macemu/BasiliskII/src/CrossPlatform/sigsegv.cpp

1373 lines
39 KiB
C++

/*
* sigsegv.cpp - SIGSEGV signals support
*
* Derived from Bruno Haible's work on his SIGSEGV library for clisp
* <http://clisp.sourceforge.net/>
*
* MacOS X support derived from the post by Timothy J. Wood to the
* omnigroup macosx-dev list:
* Mach Exception Handlers 101 (Was Re: ptrace, gdb)
* tjw@omnigroup.com Sun, 4 Jun 2000
* www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html
*
* Basilisk II (C) 1997-2008 Christian Bauer
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <list>
#include <stdio.h>
#include <signal.h>
#include <string.h>
#include "sigsegv.h"
#ifndef NO_STD_NAMESPACE
using std::list;
#endif
// Return value type of a signal handler (standard type if not defined)
#ifndef RETSIGTYPE
#define RETSIGTYPE void
#endif
// Size of an unsigned integer large enough to hold all bits of a pointer
// NOTE: this can be different than SIGSEGV_REGISTER_TYPE. In
// particular, on ILP32 systems with a 64-bit kernel (HP-UX/ia64?)
// Other systems are sane enough to follow ILP32 or LP64 models
typedef unsigned long sigsegv_uintptr_t;
// Type of the system signal handler
typedef RETSIGTYPE (*signal_handler)(int);
// User's SIGSEGV handler
static sigsegv_fault_handler_t sigsegv_fault_handler = 0;
// Function called to dump state if we can't handle the fault
static sigsegv_state_dumper_t sigsegv_state_dumper = 0;
#if defined(HAVE_SIGINFO_T) || defined(HAVE_SIGCONTEXT_SUBTERFUGE)
// Actual SIGSEGV handler installer
static bool sigsegv_do_install_handler(int sig);
#endif
/*
* Instruction decoding aids
*/
// Transfer type
enum transfer_type_t {
SIGSEGV_TRANSFER_UNKNOWN = 0,
SIGSEGV_TRANSFER_LOAD = 1,
SIGSEGV_TRANSFER_STORE = 2
};
// Transfer size
enum transfer_size_t {
SIZE_UNKNOWN,
SIZE_BYTE,
SIZE_WORD, // 2 bytes
SIZE_LONG, // 4 bytes
SIZE_QUAD // 8 bytes
};
/*
* OS-dependant SIGSEGV signals support section
*/
#if HAVE_SIGINFO_T
// Generic extended signal handler
#define SIGSEGV_FAULT_HANDLER_ARGLIST int sig, siginfo_t *sip, void *scp
#define SIGSEGV_FAULT_HANDLER_ARGLIST_1 siginfo_t *sip, void *scp
#define SIGSEGV_FAULT_HANDLER_ARGS sip, scp
#define SIGSEGV_FAULT_ADDRESS sip->si_addr
#endif
#if HAVE_MACH_EXCEPTIONS
// This can easily be extended to other Mach systems, but really who
// uses HURD (oops GNU/HURD), Darwin/x86, NextStep, Rhapsody, or CMU
// Mach 2.5/3.0?
#if defined(__APPLE__) && defined(__MACH__)
#include <sys/types.h>
#include <stdlib.h>
#include <stdio.h>
#include <pthread.h>
/*
* If you are familiar with MIG then you will understand the frustration
* that was necessary to get these embedded into C++ code by hand.
*/
extern "C" {
#include <mach/mach.h>
#include <mach/mach_error.h>
#ifndef HAVE_MACH64_VM
// Undefine this to prevent a preprocessor warning when compiling on a
// 32-bit machine with Mac OS X 10.5.
#undef MACH_EXCEPTION_CODES
#define MACH_EXCEPTION_CODES 0
#define mach_exception_data_t exception_data_t
#define mach_exception_data_type_t exception_data_type_t
#define mach_exc_server exc_server
#define catch_mach_exception_raise catch_exception_raise
#define mach_exception_raise exception_raise
#define mach_exception_raise_state exception_raise_state
#define mach_exception_raise_state_identity exception_raise_state_identity
#endif
extern boolean_t mach_exc_server(mach_msg_header_t *, mach_msg_header_t *);
extern kern_return_t catch_mach_exception_raise(mach_port_t, mach_port_t,
mach_port_t, exception_type_t, mach_exception_data_t, mach_msg_type_number_t);
extern kern_return_t catch_mach_exception_raise_state(mach_port_t exception_port,
exception_type_t exception, mach_exception_data_t code, mach_msg_type_number_t code_count,
int *flavor,
thread_state_t old_state, mach_msg_type_number_t old_state_count,
thread_state_t new_state, mach_msg_type_number_t *new_state_count);
extern kern_return_t catch_mach_exception_raise_state_identity(mach_port_t exception_port,
mach_port_t thread_port, mach_port_t task_port, exception_type_t exception,
mach_exception_data_t code, mach_msg_type_number_t code_count,
int *flavor,
thread_state_t old_state, mach_msg_type_number_t old_state_count,
thread_state_t new_state, mach_msg_type_number_t *new_state_count);
extern kern_return_t mach_exception_raise(mach_port_t, mach_port_t, mach_port_t,
exception_type_t, mach_exception_data_t, mach_msg_type_number_t);
extern kern_return_t mach_exception_raise_state(mach_port_t, exception_type_t,
mach_exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
extern kern_return_t mach_exception_raise_state_identity(mach_port_t, mach_port_t, mach_port_t,
exception_type_t, mach_exception_data_t, mach_msg_type_number_t, thread_state_flavor_t *,
thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t *);
}
// Could make this dynamic by looking for a result of MIG_ARRAY_TOO_LARGE
#define HANDLER_COUNT 64
// structure to tuck away existing exception handlers
typedef struct _ExceptionPorts {
mach_msg_type_number_t maskCount;
exception_mask_t masks[HANDLER_COUNT];
exception_handler_t handlers[HANDLER_COUNT];
exception_behavior_t behaviors[HANDLER_COUNT];
thread_state_flavor_t flavors[HANDLER_COUNT];
} ExceptionPorts;
// exception handler thread
static pthread_t exc_thread;
// place where old exception handler info is stored
static ExceptionPorts ports;
// our exception port
static mach_port_t _exceptionPort = MACH_PORT_NULL;
#define MACH_CHECK_ERROR(name,ret) \
if (ret != KERN_SUCCESS) { \
mach_error(#name, ret); \
exit (1); \
}
#ifndef MACH_FIELD_NAME
#define MACH_FIELD_NAME(X) X
#endif
// Since there can only be one exception thread running at any time
// this is not a problem.
