIG_STACK_SIZE;
if (sigaltstack(&sig_stack, NULL) < 0) {
sprintf(str, GetString(STR_SIGALTSTACK_ERR), strerror(errno));
ErrorAlert(str);
return false;
}
extra_stack.ss_sp = malloc(SIG_STACK_SIZE);
D(bug("Extra stack at %p\n", extra_stack.ss_sp));
if (extra_stack.ss_sp == NULL) {
ErrorAlert(GetString(STR_NOT_ENOUGH_MEMORY_ERR));
return false;
}
extra_stack.ss_flags = 0;
extra_stack.ss_size = SIG_STACK_SIZE;
// Install SIGSEGV and SIGBUS handlers
sigemptyset(&sigsegv_action.sa_mask); // Block interrupts during SEGV handling
sigaddset(&sigsegv_action.sa_mask, SIGUSR2);
sigsegv_action.sa_sigaction = sigsegv_handler;
sigsegv_action.sa_flags = SA_ONSTACK | SA_SIGINFO;
#ifdef HAVE_SIGNAL_SA_RESTORER
sigsegv_action.sa_restorer = NULL;
#endif
if (sigaction(SIGSEGV, &sigsegv_action, NULL) < 0) {
sprintf(str, GetString(STR_SIG_INSTALL_ERR), "SIGSEGV", strerror(errno));
ErrorAlert(str);
return false;
}
if (sigaction(SIGBUS, &sigsegv_action, NULL) < 0) {
sprintf(str, GetString(STR_SIG_INSTALL_ERR), "SIGBUS", strerror(errno));
ErrorAlert(str);
return false;
}
#else
// Install SIGSEGV handler for CPU emulator
if (!sigsegv_install_handler(sigsegv_handler)) {
sprintf(str, GetString(STR_SIG_INSTALL_ERR), "SIGSEGV", strerror(errno));
ErrorAlert(str);
return false;
}
#endif
return true;
}
#ifdef USE_SDL
static bool init_sdl()
{
int sdl_flags = 0;
#ifdef USE_SDL_VIDEO
sdl_flags |= SDL_INIT_VIDEO;
#endif
#ifdef USE_SDL_AUDIO
sdl_flags |= SDL_INIT_AUDIO;
#endif
assert(sdl_flags != 0);
#ifdef USE_SDL_VIDEO
// Don't let SDL block the screensaver
setenv("SDL_VIDEO_ALLOW_SCREENSAVER", "1", true);
// Make SDL pass through command-clicks and option-clicks unaltered
setenv("SDL_HAS3BUTTONMOUSE", "1", true);
#endif
if (SDL_Init(sdl_flags) == -1) {
char str[256];
sprintf(str, "Could not initialize SDL: %s.\n", SDL_GetError());
ErrorAlert(str);
return false;
}
atexit(SDL_Quit);
// Don't let SDL catch SIGINT and SIGTERM signals
signal(SIGINT, SIG_DFL);
signal(SIGTERM, SIG_DFL);
return true;
}
#endif
int main(int argc, char **argv)
{
char str[256];
bool memory_mapped_from_zero, ram_rom_areas_contiguous;
const char *vmdir = NULL;
// Initialize variables
RAMBase = 0;
tzset();
// Print some info
printf(GetString(STR_ABOUT_TEXT1), VERSION_MAJOR, VERSION_MINOR);
printf(" %s\n", GetString(STR_ABOUT_TEXT2));
#if !EMULATED_PPC
#ifdef SYSTEM_CLOBBERS_R2
// Get TOC pointer
TOC = get_r2();
#endif
#ifdef SYSTEM_CLOBBERS_R13
// Get r13 register
R13 = get_r13();
#endif
#endif
// Parse command line arguments
for (int i=1; i<argc; i++) {
if (strcmp(argv[i], "--help") == 0) {
usage(argv[0]);
#ifndef USE_SDL_VIDEO
} else if (strcmp(argv[i], "--display") == 0) {
i++;
if (i < argc)
x_display_name = strdup(argv[i]);
#endif
} else if (strcmp(argv[i], "--gui-connection") == 0) {
argv[i++] = NULL;
if (i < argc) {
gui_connection_path = argv[i];
argv[i] = NULL;
}
} else if (valid_vmdir(argv[i])) {
vmdir = argv[i];
argv[i] = NULL;
printf("Using %s as vmdir.\n", vmdir);
if (chdir(vmdir)) {
printf("Failed to chdir to %s. Good bye.", vmdir);
exit(1);
}
break;
}
}
// Remove processed arguments
for (int i=1; i<argc; i++) {
int k;
for (k=i; k<argc; k++)
if (argv[k] != NULL)
break;
if (k > i) {
k -= i;
for (int j=i+k; j<argc; j++)
argv[j-k] = argv[j];
argc -= k;
}
}
// Connect to the external GUI
if (gui_connection_path) {
if ((gui_connection = rpc_init_client(gui_connection_path)) == NULL) {
fprintf(stderr, "Failed to initialize RPC client connection to the GUI\n");
return 1;
}
}
#ifdef ENABLE_GTK
if (!gui_connection) {
// Init GTK
gtk_set_locale();
gtk_init(&argc, &argv);
}
#endif
// Read preferences
PrefsInit(vmdir, argc, argv);
// Any command line arguments left?
for (int i=1; i<argc; i++) {
if (argv[i][0] == '-') {
fprintf(stderr, "Unrecognized option '%s'\n", argv[i]);
usage(argv[0]);
}
}
#ifdef USE_SDL
// Initialize SDL system
if (!init_sdl())
goto quit;
#endif
#ifndef USE_SDL_VIDEO
// Open display
x_display = XOpenDisplay(x_display_name);
if (x_display == NULL) {
char str[256];
sprintf(str, GetString(STR_NO_XSERVER_ERR), XDisplayName(x_display_name));
ErrorAlert(str);
goto quit;
}
#if defined(ENABLE_XF86_DGA) && !defined(ENABLE_MON)
// Fork out, so we can return from fullscreen mode when things get ugly
XF86DGAForkApp(DefaultScreen(x_display));
#endif
#endif
#ifdef ENABLE_MON
// Initialize mon
mon_init();
#endif
// Install signal handlers
if (!install_signal_handlers())
goto quit;
// Initialize VM system
vm_init();
// Get system info
get_system_info();
// Init system routines
SysInit();
// Show preferences editor
if (!PrefsFindBool("nogui"))
if (!PrefsEditor())
goto quit;
#if !EMULATED_PPC
// Check some things
paranoia_check();
#endif
// Open /dev/zero
zero_fd = open("/dev/zero", O_RDWR);
if (zero_fd < 0) {
sprintf(str, GetString(STR_NO_DEV_ZERO_ERR), strerror(errno));
ErrorAlert(str);
goto quit;
}
// Create areas for Kernel Data
if (!kernel_data_init())
goto quit;
kernel_data = (KernelData *)Mac2HostAddr(KERNEL_DATA_BASE);
emulator_data = &kernel_data->ed;
KernelDataAddr = KERNEL_DATA_BASE;
D(bug("Kernel Data at %p (%08x)\n", kernel_data, KERNEL_DATA_BASE));
D(bug("Emulator Data at %p (%08x)\n", emulator_data, KERNEL_DATA_BASE + offsetof(KernelData, ed)));
// Create area for DR Cache
if (vm_mac_acquire_fixed(DR_EMULATOR_BASE, DR_EMULATOR_SIZE) < 0) {
sprintf(str, GetString(STR_DR_EMULATOR_MMAP_ERR), strerror(errno));
ErrorAlert(str);
goto quit;
}
dr_emulator_area_mapped = true;
if (vm_mac_acquire_fixed(DR_CACHE_BASE, DR_CACHE_SIZE) < 0) {
sprintf(str, GetString(STR_DR_CACHE_MMAP_ERR), strerror(errno));
ErrorAlert(str);
goto quit;
}
dr_cache_area_mapped = true;
#if !EMULATED_PPC
if (vm_protect((char *)DR_CACHE_BASE, DR_CACHE_SIZE, VM_PAGE_READ | VM_PAGE_WRITE | VM_PAGE_EXECUTE) < 0) {
sprintf(str, GetString(STR_DR_CACHE_MMAP_ERR), strerror(errno));
ErrorAlert(str);
goto quit;
}
#endif
DRCacheAddr = DR_CACHE_BASE;
D(bug("DR Cache at %p\n", DRCacheAddr));
// Create area for SheepShaver data
if (!SheepMem::Init()) {
sprintf(str, GetString(STR_SHEEP_MEM_MMAP_ERR), strerror(errno));
ErrorAlert(str);
goto quit;
}
// Create area for Mac RAM
RAMSize = PrefsFindInt32("ramsize");
if (RAMSize < 8*1024*1024) {
WarningAlert(GetString(STR_SMALL_RAM_WARN));
RAMSize = 8*1024*1024;
}
memory_mapped_from_zero = false;
ram_rom_areas_contiguous = false;
#if REAL_ADDRESSING && HAVE_LINKER_SCRIPT
if (vm_mac_acquire_fixed(0, RAMSize) == 0) {
D(bug("Could allocate RAM from 0x0000\n"));
RAMBase = 0;
RAMBaseHost = Mac2HostAddr(RAMBase);
memory_mapped_from_zero = true;
}
#endif
if (!memory_mapped_from_zero) {
#ifndef PAGEZERO_HACK
// Create Low Memory area (0x0000..0x3000)
if (vm_mac_acquire_fixed(0, 0x3000) < 0) {
sprintf(str, GetString(STR_LOW_MEM_MMAP_ERR), strerror(errno));
ErrorAlert(str);
goto quit;
}
lm_area_mapped = true;
#endif
#if REAL_ADDRESSING
// Allocate RAM at any address. Since ROM must be higher than RAM, allocate the RAM
// and ROM areas contiguously, plus a little extra to allow for ROM address alignment.
RAMBaseHost = vm_mac_acquire(RAMSize + ROM_AREA_SIZE + ROM_ALIGNMENT);
if (RAMBaseHost == VM_MAP_FAILED) {
sprintf(str, GetString(STR_RAM_ROM_MMAP_ERR), strerror(errno));
ErrorAlert(str);
goto quit;
}
RAMBase = Host2MacAddr(RAMBaseHost);
ROMBase = (RAMBase + RAMSize + ROM_ALIGNMENT -1) & -ROM_ALIGNMENT;
ROMBaseHost = Mac2HostAddr(ROMBase);
ram_rom_areas_contiguous = true;
#else
if (vm_mac_acquire_fixed(RAM_BASE, RAMSize) < 0) {
sprintf(str, GetString(STR_RAM_MMAP_ERR), strerror(errno));
ErrorAlert(str);
goto quit;
}
RAMBase = RAM_BASE;
RAMBaseHost = Mac2HostAddr(RAMBase);
#endif
}
#if !EMULATED_PPC
if (vm_protect(RAMBaseHost, RAMSize, VM_PAGE_READ | VM_PAGE_WRITE | VM_PAGE_EXECUTE) < 0) {
sprintf(str, GetString(STR_RAM_MMAP_ERR), strerror(errno));
ErrorAlert(str);
goto quit;
}
#endif
ram_area_mapped = true;
D(bug("RAM area at %p (%08x)\n", RAMBaseHost, RAMBase));
if (RAMBase > KernelDataAddr) {
ErrorAlert(GetString(STR_RAM_AREA_TOO_HIGH_ERR));
goto quit;
}
// Create area for Mac ROM
if (!ram_rom_areas_contiguous) {
if (vm_mac_acquire_fixed(ROM_BASE, ROM_AREA_SIZE) < 0) {
sprintf(str, GetString(STR_ROM_MMAP_ERR), strerror(errno));
ErrorAlert(str);
goto quit;
}
ROMBase = ROM_BASE;
ROMBaseHost = Mac2HostAddr(ROMBase);
}
#if !EMULATED_PPC
if (vm_protect(ROMBaseHost, ROM_AREA_SIZE, VM_PAGE_READ | VM_PAGE_WRITE | VM_PAGE_EXECUTE) < 0) {
sprintf(str, GetString(STR_ROM_MMAP_ERR), strerror(errno));
ErrorAlert(str);
goto quit;
}
#endif
rom_area_mapped = true;
D(bug("ROM area at %p (%08x)\n", ROMBaseHost, ROMBase));
if (RAMBase > ROMBase) {
ErrorAlert(GetString(STR_RAM_HIGHER_THAN_ROM_ERR));
goto quit;
}
// Load Mac ROM
if (!load_mac_rom())
goto quit;
// Initialize everything
if (!InitAll(vmdir))
goto quit;
D(bug("Initialization complete\n"));
// Clear caches (as we loaded and patched code) and write protect ROM
#if !EMULATED_PPC
flush_icache_range(ROMBase, ROMBase + ROM_AREA_SIZE);