#define MSG_SIZE 512
static char msgbuf[MSG_SIZE];
static char replybuf[MSG_SIZE];
/*
* This is the entry point for the exception handler thread. The job
* of this thread is to wait for exception messages on the exception
* port that was setup beforehand and to pass them on to exc_server.
* exc_server is a MIG generated function that is a part of Mach.
* Its job is to decide what to do with the exception message. In our
* case exc_server calls catch_exception_raise on our behalf. After
* exc_server returns, it is our responsibility to send the reply.
*/
static void *
handleExceptions(void *priv)
{
mach_msg_header_t *msg, *reply;
kern_return_t krc;
msg = (mach_msg_header_t *)msgbuf;
reply = (mach_msg_header_t *)replybuf;
for (;;) {
krc = mach_msg(msg, MACH_RCV_MSG, MSG_SIZE, MSG_SIZE,
_exceptionPort, 0, MACH_PORT_NULL);
MACH_CHECK_ERROR(mach_msg, krc);
if (!mach_exc_server(msg, reply)) {
fprintf(stderr, "exc_server hated the message\n");
exit(1);
}
krc = mach_msg(reply, MACH_SEND_MSG, reply->msgh_size, 0,
msg->msgh_local_port, 0, MACH_PORT_NULL);
if (krc != KERN_SUCCESS) {
fprintf(stderr, "Error sending message to original reply port, krc = %d, %s",
krc, mach_error_string(krc));
exit(1);
}
}
}
#endif
#endif
/*
* Instruction skipping
*/
#ifndef SIGSEGV_REGISTER_TYPE
#define SIGSEGV_REGISTER_TYPE sigsegv_uintptr_t
#endif
#ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
// Decode and skip X86 instruction
#if (defined(i386) || defined(__i386__) || defined(_M_IX86)) || (defined(__x86_64__) || defined(_M_X64))
#if defined(__APPLE__) && defined(__MACH__)
enum {
#if (defined(i386) || defined(__i386__))
#ifdef i386_SAVED_STATE
X86_REG_EIP = 10,
X86_REG_EAX = 7,
X86_REG_ECX = 6,
X86_REG_EDX = 5,
X86_REG_EBX = 4,
X86_REG_ESP = 13,
X86_REG_EBP = 2,
X86_REG_ESI = 1,
X86_REG_EDI = 0
#else
// new layout (MacOS X 10.4.4 for x86)
X86_REG_EIP = 10,
X86_REG_EAX = 0,
X86_REG_ECX = 2,
X86_REG_EDX = 3,
X86_REG_EBX = 1,
X86_REG_ESP = 7,
X86_REG_EBP = 6,
X86_REG_ESI = 5,
X86_REG_EDI = 4
#endif
#endif
#if defined(__x86_64__)
X86_REG_R8 = 8,
X86_REG_R9 = 9,
X86_REG_R10 = 10,
X86_REG_R11 = 11,
X86_REG_R12 = 12,
X86_REG_R13 = 13,
X86_REG_R14 = 14,
X86_REG_R15 = 15,
X86_REG_EDI = 4,
X86_REG_ESI = 5,
X86_REG_EBP = 6,
X86_REG_EBX = 1,
X86_REG_EDX = 3,
X86_REG_EAX = 0,
X86_REG_ECX = 2,
X86_REG_ESP = 7,
X86_REG_EIP = 16
#endif
};
#endif
// FIXME: this is partly redundant with the instruction decoding phase
// to discover transfer type and register number
static inline int ix86_step_over_modrm(unsigned char * p)
{
int mod = (p[0] >> 6) & 3;
int rm = p[0] & 7;
int offset = 0;
// ModR/M Byte
switch (mod) {
case 0: // [reg]
if (rm == 5) return 4; // disp32
break;
case 1: // disp8[reg]
offset = 1;
break;
case 2: // disp32[reg]
offset = 4;
break;
case 3: // register
return 0;
}
// SIB Byte
if (rm == 4) {
if (mod == 0 && (p[1] & 7) == 5)
offset = 5; // disp32[index]
else
offset++;
}
return offset;
}
static bool ix86_skip_instruction(SIGSEGV_REGISTER_TYPE * regs)
{
unsigned char * eip = (unsigned char *)regs[X86_REG_EIP];
if (eip == 0)
return false;
enum instruction_type_t {
i_MOV,
i_ADD
};
transfer_type_t transfer_type = SIGSEGV_TRANSFER_UNKNOWN;
transfer_size_t transfer_size = SIZE_LONG;
instruction_type_t instruction_type = i_MOV;
int reg = -1;
int len = 0;
#if DEBUG
printf("IP: %p [%02x %02x %02x %02x...]\n",
eip, eip[0], eip[1], eip[2], eip[3]);
#endif
// Operand size prefix
if (*eip == 0x66) {
eip++;
len++;
transfer_size = SIZE_WORD;
}
// REX prefix