#endif
vm_protect(ROMBaseHost, ROM_AREA_SIZE, VM_PAGE_READ | VM_PAGE_EXECUTE);
// Start 60Hz thread
tick_thread_cancel = false;
tick_thread_active = (pthread_create(&tick_thread, NULL, tick_func, NULL) == 0);
D(bug("Tick thread installed (%ld)\n", tick_thread));
// Start NVRAM watchdog thread
memcpy(last_xpram, XPRAM, XPRAM_SIZE);
nvram_thread_cancel = false;
nvram_thread_active = (pthread_create(&nvram_thread, NULL, nvram_func, NULL) == 0);
D(bug("NVRAM thread installed (%ld)\n", nvram_thread));
#if !EMULATED_PPC
// Install SIGILL handler
sigemptyset(&sigill_action.sa_mask); // Block interrupts during ILL handling
sigaddset(&sigill_action.sa_mask, SIGUSR2);
sigill_action.sa_sigaction = sigill_handler;
sigill_action.sa_flags = SA_ONSTACK | SA_SIGINFO;
#ifdef HAVE_SIGNAL_SA_RESTORER
sigill_action.sa_restorer = NULL;
#endif
if (sigaction(SIGILL, &sigill_action, NULL) < 0) {
sprintf(str, GetString(STR_SIG_INSTALL_ERR), "SIGILL", strerror(errno));
ErrorAlert(str);
goto quit;
}
#endif
#if !EMULATED_PPC
// Install interrupt signal handler
sigemptyset(&sigusr2_action.sa_mask);
sigusr2_action.sa_sigaction = sigusr2_handler_init;
sigusr2_action.sa_flags = SA_ONSTACK | SA_RESTART | SA_SIGINFO;
#ifdef HAVE_SIGNAL_SA_RESTORER
sigusr2_action.sa_restorer = NULL;
#endif
if (sigaction(SIGUSR2, &sigusr2_action, NULL) < 0) {
sprintf(str, GetString(STR_SIG_INSTALL_ERR), "SIGUSR2", strerror(errno));
ErrorAlert(str);
goto quit;
}
#endif
// Get my thread ID and execute MacOS thread function
emul_thread = pthread_self();
D(bug("MacOS thread is %ld\n", emul_thread));
emul_func(NULL);
quit:
Quit();
return 0;
}
/*
* Cleanup and quit
*/
static void Quit(void)
{
#if EMULATED_PPC
// Exit PowerPC emulation
exit_emul_ppc();
#endif
// Stop 60Hz thread
if (tick_thread_active) {
tick_thread_cancel = true;
pthread_cancel(tick_thread);
pthread_join(tick_thread, NULL);
}
// Stop NVRAM watchdog thread
if (nvram_thread_active) {
nvram_thread_cancel = true;
pthread_cancel(nvram_thread);
pthread_join(nvram_thread, NULL);
}
#if !EMULATED_PPC
// Uninstall SIGSEGV and SIGBUS handlers
sigemptyset(&sigsegv_action.sa_mask);
sigsegv_action.sa_handler = SIG_DFL;
sigsegv_action.sa_flags = 0;
sigaction(SIGSEGV, &sigsegv_action, NULL);
sigaction(SIGBUS, &sigsegv_action, NULL);
// Uninstall SIGILL handler
sigemptyset(&sigill_action.sa_mask);
sigill_action.sa_handler = SIG_DFL;
sigill_action.sa_flags = 0;
sigaction(SIGILL, &sigill_action, NULL);
// Delete stacks for signal handlers
if (sig_stack.ss_sp)
free(sig_stack.ss_sp);
if (extra_stack.ss_sp)
free(extra_stack.ss_sp);
#endif
// Deinitialize everything
ExitAll();
// Delete SheepShaver globals
SheepMem::Exit();
// Delete RAM area
if (ram_area_mapped)
vm_mac_release(RAMBase, RAMSize);
// Delete ROM area
if (rom_area_mapped)
vm_mac_release(ROMBase, ROM_AREA_SIZE);
// Delete DR cache areas
if (dr_emulator_area_mapped)
vm_mac_release(DR_EMULATOR_BASE, DR_EMULATOR_SIZE);
if (dr_cache_area_mapped)
vm_mac_release(DR_CACHE_BASE, DR_CACHE_SIZE);
// Delete Low Memory area
if (lm_area_mapped)
vm_mac_release(0, 0x3000);
// Close /dev/zero
if (zero_fd > 0)
close(zero_fd);
// Exit system routines
SysExit();
// Exit preferences
PrefsExit();
#ifdef ENABLE_MON
// Exit mon
mon_exit();
#endif
// Close X11 server connection
#ifndef USE_SDL_VIDEO
if (x_display)
XCloseDisplay(x_display);
#endif
// Notify GUI we are about to leave
if (gui_connection) {
if (rpc_method_invoke(gui_connection, RPC_METHOD_EXIT, RPC_TYPE_INVALID) == RPC_ERROR_NO_ERROR)
rpc_method_wait_for_reply(gui_connection, RPC_TYPE_INVALID);
}
exit(0);
}
/*
* Initialize Kernel Data segments
*/
static bool kernel_data_init(void)
{
int error_string = STR_KD_SHMGET_ERR;
uint32 kernel_area_size = (KERNEL_AREA_SIZE + SHMLBA - 1) & -SHMLBA;
int kernel_area = shmget(IPC_PRIVATE, kernel_area_size, 0600);
if (kernel_area != -1) {
bool mapped =
shm_map_address(kernel_area, KERNEL_DATA_BASE & -SHMLBA) &&
shm_map_address(kernel_area, KERNEL_DATA2_BASE & -SHMLBA);
// Mark the shared memory segment for removal. This is safe to do
// because the deletion is not performed while the memory is still
// mapped and so will only be done once the process exits.
shmctl(kernel_area, IPC_RMID, NULL);
if (mapped)
return true;
error_string = STR_KD_SHMAT_ERR;
}
char str[256];
sprintf(str, GetString(error_string), strerror(errno));
ErrorAlert(str);
return false;
}
/*
* Maps the memory identified by kernel_area at the specified addr
*/
static bool shm_map_address(int kernel_area, uint32 addr)
{
void *kernel_addr = Mac2HostAddr(addr);
return shmat(kernel_area, kernel_addr, 0) == kernel_addr;
}
/*
* Jump into Mac ROM, start 680x0 emulator
*/
#if EMULATED_PPC
void jump_to_rom(uint32 entry)
{
init_emul_ppc();
emul_ppc(entry);
}
#endif
/*
* Emulator thread function
*/
static void *emul_func(void *arg)
{
// We're now ready to receive signals
ready_for_signals = true;
// Decrease priority, so more time-critical things like audio will work better
nice(1);
// Jump to ROM boot routine
D(bug("Jumping to ROM\n"));
#if EMULATED_PPC
jump_to_rom(ROMBase + 0x310000);
#else
jump_to_rom(ROMBase + 0x310000, (uint32)emulator_data);
#endif
D(bug("Returned from ROM\n"));
// We're no longer ready to receive signals
ready_for_signals = false;
return NULL;
}
#if !EMULATED_PPC
/*
* Execute 68k subroutine (must be ended with RTS)
* This must only be called by the emul_thread when in EMUL_OP mode
* r->a[7] is unused, the routine runs on the caller's stack
*/
void Execute68k(uint32 pc, M68kRegisters *r)
{
#if SAFE_EXEC_68K
if (ReadMacInt32(XLM_RUN_MODE) != MODE_EMUL_OP)
printf("FATAL: Execute68k() not called from EMUL_OP mode\n");
if (!pthread_equal(pthread_self(), emul_thread))
printf("FATAL: Execute68k() not called from emul_thread\n");
#endif
execute_68k(pc, r);
}
/*
* Execute 68k A-Trap from EMUL_OP routine
* r->a[7] is unused, the routine runs on the caller's stack
*/
void Execute68kTrap(uint16 trap, M68kRegisters *r)
{
uint16 proc[2] = {trap, M68K_RTS};
Execute68k((uint32)proc, r);
}
#endif
/*
* Quit emulator (cause return from jump_to_rom)
*/
void QuitEmulator(void)
{
#if EMULATED_PPC
Quit();
#else
quit_emulator();
#endif
}
/*
* Dump 68k registers
*/
void Dump68kRegs(M68kRegisters *r)
{
// Display 68k registers
for (int i=0; i<8; i++) {
printf("d%d: %08x", i, r->d[i]);
if (i == 3 || i == 7)
printf("\n");
else
printf(", ");
}
for (int i=0; i<8; i++) {
printf("a%d: %08x", i, r->a[i]);
if (i == 3 || i == 7)
printf("\n");
else
printf(", ");
}
}
/*
* Make code executable
*/
void MakeExecutable(int dummy, uint32 start, uint32 length)
{
if ((start >= ROMBase) && (start < (ROMBase + ROM_SIZE)))
return;
#if EMULATED_PPC
FlushCodeCache(start, start + length);
#else
flush_icache_range(start, start + length);
#endif
}
/*
* NVRAM watchdog thread (saves NVRAM every minute)
*/
static void nvram_watchdog(void)
{
if (memcmp(last_xpram, XPRAM, XPRAM_SIZE)) {
memcpy(last_xpram, XPRAM, XPRAM_SIZE);
SaveXPRAM();
}
}
static void *nvram_func(void *arg)
{
while (!nvram_thread_cancel) {
for (int i=0; i<60 && !nvram_thread_cancel; i++)
Delay_usec(999999); // Only wait 1 second so we quit promptly when nvram_thread_cancel becomes true
nvram_watchdog();
}
return NULL;
}
/*
* 60Hz thread (really 60.15Hz)
*/
static void *tick_func(void *arg)
{
int tick_counter = 0;
uint64 start = GetTicks_usec();
int64 ticks = 0;
uint64 next = GetTicks_usec();
while (!tick_thread_cancel) {
// Wait
next += 16625;
int64 delay = next - GetTicks_usec();
if (delay > 0)
Delay_usec(delay);
else if (delay < -16625)
next = GetTicks_usec();
ticks++;
#if !EMULATED_PPC
// Did we crash?
if (emul_thread_fatal) {
// Yes, dump registers
sigregs *r = &sigsegv_regs;
char str[256];
if (crash_reason == NULL)
crash_reason = "SIGSEGV";
sprintf(str, "%s\n"
" pc %08lx lr %08lx ctr %08lx msr %08lx\n"
" xer %08lx cr %08lx \n"
" r0 %08lx r1 %08lx r2 %08lx r3 %08lx\n"
" r4 %08lx r5 %08lx r6 %08lx r7 %08lx\n"
" r8 %08lx r9 %08lx r10 %08lx r11 %08lx\n"
" r12 %08lx r13 %08lx r14 %08lx r15 %08lx\n"
" r16 %08lx r17 %08lx r18 %08lx r19 %08lx\n"
" r20 %08lx r21 %08lx r22 %08lx r23 %08lx\n"
" r24 %08lx r25 %08lx r26 %08lx r27 %08lx\n"
" r28 %08lx r29 %08lx r30 %08lx r31 %08lx\n",
crash_reason,
r->nip, r->link, r->ctr, r->msr,
r->xer, r->ccr,
r->gpr[0], r->gpr[1], r->gpr[2], r->gpr[3],
r->gpr[4], r->gpr[5], r->gpr[6], r->gpr[7],
r->gpr[8], r->gpr[9], r->gpr[10], r->gpr[11],
r->gpr[12], r->gpr[13], r->gpr[14], r->gpr[15],
r->gpr[16], r->gpr[17], r->gpr[18], r->gpr[19],
r->gpr[20], r->gpr[21], r->gpr[22], r->gpr[23],
r->gpr[24], r->gpr[25], r->gpr[26], r->gpr[27],
r->gpr[28], r->gpr[29], r->gpr[30], r->gpr[31]);
printf(str);
VideoQuitFullScreen();
#ifdef ENABLE_MON
// Start up mon in real-mode
printf("Welcome to the sheep factory.\n");
const char *arg[4] = {"mon", "-m", "-r", NULL};
mon(3, arg);
#endif
return NULL;
}
#endif
// Pseudo Mac 1Hz interrupt, update local time
if (++tick_counter > 60) {
tick_counter = 0;
WriteMacInt32(0x20c, TimerDateTime());
}
// Trigger 60Hz interrupt
if (ReadMacInt32(XLM_IRQ_NEST) == 0) {
SetInterruptFlag(INTFLAG_VIA);
TriggerInterrupt();
}
}
uint64 end = GetTicks_usec();
D(bug("%lld ticks in %lld usec = %f ticks/sec\n", ticks, end - start, ticks * 1000000.0 / (end - start)));
return NULL;
}
/*
* Pthread configuration
*/
void Set_pthread_attr(pthread_attr_t *attr, int priority)
{
#ifdef HAVE_PTHREADS
pthread_attr_init(attr);
#if defined(_POSIX_THREAD_PRIORITY_SCHEDULING)
// Some of these only work for superuser
if (geteuid() == 0) {
pthread_attr_setinheritsched(attr, PTHREAD_EXPLICIT_SCHED);
pthread_attr_setschedpolicy(attr, SCHED_FIFO);
struct sched_param fifo_param;
fifo_param.sched_priority = ((sched_get_priority_min(SCHED_FIFO) +
sched_get_priority_max(SCHED_FIFO)) / 2 +
priority);
pthread_attr_setschedparam(attr, &fifo_param);
}
if (pthread_attr_setscope(attr, PTHREAD_SCOPE_SYSTEM) != 0) {
#ifdef PTHREAD_SCOPE_BOUND_NP
// If system scope is not available (eg. we're not running
// with CAP_SCHED_MGT capability on an SGI box), try bound
// scope. It exposes pthread scheduling to the kernel,
// without setting realtime priority.
pthread_attr_setscope(attr, PTHREAD_SCOPE_BOUND_NP);
#endif
}
#endif
#endif
}
/*
* Mutexes
*/
#ifdef HAVE_PTHREADS
struct B2_mutex {
B2_mutex() {
pthread_mutexattr_t attr;
pthread_mutexattr_init(&attr);
// Initialize the mutex for priority inheritance --
// required for accurate timing.