#if defined(__x86_64__) || defined(_M_X64)
struct rex_t {
unsigned char W;
unsigned char R;
unsigned char X;
unsigned char B;
};
rex_t rex = { 0, 0, 0, 0 };
bool has_rex = false;
if ((*eip & 0xf0) == 0x40) {
has_rex = true;
const unsigned char b = *eip;
rex.W = b & (1 << 3);
rex.R = b & (1 << 2);
rex.X = b & (1 << 1);
rex.B = b & (1 << 0);
#if DEBUG
printf("REX: %c,%c,%c,%c\n",
rex.W ? 'W' : '_',
rex.R ? 'R' : '_',
rex.X ? 'X' : '_',
rex.B ? 'B' : '_');
#endif
eip++;
len++;
if (rex.W)
transfer_size = SIZE_QUAD;
}
#else
const bool has_rex = false;
#endif
// Decode instruction
int op_len = 1;
int target_size = SIZE_UNKNOWN;
switch (eip[0]) {
case 0x0f:
target_size = transfer_size;
switch (eip[1]) {
case 0xbe: // MOVSX r32, r/m8
case 0xb6: // MOVZX r32, r/m8
transfer_size = SIZE_BYTE;
goto do_mov_extend;
case 0xbf: // MOVSX r32, r/m16
case 0xb7: // MOVZX r32, r/m16
transfer_size = SIZE_WORD;
goto do_mov_extend;
do_mov_extend:
op_len = 2;
goto do_transfer_load;
}
break;
#if defined(__x86_64__) || defined(_M_X64)
case 0x63: // MOVSXD r64, r/m32
if (has_rex && rex.W) {
transfer_size = SIZE_LONG;
target_size = SIZE_QUAD;
}
else if (transfer_size != SIZE_WORD) {
transfer_size = SIZE_LONG;
target_size = SIZE_QUAD;
}
goto do_transfer_load;
#endif
case 0x02: // ADD r8, r/m8
transfer_size = SIZE_BYTE;
// fall through
case 0x03: // ADD r32, r/m32
instruction_type = i_ADD;
goto do_transfer_load;
case 0x8a: // MOV r8, r/m8
transfer_size = SIZE_BYTE;
// fall through
case 0x8b: // MOV r32, r/m32 (or 16-bit operation)
do_transfer_load:
switch (eip[op_len] & 0xc0) {
case 0x80:
reg = (eip[op_len] >> 3) & 7;
transfer_type = SIGSEGV_TRANSFER_LOAD;
break;
case 0x40:
reg = (eip[op_len] >> 3) & 7;
transfer_type = SIGSEGV_TRANSFER_LOAD;
break;
case 0x00:
reg = (eip[op_len] >> 3) & 7;
transfer_type = SIGSEGV_TRANSFER_LOAD;
break;
}
len += 1 + op_len + ix86_step_over_modrm(eip + op_len);
break;
case 0x00: // ADD r/m8, r8
transfer_size = SIZE_BYTE;
// fall through
case 0x01: // ADD r/m32, r32
instruction_type = i_ADD;
goto do_transfer_store;
case 0x88: // MOV r/m8, r8
transfer_size = SIZE_BYTE;
// fall through
case 0x89: // MOV r/m32, r32 (or 16-bit operation)
do_transfer_store:
switch (eip[op_len] & 0xc0) {
case 0x80:
reg = (eip[op_len] >> 3) & 7;
transfer_type = SIGSEGV_TRANSFER_STORE;
break;
case 0x40:
reg = (eip[op_len] >> 3) & 7;
transfer_type = SIGSEGV_TRANSFER_STORE;
break;
case 0x00:
reg = (eip[op_len] >> 3) & 7;
transfer_type = SIGSEGV_TRANSFER_STORE;
break;
}
len += 1 + op_len + ix86_step_over_modrm(eip + op_len);
break;
}
if (target_size == SIZE_UNKNOWN)
target_size = transfer_size;
if (transfer_type == SIGSEGV_TRANSFER_UNKNOWN) {
// Unknown machine code, let it crash. Then patch the decoder
return false;
}
#if defined(__x86_64__) || defined(_M_X64)
if (rex.R)
reg += 8;
#endif
if (instruction_type == i_MOV && transfer_type == SIGSEGV_TRANSFER_LOAD && reg != -1) {
static const int x86_reg_map[] = {
X86_REG_EAX, X86_REG_ECX, X86_REG_EDX, X86_REG_EBX,
X86_REG_ESP, X86_REG_EBP, X86_REG_ESI, X86_REG_EDI,
#if defined(__x86_64__) || defined(_M_X64)
X86_REG_R8, X86_REG_R9, X86_REG_R10, X86_REG_R11,
X86_REG_R12, X86_REG_R13, X86_REG_R14, X86_REG_R15,
#endif
};
if (reg < 0 || reg >= (sizeof(x86_reg_map)/sizeof(x86_reg_map[0]) - 1))
return false;
// Set 0 to the relevant register part
// NOTE: this is only valid for MOV alike instructions
int rloc = x86_reg_map[reg];
switch (target_size) {
case SIZE_BYTE:
if (has_rex || reg < 4)
regs[rloc] = (regs[rloc] & ~0x00ffL);