#if defined(HAVE_PTHREAD_MUTEXATTR_SETPROTOCOL) && !defined(__CYGWIN__)
pthread_mutexattr_setprotocol(&attr, PTHREAD_PRIO_INHERIT);
#endif
#if defined(HAVE_PTHREAD_MUTEXATTR_SETTYPE) && defined(PTHREAD_MUTEX_NORMAL)
pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_NORMAL);
#endif
#ifdef HAVE_PTHREAD_MUTEXATTR_SETPSHARED
pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_PRIVATE);
#endif
pthread_mutex_init(&m, &attr);
pthread_mutexattr_destroy(&attr);
}
~B2_mutex() {
pthread_mutex_trylock(&m); // Make sure it's locked before
pthread_mutex_unlock(&m); // unlocking it.
pthread_mutex_destroy(&m);
}
pthread_mutex_t m;
};
B2_mutex *B2_create_mutex(void)
{
return new B2_mutex;
}
void B2_lock_mutex(B2_mutex *mutex)
{
pthread_mutex_lock(&mutex->m);
}
void B2_unlock_mutex(B2_mutex *mutex)
{
pthread_mutex_unlock(&mutex->m);
}
void B2_delete_mutex(B2_mutex *mutex)
{
delete mutex;
}
#else
struct B2_mutex {
int dummy;
};
B2_mutex *B2_create_mutex(void)
{
return new B2_mutex;
}
void B2_lock_mutex(B2_mutex *mutex)
{
}
void B2_unlock_mutex(B2_mutex *mutex)
{
}
void B2_delete_mutex(B2_mutex *mutex)
{
delete mutex;
}
#endif
/*
* Trigger signal USR2 from another thread
*/
#if !EMULATED_PPC
void TriggerInterrupt(void)
{
if (ready_for_signals) {
idle_resume();
pthread_kill(emul_thread, SIGUSR2);
}
}
#endif
/*
* Interrupt flags (must be handled atomically!)
*/
volatile uint32 InterruptFlags = 0;
void SetInterruptFlag(uint32 flag)
{
atomic_or((int *)&InterruptFlags, flag);
}
void ClearInterruptFlag(uint32 flag)
{
atomic_and((int *)&InterruptFlags, ~flag);
}
/*
* Disable interrupts
*/
void DisableInterrupt(void)
{
#if EMULATED_PPC
WriteMacInt32(XLM_IRQ_NEST, int32(ReadMacInt32(XLM_IRQ_NEST)) + 1);
#else
atomic_add((int *)XLM_IRQ_NEST, 1);
#endif
}
/*
* Enable interrupts
*/
void EnableInterrupt(void)
{
#if EMULATED_PPC
WriteMacInt32(XLM_IRQ_NEST, int32(ReadMacInt32(XLM_IRQ_NEST)) - 1);
#else
atomic_add((int *)XLM_IRQ_NEST, -1);
#endif
}
/*
* USR2 handler
*/
#if !EMULATED_PPC
void sigusr2_handler(int sig, siginfo_t *sip, void *scp)
{
machine_regs *r = MACHINE_REGISTERS(scp);
#ifdef SYSTEM_CLOBBERS_R2
// Restore pointer to Thread Local Storage
set_r2(TOC);
#endif
#ifdef SYSTEM_CLOBBERS_R13
// Restore pointer to .sdata section
set_r13(R13);
#endif
#ifdef USE_SDL_VIDEO
// We must fill in the events queue in the same thread that did call SDL_SetVideoMode()
SDL_PumpEvents();
#endif
// Do nothing if interrupts are disabled
if (*(int32 *)XLM_IRQ_NEST > 0)
return;
// Disable MacOS stack sniffer
WriteMacInt32(0x110, 0);
// Interrupt action depends on current run mode
switch (ReadMacInt32(XLM_RUN_MODE)) {
case MODE_68K:
// 68k emulator active, trigger 68k interrupt level 1
WriteMacInt16(ntohl(kernel_data->v[0x67c >> 2]), 1);
r->cr() |= ntohl(kernel_data->v[0x674 >> 2]);
break;
#if INTERRUPTS_IN_NATIVE_MODE
case MODE_NATIVE:
// 68k emulator inactive, in nanokernel?
if (r->gpr(1) != KernelDataAddr) {
// Set extra stack for SIGSEGV handler
sigaltstack(&extra_stack, NULL);
// Prepare for 68k interrupt level 1
WriteMacInt16(ntohl(kernel_data->v[0x67c >> 2]), 1);
WriteMacInt32(ntohl(kernel_data->v[0x658 >> 2]) + 0xdc, ReadMacInt32(ntohl(kernel_data->v[0x658 >> 2]) + 0xdc) | ntohl(kernel_data->v[0x674 >> 2]));
// Execute nanokernel interrupt routine (this will activate the 68k emulator)
DisableInterrupt();
if (ROMType == ROMTYPE_NEWWORLD)
ppc_interrupt(ROMBase + 0x312b1c, KernelDataAddr);
else
ppc_interrupt(ROMBase + 0x312a3c, KernelDataAddr);
// Reset normal stack
sigaltstack(&sig_stack, NULL);
}
break;
#endif
#if INTERRUPTS_IN_EMUL_OP_MODE
case MODE_EMUL_OP:
// 68k emulator active, within EMUL_OP routine, execute 68k interrupt routine directly when interrupt level is 0
if ((ReadMacInt32(XLM_68K_R25) & 7) == 0) {
// Set extra stack for SIGSEGV handler
sigaltstack(&extra_stack, NULL);
#if 1
// Execute full 68k interrupt routine
M68kRegisters r;
uint32 old_r25 = ReadMacInt32(XLM_68K_R25); // Save interrupt level
WriteMacInt32(XLM_68K_R25, 0x21); // Execute with interrupt level 1
static const uint16 proc[] = {
0x3f3c, 0x0000, // move.w #$0000,-(sp) (fake format word)
0x487a, 0x000a, // pea @1(pc) (return address)
0x40e7, // move sr,-(sp) (saved SR)
0x2078, 0x0064, // move.l $64,a0
0x4ed0, // jmp (a0)
M68K_RTS // @1
};
Execute68k((uint32)proc, &r);
WriteMacInt32(XLM_68K_R25, old_r25); // Restore interrupt level
#else
// Only update cursor
if (HasMacStarted()) {
if (InterruptFlags & INTFLAG_VIA) {
ClearInterruptFlag(INTFLAG_VIA);
ADBInterrupt();
ExecuteNative(NATIVE_VIDEO_VBL);
}
}
#endif
// Reset normal stack
sigaltstack(&sig_stack, NULL);
}
break;
#endif
}
}
#endif
/*
* SIGSEGV handler
*/
#if !EMULATED_PPC
static void sigsegv_handler(int sig, siginfo_t *sip, void *scp)
{
machine_regs *r = MACHINE_REGISTERS(scp);
// Get effective address
uint32 addr = r->dar();
#ifdef SYSTEM_CLOBBERS_R2
// Restore pointer to Thread Local Storage
set_r2(TOC);
#endif
#ifdef SYSTEM_CLOBBERS_R13
// Restore pointer to .sdata section
set_r13(R13);
#endif
#if ENABLE_VOSF
// Handle screen fault
#if SIGSEGV_CHECK_VERSION(1,0,0)
sigsegv_info_t si;
si.addr = (sigsegv_address_t)addr;
si.pc = (sigsegv_address_t)r->pc();
#endif
extern bool Screen_fault_handler(sigsegv_info_t *sip);
if (Screen_fault_handler(&si))
return;
#endif
// Fault in Mac ROM or RAM or DR Cache?
bool mac_fault = (r->pc() >= ROMBase) && (r->pc() < (ROMBase + ROM_AREA_SIZE)) || (r->pc() >= RAMBase) && (r->pc() < (RAMBase + RAMSize)) || (r->pc() >= DR_CACHE_BASE && r->pc() < (DR_CACHE_BASE + DR_CACHE_SIZE));
if (mac_fault) {
// "VM settings" during MacOS 8 installation
if (r->pc() == ROMBase + 0x488160 && r->gpr(20) == 0xf8000000) {
r->pc() += 4;
r->gpr(8) = 0;
return;
// MacOS 8.5 installation
} else if (r->pc() == ROMBase + 0x488140 && r->gpr(16) == 0xf8000000) {
r->pc() += 4;
r->gpr(8) = 0;
return;
// MacOS 8 serial drivers on startup
} else if (r->pc() == ROMBase + 0x48e080 && (r->gpr(8) == 0xf3012002 || r->gpr(8) == 0xf3012000)) {
r->pc() += 4;
r->gpr(8) = 0;
return;
// MacOS 8.1 serial drivers on startup
} else if (r->pc() == ROMBase + 0x48c5e0 && (r->gpr(20) == 0xf3012002 || r->gpr(20) == 0xf3012000)) {
r->pc() += 4;
return;
} else if (r->pc() == ROMBase + 0x4a10a0 && (r->gpr(20) == 0xf3012002 || r->gpr(20) == 0xf3012000)) {
r->pc() += 4;
return;
// MacOS 8.6 serial drivers on startup (with DR Cache and OldWorld ROM)
} else if ((r->pc() - DR_CACHE_BASE) < DR_CACHE_SIZE && (r->gpr(16) == 0xf3012002 || r->gpr(16) == 0xf3012000)) {
r->pc() += 4;
return;
} else if ((r->pc() - DR_CACHE_BASE) < DR_CACHE_SIZE && (r->gpr(20) == 0xf3012002 || r->gpr(20) == 0xf3012000)) {
r->pc() += 4;
return;
}
// Get opcode and divide into fields
uint32 opcode = *((uint32 *)r->pc());
uint32 primop = opcode >> 26;
uint32 exop = (opcode >> 1) & 0x3ff;
uint32 ra = (opcode >> 16) & 0x1f;
uint32 rb = (opcode >> 11) & 0x1f;
uint32 rd = (opcode >> 21) & 0x1f;
int32 imm = (int16)(opcode & 0xffff);
// Analyze opcode
enum {
TYPE_UNKNOWN,
TYPE_LOAD,
TYPE_STORE
} transfer_type = TYPE_UNKNOWN;
enum {
SIZE_UNKNOWN,
SIZE_BYTE,
SIZE_HALFWORD,
SIZE_WORD
} transfer_size = SIZE_UNKNOWN;
enum {
MODE_UNKNOWN,
MODE_NORM,
MODE_U,
MODE_X,
MODE_UX
} addr_mode = MODE_UNKNOWN;
switch (primop) {
case 31:
switch (exop) {
case 23: // lwzx
transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
case 55: // lwzux
transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
case 87: // lbzx
transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
case 119: // lbzux
transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
case 151: // stwx
transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_X; break;
case 183: // stwux
transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_UX; break;
case 215: // stbx
transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_X; break;
case 247: // stbux
transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_UX; break;
case 279: // lhzx
transfer_type = TYPE_LOAD; transfer_size = SIZE_HALFWORD; addr_mode = MODE_X; break;
case 311: // lhzux
transfer_type = TYPE_LOAD; transfer_size = SIZE_HALFWORD; addr_mode = MODE_UX; break;
case 343: // lhax
transfer_type = TYPE_LOAD; transfer_size = SIZE_HALFWORD; addr_mode = MODE_X; break;
case 375: // lhaux
transfer_type = TYPE_LOAD; transfer_size = SIZE_HALFWORD; addr_mode = MODE_UX; break;
case 407: // sthx
transfer_type = TYPE_STORE; transfer_size = SIZE_HALFWORD; addr_mode = MODE_X; break;
case 439: // sthux
transfer_type = TYPE_STORE; transfer_size = SIZE_HALFWORD; addr_mode = MODE_UX; break;
}
break;
case 32: // lwz
transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
case 33: // lwzu
transfer_type = TYPE_LOAD; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
case 34: // lbz
transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
case 35: // lbzu
transfer_type = TYPE_LOAD; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
case 36: // stw
transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_NORM; break;
case 37: // stwu
transfer_type = TYPE_STORE; transfer_size = SIZE_WORD; addr_mode = MODE_U; break;
case 38: // stb
transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_NORM; break;
case 39: // stbu
transfer_type = TYPE_STORE; transfer_size = SIZE_BYTE; addr_mode = MODE_U; break;
case 40: // lhz
transfer_type = TYPE_LOAD; transfer_size = SIZE_HALFWORD; addr_mode = MODE_NORM; break;
case 41: // lhzu
transfer_type = TYPE_LOAD; transfer_size = SIZE_HALFWORD; addr_mode = MODE_U; break;
case 42: // lha
transfer_type = TYPE_LOAD; transfer_size = SIZE_HALFWORD; addr_mode = MODE_NORM; break;
case 43: // lhau
transfer_type = TYPE_LOAD; transfer_size = SIZE_HALFWORD; addr_mode = MODE_U; break;
case 44: // sth
transfer_type = TYPE_STORE; transfer_size = SIZE_HALFWORD; addr_mode = MODE_NORM; break;
case 45: // sthu
transfer_type = TYPE_STORE; transfer_size = SIZE_HALFWORD; addr_mode = MODE_U; break;
#if EMULATE_UNALIGNED_LOADSTORE_MULTIPLE
case 46: // lmw
if ((addr % 4) != 0) {
uint32 ea = addr;
D(bug("WARNING: unaligned lmw to EA=%08x from IP=%08x\n", ea, r->pc()));
for (int i = rd; i <= 31; i++) {
r->gpr(i) = ReadMacInt32(ea);
ea += 4;
}
r->pc() += 4;
goto rti;
}
break;
case 47: // stmw
if ((addr % 4) != 0) {
uint32 ea = addr;
D(bug("WARNING: unaligned stmw to EA=%08x from IP=%08x\n", ea, r->pc()));
for (int i = rd; i <= 31; i++) {
WriteMacInt32(ea, r->gpr(i));
ea += 4;
}
r->pc() += 4;
goto rti;
}
break;
#endif
}
// Ignore ROM writes (including to the zero page, which is read-only)
if (transfer_type == TYPE_STORE &&
((addr >= ROMBase && addr < ROMBase + ROM_SIZE) ||
(addr >= SheepMem::ZeroPage() && addr < SheepMem::ZeroPage() + SheepMem::PageSize()))) {
// D(bug("WARNING: %s write access to ROM at %08lx, pc %08lx\n", transfer_size == SIZE_BYTE ? "Byte" : transfer_size == SIZE_HALFWORD ? "Halfword" : "Word", addr, r->pc()));
if (addr_mode == MODE_U || addr_mode == MODE_UX)
r->gpr(ra) = addr;
r->pc() += 4;
goto rti;
}
// Ignore illegal memory accesses?