else {
rloc = x86_reg_map[reg - 4];
regs[rloc] = (regs[rloc] & ~0xff00L);
}
break;
case SIZE_WORD:
regs[rloc] = (regs[rloc] & ~0xffffL);
break;
case SIZE_LONG:
case SIZE_QUAD: // zero-extension
regs[rloc] = 0;
break;
}
}
#if DEBUG
printf("%p: %s %s access", (void *)regs[X86_REG_EIP],
transfer_size == SIZE_BYTE ? "byte" :
transfer_size == SIZE_WORD ? "word" :
transfer_size == SIZE_LONG ? "long" :
transfer_size == SIZE_QUAD ? "quad" : "unknown",
transfer_type == SIGSEGV_TRANSFER_LOAD ? "read" : "write");
if (reg != -1) {
static const char * x86_byte_reg_str_map[] = {
"al", "cl", "dl", "bl",
"spl", "bpl", "sil", "dil",
"r8b", "r9b", "r10b", "r11b",
"r12b", "r13b", "r14b", "r15b",
"ah", "ch", "dh", "bh",
};
static const char * x86_word_reg_str_map[] = {
"ax", "cx", "dx", "bx",
"sp", "bp", "si", "di",
"r8w", "r9w", "r10w", "r11w",
"r12w", "r13w", "r14w", "r15w",
};
static const char *x86_long_reg_str_map[] = {
"eax", "ecx", "edx", "ebx",
"esp", "ebp", "esi", "edi",
"r8d", "r9d", "r10d", "r11d",
"r12d", "r13d", "r14d", "r15d",
};
static const char *x86_quad_reg_str_map[] = {
"rax", "rcx", "rdx", "rbx",
"rsp", "rbp", "rsi", "rdi",
"r8", "r9", "r10", "r11",
"r12", "r13", "r14", "r15",
};
const char * reg_str = NULL;
switch (target_size) {
case SIZE_BYTE:
reg_str = x86_byte_reg_str_map[(!has_rex && reg >= 4 ? 12 : 0) + reg];
break;
case SIZE_WORD: reg_str = x86_word_reg_str_map[reg]; break;
case SIZE_LONG: reg_str = x86_long_reg_str_map[reg]; break;
case SIZE_QUAD: reg_str = x86_quad_reg_str_map[reg]; break;
}
if (reg_str)
printf(" %s register %%%s",
transfer_type == SIGSEGV_TRANSFER_LOAD ? "to" : "from",
reg_str);
}
printf(", %d bytes instruction\n", len);
#endif
regs[X86_REG_EIP] += len;
return true;
}
#endif
#endif
// Fallbacks
#ifndef SIGSEGV_FAULT_ADDRESS_FAST
#define SIGSEGV_FAULT_ADDRESS_FAST SIGSEGV_FAULT_ADDRESS
#endif
#ifndef SIGSEGV_FAULT_INSTRUCTION_FAST
#define SIGSEGV_FAULT_INSTRUCTION_FAST SIGSEGV_FAULT_INSTRUCTION
#endif
#ifndef SIGSEGV_FAULT_INSTRUCTION
#define SIGSEGV_FAULT_INSTRUCTION SIGSEGV_INVALID_ADDRESS
#endif
#ifndef SIGSEGV_FAULT_HANDLER_ARGLIST_1
#define SIGSEGV_FAULT_HANDLER_ARGLIST_1 SIGSEGV_FAULT_HANDLER_ARGLIST
#endif
#ifndef SIGSEGV_FAULT_HANDLER_INVOKE
#define SIGSEGV_FAULT_HANDLER_INVOKE(P) sigsegv_fault_handler(P)
#endif
// SIGSEGV recovery supported ?
#if defined(SIGSEGV_ALL_SIGNALS) && defined(SIGSEGV_FAULT_HANDLER_ARGLIST) && defined(SIGSEGV_FAULT_ADDRESS)
#define HAVE_SIGSEGV_RECOVERY
#endif
/*
* SIGSEGV global handler
*/
#ifdef HAVE_MACH_EXCEPTIONS
static void mach_get_thread_state(sigsegv_info_t *SIP)
{
SIP->thr_state_count = SIGSEGV_THREAD_STATE_COUNT;
kern_return_t krc = thread_get_state(SIP->thread,
SIGSEGV_THREAD_STATE_FLAVOR,
(natural_t *)&SIP->thr_state,
&SIP->thr_state_count);
MACH_CHECK_ERROR(thread_get_state, krc);
SIP->has_thr_state = true;
}
static void mach_set_thread_state(sigsegv_info_t *SIP)
{
kern_return_t krc = thread_set_state(SIP->thread,
SIGSEGV_THREAD_STATE_FLAVOR,
(natural_t *)&SIP->thr_state,
SIP->thr_state_count);
MACH_CHECK_ERROR(thread_set_state, krc);
}
#endif
// Return the address of the invalid memory reference
sigsegv_address_t sigsegv_get_fault_address(sigsegv_info_t *SIP)
{
return SIP->addr;
}
// Return the address of the instruction that caused the fault, or
// SIGSEGV_INVALID_ADDRESS if we could not retrieve this information
sigsegv_address_t sigsegv_get_fault_instruction_address(sigsegv_info_t *SIP)
{
return SIP->pc;
}
// This function handles the badaccess to memory.