if (PrefsFindBool("ignoresegv")) {
if (addr_mode == MODE_U || addr_mode == MODE_UX)
r->gpr(ra) = addr;
if (transfer_type == TYPE_LOAD)
r->gpr(rd) = 0;
r->pc() += 4;
goto rti;
}
// In GUI mode, show error alert
if (!PrefsFindBool("nogui")) {
char str[256];
if (transfer_type == TYPE_LOAD || transfer_type == TYPE_STORE)
sprintf(str, GetString(STR_MEM_ACCESS_ERR), transfer_size == SIZE_BYTE ? "byte" : transfer_size == SIZE_HALFWORD ? "halfword" : "word", transfer_type == TYPE_LOAD ? GetString(STR_MEM_ACCESS_READ) : GetString(STR_MEM_ACCESS_WRITE), addr, r->pc(), r->gpr(24), r->gpr(1));
else
sprintf(str, GetString(STR_UNKNOWN_SEGV_ERR), r->pc(), r->gpr(24), r->gpr(1), opcode);
ErrorAlert(str);
QuitEmulator();
return;
}
}
// For all other errors, jump into debugger (sort of...)
crash_reason = (sig == SIGBUS) ? "SIGBUS" : "SIGSEGV";
if (!ready_for_signals) {
printf("%s\n");
printf(" sigcontext %p, machine_regs %p\n", scp, r);
printf(
" pc %08lx lr %08lx ctr %08lx msr %08lx\n"
" xer %08lx cr %08lx \n"
" r0 %08lx r1 %08lx r2 %08lx r3 %08lx\n"
" r4 %08lx r5 %08lx r6 %08lx r7 %08lx\n"
" r8 %08lx r9 %08lx r10 %08lx r11 %08lx\n"
" r12 %08lx r13 %08lx r14 %08lx r15 %08lx\n"
" r16 %08lx r17 %08lx r18 %08lx r19 %08lx\n"
" r20 %08lx r21 %08lx r22 %08lx r23 %08lx\n"
" r24 %08lx r25 %08lx r26 %08lx r27 %08lx\n"
" r28 %08lx r29 %08lx r30 %08lx r31 %08lx\n",
crash_reason,
r->pc(), r->lr(), r->ctr(), r->msr(),
r->xer(), r->cr(),
r->gpr(0), r->gpr(1), r->gpr(2), r->gpr(3),
r->gpr(4), r->gpr(5), r->gpr(6), r->gpr(7),
r->gpr(8), r->gpr(9), r->gpr(10), r->gpr(11),
r->gpr(12), r->gpr(13), r->gpr(14), r->gpr(15),
r->gpr(16), r->gpr(17), r->gpr(18), r->gpr(19),
r->gpr(20), r->gpr(21), r->gpr(22), r->gpr(23),
r->gpr(24), r->gpr(25), r->gpr(26), r->gpr(27),
r->gpr(28), r->gpr(29), r->gpr(30), r->gpr(31));
exit(1);
QuitEmulator();
return;
} else {
// We crashed. Save registers, tell tick thread and loop forever
build_sigregs(&sigsegv_regs, r);
emul_thread_fatal = true;
for (;;) ;
}
rti:;
}
/*
* SIGILL handler
*/
static void sigill_handler(int sig, siginfo_t *sip, void *scp)
{
machine_regs *r = MACHINE_REGISTERS(scp);
char str[256];
#ifdef SYSTEM_CLOBBERS_R2
// Restore pointer to Thread Local Storage
set_r2(TOC);
#endif
#ifdef SYSTEM_CLOBBERS_R13
// Restore pointer to .sdata section
set_r13(R13);
#endif
// Fault in Mac ROM or RAM?
bool mac_fault = (r->pc() >= ROMBase) && (r->pc() < (ROMBase + ROM_AREA_SIZE)) || (r->pc() >= RAMBase) && (r->pc() < (RAMBase + RAMSize));
if (mac_fault) {
// Get opcode and divide into fields
uint32 opcode = *((uint32 *)r->pc());
uint32 primop = opcode >> 26;
uint32 exop = (opcode >> 1) & 0x3ff;
uint32 ra = (opcode >> 16) & 0x1f;
uint32 rb = (opcode >> 11) & 0x1f;
uint32 rd = (opcode >> 21) & 0x1f;
int32 imm = (int16)(opcode & 0xffff);
switch (primop) {
case 9: // POWER instructions
case 22:
power_inst: sprintf(str, GetString(STR_POWER_INSTRUCTION_ERR), r->pc(), r->gpr(1), opcode);
ErrorAlert(str);
QuitEmulator();
return;
case 31:
switch (exop) {
case 83: // mfmsr
r->gpr(rd) = 0xf072;
r->pc() += 4;
goto rti;
case 210: // mtsr
case 242: // mtsrin
case 306: // tlbie
r->pc() += 4;
goto rti;
case 339: { // mfspr
int spr = ra | (rb << 5);
switch (spr) {
case 0: // MQ
case 22: // DEC
case 952: // MMCR0
case 953: // PMC1
case 954: // PMC2
case 955: // SIA
case 956: // MMCR1
case 957: // PMC3
case 958: // PMC4
case 959: // SDA
r->pc() += 4;
goto rti;
case 25: // SDR1
r->gpr(rd) = 0xdead001f;
r->pc() += 4;
goto rti;
case 287: // PVR
r->gpr(rd) = PVR;
r->pc() += 4;
goto rti;
}
break;
}
case 467: { // mtspr
int spr = ra | (rb << 5);
switch (spr) {
case 0: // MQ
case 22: // DEC
case 275: // SPRG3
case 528: // IBAT0U
case 529: // IBAT0L
case 530: // IBAT1U
case 531: // IBAT1L
case 532: // IBAT2U
case 533: // IBAT2L
case 534: // IBAT3U
case 535: // IBAT3L
case 536: // DBAT0U
case 537: // DBAT0L
case 538: // DBAT1U
case 539: // DBAT1L
case 540: // DBAT2U
case 541: // DBAT2L
case 542: // DBAT3U
case 543: // DBAT3L
case 952: // MMCR0
case 953: // PMC1
case 954: // PMC2
case 955: // SIA
case 956: // MMCR1
case 957: // PMC3
case 958: // PMC4
case 959: // SDA
r->pc() += 4;
goto rti;
}
break;
}
case 29: case 107: case 152: case 153: // POWER instructions
case 184: case 216: case 217: case 248:
case 264: case 277: case 331: case 360:
case 363: case 488: case 531: case 537:
case 541: case 664: case 665: case 696:
case 728: case 729: case 760: case 920:
case 921: case 952:
goto power_inst;
}
}
// In GUI mode, show error alert
if (!PrefsFindBool("nogui")) {
sprintf(str, GetString(STR_UNKNOWN_SEGV_ERR), r->pc(), r->gpr(24), r->gpr(1), opcode);
ErrorAlert(str);
QuitEmulator();
return;
}
}
// For all other errors, jump into debugger (sort of...)