// It is called from the signal handler or the exception handler.
static bool handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGLIST_1)
{
sigsegv_info_t SI;
SI.addr = (sigsegv_address_t)SIGSEGV_FAULT_ADDRESS_FAST;
SI.pc = (sigsegv_address_t)SIGSEGV_FAULT_INSTRUCTION_FAST;
#ifdef HAVE_MACH_EXCEPTIONS
SI.thread = thread;
SI.has_exc_state = false;
SI.has_thr_state = false;
#endif
sigsegv_info_t * const SIP = &SI;
// Call user's handler and reinstall the global handler, if required
switch (SIGSEGV_FAULT_HANDLER_INVOKE(SIP)) {
case SIGSEGV_RETURN_SUCCESS:
return true;
#if HAVE_SIGSEGV_SKIP_INSTRUCTION
case SIGSEGV_RETURN_SKIP_INSTRUCTION:
// Call the instruction skipper with the register file
// available
#ifdef HAVE_MACH_EXCEPTIONS
if (!SIP->has_thr_state)
mach_get_thread_state(SIP);
#endif
if (SIGSEGV_SKIP_INSTRUCTION(SIGSEGV_REGISTER_FILE)) {
#ifdef HAVE_MACH_EXCEPTIONS
// Unlike UNIX signals where the thread state
// is modified off of the stack, in Mach we
// need to actually call thread_set_state to
// have the register values updated.
mach_set_thread_state(SIP);
#endif
return true;
}
break;
#endif
case SIGSEGV_RETURN_FAILURE:
// We can't do anything with the fault_address, dump state?
if (sigsegv_state_dumper != 0)
sigsegv_state_dumper(SIP);
break;
}
return false;
}
/*
* There are two mechanisms for handling a bad memory access,
* Mach exceptions and UNIX signals. The implementation specific
* code appears below. Its reponsibility is to call handle_badaccess
* which is the routine that handles the fault in an implementation
* agnostic manner. The implementation specific code below is then
* reponsible for checking whether handle_badaccess was able
* to handle the memory access error and perform any implementation
* specific tasks necessary afterwards.
*/
#ifdef HAVE_MACH_EXCEPTIONS
/*
* We need to forward all exceptions that we do not handle.
* This is important, there are many exceptions that may be
* handled by other exception handlers. For example debuggers
* use exceptions and the exception hander is in another
* process in such a case. (Timothy J. Wood states in his
* message to the list that he based this code on that from
* gdb for Darwin.)
*/
static inline kern_return_t
forward_exception(mach_port_t thread_port,
mach_port_t task_port,
exception_type_t exception_type,
mach_exception_data_t exception_data,
mach_msg_type_number_t data_count,
ExceptionPorts *oldExceptionPorts)
{
kern_return_t kret;
unsigned int portIndex;
mach_port_t port;
exception_behavior_t behavior;
thread_state_flavor_t flavor;
thread_state_data_t thread_state;
mach_msg_type_number_t thread_state_count;
for (portIndex = 0; portIndex < oldExceptionPorts->maskCount; portIndex++) {
if (oldExceptionPorts->masks[portIndex] & (1 << exception_type)) {
// This handler wants the exception
break;
}
}
if (portIndex >= oldExceptionPorts->maskCount) {
fprintf(stderr, "No handler for exception_type = %d. Not fowarding\n", exception_type);
return KERN_FAILURE;
}
port = oldExceptionPorts->handlers[portIndex];
behavior = oldExceptionPorts->behaviors[portIndex];
flavor = oldExceptionPorts->flavors[portIndex];
if (!VALID_THREAD_STATE_FLAVOR(flavor)) {
fprintf(stderr, "Invalid thread_state flavor = %d. Not forwarding\n", flavor);
return KERN_FAILURE;
}
/*
fprintf(stderr, "forwarding exception, port = 0x%x, behaviour = %d, flavor = %d\n", port, behavior, flavor);
*/
if (behavior != EXCEPTION_DEFAULT) {
thread_state_count = THREAD_STATE_MAX;
kret = thread_get_state (thread_port, flavor, (natural_t *)&thread_state,
&thread_state_count);
MACH_CHECK_ERROR (thread_get_state, kret);
}
switch (behavior) {
case EXCEPTION_DEFAULT:
// fprintf(stderr, "forwarding to exception_raise\n");
kret = mach_exception_raise(port, thread_port, task_port, exception_type,
exception_data, data_count);
MACH_CHECK_ERROR (mach_exception_raise, kret);
break;
case EXCEPTION_STATE:
// fprintf(stderr, "forwarding to exception_raise_state\n");
kret = mach_exception_raise_state(port, exception_type, exception_data,
data_count, &flavor,
(natural_t *)&thread_state, thread_state_count,
(natural_t *)&thread_state, &thread_state_count);
MACH_CHECK_ERROR (mach_exception_raise_state, kret);
break;
case EXCEPTION_STATE_IDENTITY:
// fprintf(stderr, "forwarding to exception_raise_state_identity\n");
kret = mach_exception_raise_state_identity(port, thread_port, task_port,
exception_type, exception_data,
data_count, &flavor,
(natural_t *)&thread_state, thread_state_count,
(natural_t *)&thread_state, &thread_state_count);
MACH_CHECK_ERROR (mach_exception_raise_state_identity, kret);
break;
default:
fprintf(stderr, "forward_exception got unknown behavior\n");
kret = KERN_FAILURE;
break;
}
if (behavior != EXCEPTION_DEFAULT) {
kret = thread_set_state (thread_port, flavor, (natural_t *)&thread_state,
thread_state_count);
MACH_CHECK_ERROR (thread_set_state, kret);
}
return kret;
}
/*
* This is the code that actually handles the exception.
* It is called by exc_server. For Darwin 5 Apple changed
* this a bit from how this family of functions worked in
* Mach. If you are familiar with that it is a little
* different. The main variation that concerns us here is
* that code is an array of exception specific codes and
* codeCount is a count of the number of codes in the code
* array. In typical Mach all exceptions have a code
* and sub-code. It happens to be the case that for a
* EXC_BAD_ACCESS exception the first entry is the type of
* bad access that occurred and the second entry is the
* faulting address so these entries correspond exactly to
* how the code and sub-code are used on Mach.
*
* This is a MIG interface. No code in Basilisk II should
* call this directley. This has to have external C
* linkage because that is what exc_server expects.
*/
kern_return_t
catch_mach_exception_raise(mach_port_t exception_port,
mach_port_t thread,
mach_port_t task,
exception_type_t exception,
mach_exception_data_t code,
mach_msg_type_number_t code_count)
{
kern_return_t krc;
if (exception == EXC_BAD_ACCESS) {
switch (code[0]) {
case KERN_PROTECTION_FAILURE:
case KERN_INVALID_ADDRESS:
if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS))
return KERN_SUCCESS;
break;
}
}
// In Mach we do not need to remove the exception handler.
// If we forward the exception, eventually some exception handler
// will take care of this exception.
krc = forward_exception(thread, task, exception, code, code_count, &ports);
return krc;
}
/* XXX: borrowed from launchd and gdb */
kern_return_t
catch_mach_exception_raise_state(mach_port_t exception_port,
exception_type_t exception,
mach_exception_data_t code,
mach_msg_type_number_t code_count,
int *flavor,
thread_state_t old_state,
mach_msg_type_number_t old_state_count,
thread_state_t new_state,
mach_msg_type_number_t *new_state_count)
{
memcpy(new_state, old_state, old_state_count * sizeof(old_state[0]));
*new_state_count = old_state_count;
return KERN_SUCCESS;
}
/* XXX: borrowed from launchd and gdb */
kern_return_t
catch_mach_exception_raise_state_identity(mach_port_t exception_port,
mach_port_t thread_port,
mach_port_t task_port,
exception_type_t exception,
mach_exception_data_t code,
mach_msg_type_number_t code_count,
int *flavor,
thread_state_t old_state,
mach_msg_type_number_t old_state_count,
thread_state_t new_state,
mach_msg_type_number_t *new_state_count)
{
kern_return_t kret;
memcpy(new_state, old_state, old_state_count * sizeof(old_state[0]));
*new_state_count = old_state_count;
kret = mach_port_deallocate(mach_task_self(), task_port);
MACH_CHECK_ERROR(mach_port_deallocate, kret);
kret = mach_port_deallocate(mach_task_self(), thread_port);
MACH_CHECK_ERROR(mach_port_deallocate, kret);
return KERN_SUCCESS;
}
#endif
#ifdef HAVE_SIGSEGV_RECOVERY
// Handle bad memory accesses with signal handler
static void sigsegv_handler(SIGSEGV_FAULT_HANDLER_ARGLIST)
{
// Call handler and reinstall the global handler, if required
if (handle_badaccess(SIGSEGV_FAULT_HANDLER_ARGS)) {
#if (defined(HAVE_SIGACTION) ? defined(SIGACTION_NEED_REINSTALL) : defined(SIGNAL_NEED_REINSTALL))
sigsegv_do_install_handler(sig);
#endif
return;
}
// Failure: reinstall default handler for "safe" crash
#define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
SIGSEGV_ALL_SIGNALS
#undef FAULT_HANDLER
}
#endif
/*
* SIGSEGV handler initialization
*/
#if defined(HAVE_SIGINFO_T)
static bool sigsegv_do_install_handler(int sig)
{
// Setup SIGSEGV handler to process writes to frame buffer
#ifdef HAVE_SIGACTION
struct sigaction sigsegv_sa;
memset(&sigsegv_sa, 0, sizeof(struct sigaction));
sigemptyset(&sigsegv_sa.sa_mask);
sigsegv_sa.sa_sigaction = sigsegv_handler;
sigsegv_sa.sa_flags = SA_SIGINFO;
return (sigaction(sig, &sigsegv_sa, 0) == 0);
#else
return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
#endif
}
#endif
#if defined(HAVE_SIGCONTEXT_SUBTERFUGE)
static bool sigsegv_do_install_handler(int sig)
{
// Setup SIGSEGV handler to process writes to frame buffer
#ifdef HAVE_SIGACTION
struct sigaction sigsegv_sa;
memset(&sigsegv_sa, 0, sizeof(struct sigaction));
sigemptyset(&sigsegv_sa.sa_mask);
sigsegv_sa.sa_handler = (signal_handler)sigsegv_handler;
sigsegv_sa.sa_flags = 0;
return (sigaction(sig, &sigsegv_sa, 0) == 0);
#else
return (signal(sig, (signal_handler)sigsegv_handler) != SIG_ERR);
#endif
}
#endif
#if defined(HAVE_MACH_EXCEPTIONS)
static bool sigsegv_do_install_handler(sigsegv_fault_handler_t handler)
{
/*
* Except for the exception port functions, this should be
* pretty much stock Mach. If later you choose to support
* other Mach's besides Darwin, just check for __MACH__
* here and __APPLE__ where the actual differences are.