crash_reason = "SIGILL";
if (!ready_for_signals) {
printf("%s\n");
printf(" sigcontext %p, machine_regs %p\n", scp, r);
printf(
" pc %08lx lr %08lx ctr %08lx msr %08lx\n"
" xer %08lx cr %08lx \n"
" r0 %08lx r1 %08lx r2 %08lx r3 %08lx\n"
" r4 %08lx r5 %08lx r6 %08lx r7 %08lx\n"
" r8 %08lx r9 %08lx r10 %08lx r11 %08lx\n"
" r12 %08lx r13 %08lx r14 %08lx r15 %08lx\n"
" r16 %08lx r17 %08lx r18 %08lx r19 %08lx\n"
" r20 %08lx r21 %08lx r22 %08lx r23 %08lx\n"
" r24 %08lx r25 %08lx r26 %08lx r27 %08lx\n"
" r28 %08lx r29 %08lx r30 %08lx r31 %08lx\n",
crash_reason,
r->pc(), r->lr(), r->ctr(), r->msr(),
r->xer(), r->cr(),
r->gpr(0), r->gpr(1), r->gpr(2), r->gpr(3),
r->gpr(4), r->gpr(5), r->gpr(6), r->gpr(7),
r->gpr(8), r->gpr(9), r->gpr(10), r->gpr(11),
r->gpr(12), r->gpr(13), r->gpr(14), r->gpr(15),
r->gpr(16), r->gpr(17), r->gpr(18), r->gpr(19),
r->gpr(20), r->gpr(21), r->gpr(22), r->gpr(23),
r->gpr(24), r->gpr(25), r->gpr(26), r->gpr(27),
r->gpr(28), r->gpr(29), r->gpr(30), r->gpr(31));
exit(1);
QuitEmulator();
return;
} else {
// We crashed. Save registers, tell tick thread and loop forever
build_sigregs(&sigsegv_regs, r);
emul_thread_fatal = true;
for (;;) ;
}
rti:;
}
#endif
/*
* Helpers to share 32-bit addressable data with MacOS
*/
bool SheepMem::Init(void)
{
// Size of a native page
page_size = getpagesize();
// Allocate SheepShaver globals
proc = base;
if (vm_mac_acquire_fixed(base, size) < 0)
return false;
// Allocate page with all bits set to 0, right in the middle
// This is also used to catch undesired overlaps between proc and data areas
zero_page = proc + (size / 2);
Mac_memset(zero_page, 0, page_size);
if (vm_protect(Mac2HostAddr(zero_page), page_size, VM_PAGE_READ) < 0)
return false;
#if EMULATED_PPC
// Allocate alternate stack for PowerPC interrupt routine
sig_stack = base + size;
if (vm_mac_acquire_fixed(sig_stack, SIG_STACK_SIZE) < 0)
return false;
#endif
data = base + size;
return true;
}
void SheepMem::Exit(void)
{
if (data) {
// Delete SheepShaver globals
vm_mac_release(base, size);
#if EMULATED_PPC
// Delete alternate stack for PowerPC interrupt routine
vm_mac_release(sig_stack, SIG_STACK_SIZE);
#endif
}
}
/*
* Display alert
*/
#ifdef ENABLE_GTK
static void dl_destroyed(void)
{
gtk_main_quit();
}
static void dl_quit(GtkWidget *dialog)
{
gtk_widget_destroy(dialog);
}
void display_alert(int title_id, int prefix_id, int button_id, const char *text)
{
char str[256];
sprintf(str, GetString(prefix_id), text);
GtkWidget *dialog = gtk_dialog_new();
gtk_window_set_title(GTK_WINDOW(dialog), GetString(title_id));
gtk_container_border_width(GTK_CONTAINER(dialog), 5);
gtk_widget_set_uposition(GTK_WIDGET(dialog), 100, 150);
gtk_signal_connect(GTK_OBJECT(dialog), "destroy", GTK_SIGNAL_FUNC(dl_destroyed), NULL);
GtkWidget *label = gtk_label_new(str);
gtk_widget_show(label);
gtk_box_pack_start(GTK_BOX(GTK_DIALOG(dialog)->vbox), label, TRUE, TRUE, 0);
GtkWidget *button = gtk_button_new_with_label(GetString(button_id));
gtk_widget_show(button);
gtk_signal_connect_object(GTK_OBJECT(button), "clicked", GTK_SIGNAL_FUNC(dl_quit), GTK_OBJECT(dialog));
gtk_box_pack_start(GTK_BOX(GTK_DIALOG(dialog)->action_area), button, FALSE, FALSE, 0);
GTK_WIDGET_SET_FLAGS(button, GTK_CAN_DEFAULT);
gtk_widget_grab_default(button);
gtk_widget_show(dialog);
gtk_main();
}
#endif
/*
* Display error alert
*/
void ErrorAlert(const char *text)
{
if (gui_connection) {
if (rpc_method_invoke(gui_connection, RPC_METHOD_ERROR_ALERT, RPC_TYPE_STRING, text, RPC_TYPE_INVALID) == RPC_ERROR_NO_ERROR &&
rpc_method_wait_for_reply(gui_connection, RPC_TYPE_INVALID) == RPC_ERROR_NO_ERROR)
return;
}
#if defined(ENABLE_GTK) && !defined(USE_SDL_VIDEO)
if (PrefsFindBool("nogui") || x_display == NULL) {
printf(GetString(STR_SHELL_ERROR_PREFIX), text);
return;
}
VideoQuitFullScreen();
display_alert(STR_ERROR_ALERT_TITLE, STR_GUI_ERROR_PREFIX, STR_QUIT_BUTTON, text);
#else
printf(GetString(STR_SHELL_ERROR_PREFIX), text);
#endif
}
/*
* Display warning alert
*/
void WarningAlert(const char *text)
{
if (gui_connection) {
if (rpc_method_invoke(gui_connection, RPC_METHOD_WARNING_ALERT, RPC_TYPE_STRING, text, RPC_TYPE_INVALID) == RPC_ERROR_NO_ERROR &&
rpc_method_wait_for_reply(gui_connection, RPC_TYPE_INVALID) == RPC_ERROR_NO_ERROR)
return;
}
#if defined(ENABLE_GTK) && !defined(USE_SDL_VIDEO)
if (PrefsFindBool("nogui") || x_display == NULL) {
printf(GetString(STR_SHELL_WARNING_PREFIX), text);
return;
}
display_alert(STR_WARNING_ALERT_TITLE, STR_GUI_WARNING_PREFIX, STR_OK_BUTTON, text);
#else
printf(GetString(STR_SHELL_WARNING_PREFIX), text);
#endif
}
/*
* Display choice alert
*/
bool ChoiceAlert(const char *text, const char *pos, const char *neg)
{
printf(GetString(STR_SHELL_WARNING_PREFIX), text);
return false; //!!
}