*/
#if defined(__APPLE__) && defined(__MACH__)
if (sigsegv_fault_handler != NULL) {
sigsegv_fault_handler = handler;
return true;
}
kern_return_t krc;
// create the the exception port
krc = mach_port_allocate(mach_task_self(),
MACH_PORT_RIGHT_RECEIVE, &_exceptionPort);
if (krc != KERN_SUCCESS) {
mach_error("mach_port_allocate", krc);
return false;
}
// add a port send right
krc = mach_port_insert_right(mach_task_self(),
_exceptionPort, _exceptionPort,
MACH_MSG_TYPE_MAKE_SEND);
if (krc != KERN_SUCCESS) {
mach_error("mach_port_insert_right", krc);
return false;
}
// get the old exception ports
ports.maskCount = sizeof (ports.masks) / sizeof (ports.masks[0]);
krc = thread_get_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, ports.masks,
&ports.maskCount, ports.handlers, ports.behaviors, ports.flavors);
if (krc != KERN_SUCCESS) {
mach_error("thread_get_exception_ports", krc);
return false;
}
// set the new exception port
//
// We could have used EXCEPTION_STATE_IDENTITY instead of
// EXCEPTION_DEFAULT to get the thread state in the initial
// message, but it turns out that in the common case this is not
// neccessary. If we need it we can later ask for it from the
// suspended thread.
//
// Even with THREAD_STATE_NONE, Darwin provides the program
// counter in the thread state. The comments in the header file
// seem to imply that you can count on the GPR's on an exception
// as well but just to be safe I use MACHINE_THREAD_STATE because
// you have to ask for all of the GPR's anyway just to get the
// program counter. In any case because of update effective
// address from immediate and update address from effective
// addresses of ra and rb modes (as good an name as any for these
// addressing modes) used in PPC instructions, you will need the
// GPR state anyway.
krc = thread_set_exception_ports(mach_thread_self(), EXC_MASK_BAD_ACCESS, _exceptionPort,
EXCEPTION_DEFAULT | MACH_EXCEPTION_CODES, SIGSEGV_THREAD_STATE_FLAVOR);
if (krc != KERN_SUCCESS) {
mach_error("thread_set_exception_ports", krc);
return false;
}
// create the exception handler thread
if (pthread_create(&exc_thread, NULL, &handleExceptions, NULL) != 0) {
(void)fprintf(stderr, "creation of exception thread failed\n");
return false;
}
// do not care about the exception thread any longer, let is run standalone
(void)pthread_detach(exc_thread);
sigsegv_fault_handler = handler;
return true;
#else
return false;
#endif
}
#endif
bool sigsegv_install_handler(sigsegv_fault_handler_t handler)
{
#if defined(HAVE_SIGSEGV_RECOVERY)
bool success = true;
#define FAULT_HANDLER(sig) success = success && sigsegv_do_install_handler(sig);
SIGSEGV_ALL_SIGNALS
#undef FAULT_HANDLER
if (success)
sigsegv_fault_handler = handler;
return success;
#elif defined(HAVE_MACH_EXCEPTIONS)
return sigsegv_do_install_handler(handler);
#else
// FAIL: no siginfo_t nor sigcontext subterfuge is available
return false;
#endif
}
/*
* SIGSEGV handler deinitialization
*/
void sigsegv_deinstall_handler(void)
{
// We do nothing for Mach exceptions, the thread would need to be
// suspended if not already so, and we might mess with other
// exception handlers that came after we registered ours. There is
// no need to remove the exception handler, in fact this function is
// not called anywhere in Basilisk II.
#ifdef HAVE_SIGSEGV_RECOVERY
sigsegv_fault_handler = 0;
#define FAULT_HANDLER(sig) signal(sig, SIG_DFL);
SIGSEGV_ALL_SIGNALS
#undef FAULT_HANDLER
#endif
}
/*
* Set callback function when we cannot handle the fault
*/
void sigsegv_set_dump_state(sigsegv_state_dumper_t handler)
{
sigsegv_state_dumper = handler;
}
/*
* Test program used for configure/test
*/
#ifdef CONFIGURE_TEST_SIGSEGV_RECOVERY
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#ifdef HAVE_SYS_MMAN_H
#include <sys/mman.h>
#endif
#include "vm_alloc.h"
const int REF_INDEX = 123;
const int REF_VALUE = 45;
static sigsegv_uintptr_t page_size;
static volatile char * page = 0;
static volatile int handler_called = 0;
/* Barriers */
#ifdef __GNUC__
#define BARRIER() asm volatile ("" : : : "memory")
#else
#define BARRIER() /* nothing */
#endif
#ifdef __GNUC__
// Code range where we expect the fault to come from
static void *b_region, *e_region;
#endif
static sigsegv_return_t sigsegv_test_handler(sigsegv_info_t *sip)
{
const sigsegv_address_t fault_address = sigsegv_get_fault_address(sip);
const sigsegv_address_t instruction_address = sigsegv_get_fault_instruction_address(sip);
#if DEBUG
printf("sigsegv_test_handler(%p, %p)\n", fault_address, instruction_address);
printf("expected fault at %p\n", page + REF_INDEX);
#ifdef __GNUC__
printf("expected instruction address range: %p-%p\n", b_region, e_region);
#endif
#endif
handler_called++;
if ((fault_address - REF_INDEX) != page)
exit(10);
#ifdef __GNUC__
// Make sure reported fault instruction address falls into
// expected code range
if (instruction_address != SIGSEGV_INVALID_ADDRESS
&& ((instruction_address < (sigsegv_address_t)b_region) ||
(instruction_address >= (sigsegv_address_t)e_region)))
exit(11);
#endif
if (vm_protect((char *)((sigsegv_uintptr_t)fault_address & -page_size), page_size, VM_PAGE_READ | VM_PAGE_WRITE) != 0)
exit(12);
return SIGSEGV_RETURN_SUCCESS;
}
#ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
static sigsegv_return_t sigsegv_insn_handler(sigsegv_info_t *sip)
{
const sigsegv_address_t fault_address = sigsegv_get_fault_address(sip);
const sigsegv_address_t instruction_address = sigsegv_get_fault_instruction_address(sip);
#if DEBUG
printf("sigsegv_insn_handler(%p, %p)\n", fault_address, instruction_address);
printf("expected instruction address range: %p-%p\n", b_region, e_region);
#endif
if (((sigsegv_uintptr_t)fault_address - (sigsegv_uintptr_t)page) < page_size) {
#ifdef __GNUC__
// Make sure reported fault instruction address falls into
// expected code range
if (instruction_address != SIGSEGV_INVALID_ADDRESS
&& ((instruction_address < (sigsegv_address_t)b_region) ||
(instruction_address >= (sigsegv_address_t)e_region)))
return SIGSEGV_RETURN_FAILURE;
#endif
return SIGSEGV_RETURN_SKIP_INSTRUCTION;
}
return SIGSEGV_RETURN_FAILURE;
}
// More sophisticated tests for instruction skipper
static bool arch_insn_skipper_tests()
{
#if (defined(i386) || defined(__i386__)) || (defined(__x86_64__) || defined(_M_X64))
static const unsigned char code[] = {
0x8a, 0x00, // mov (%eax),%al
0x8a, 0x2c, 0x18, // mov (%eax,%ebx,1),%ch
0x88, 0x20, // mov %ah,(%eax)
0x88, 0x08, // mov %cl,(%eax)
0x66, 0x8b, 0x00, // mov (%eax),%ax
0x66, 0x8b, 0x0c, 0x18, // mov (%eax,%ebx,1),%cx
0x66, 0x89, 0x00, // mov %ax,(%eax)
0x66, 0x89, 0x0c, 0x18, // mov %cx,(%eax,%ebx,1)
0x8b, 0x00, // mov (%eax),%eax
0x8b, 0x0c, 0x18, // mov (%eax,%ebx,1),%ecx
0x89, 0x00, // mov %eax,(%eax)
0x89, 0x0c, 0x18, // mov %ecx,(%eax,%ebx,1)
#if defined(__x86_64__) || defined(_M_X64)
0x44, 0x8a, 0x00, // mov (%rax),%r8b
0x44, 0x8a, 0x20, // mov (%rax),%r12b
0x42, 0x8a, 0x3c, 0x10, // mov (%rax,%r10,1),%dil
0x44, 0x88, 0x00, // mov %r8b,(%rax)
0x44, 0x88, 0x20, // mov %r12b,(%rax)
0x42, 0x88, 0x3c, 0x10, // mov %dil,(%rax,%r10,1)
0x66, 0x44, 0x8b, 0x00, // mov (%rax),%r8w
0x66, 0x42, 0x8b, 0x0c, 0x10, // mov (%rax,%r10,1),%cx
0x66, 0x44, 0x89, 0x00, // mov %r8w,(%rax)
0x66, 0x42, 0x89, 0x0c, 0x10, // mov %cx,(%rax,%r10,1)
0x44, 0x8b, 0x00, // mov (%rax),%r8d
0x42, 0x8b, 0x0c, 0x10, // mov (%rax,%r10,1),%ecx
0x44, 0x89, 0x00, // mov %r8d,(%rax)
0x42, 0x89, 0x0c, 0x10, // mov %ecx,(%rax,%r10,1)
0x48, 0x8b, 0x08, // mov (%rax),%rcx
0x4c, 0x8b, 0x18, // mov (%rax),%r11
0x4a, 0x8b, 0x0c, 0x10, // mov (%rax,%r10,1),%rcx
0x4e, 0x8b, 0x1c, 0x10, // mov (%rax,%r10,1),%r11
0x48, 0x89, 0x08, // mov %rcx,(%rax)
0x4c, 0x89, 0x18, // mov %r11,(%rax)
0x4a, 0x89, 0x0c, 0x10, // mov %rcx,(%rax,%r10,1)
0x4e, 0x89, 0x1c, 0x10, // mov %r11,(%rax,%r10,1)
0x63, 0x47, 0x04, // movslq 4(%rdi),%eax
0x48, 0x63, 0x47, 0x04, // movslq 4(%rdi),%rax
#endif
0 // end
};
const int N_REGS = 20;
SIGSEGV_REGISTER_TYPE regs[N_REGS];
for (int i = 0; i < N_REGS; i++)
regs[i] = i;
const sigsegv_uintptr_t start_code = (sigsegv_uintptr_t)&code;
regs[X86_REG_EIP] = start_code;
while ((regs[X86_REG_EIP] - start_code) < (sizeof(code) - 1)
&& ix86_skip_instruction(regs))
; /* simply iterate */
return (regs[X86_REG_EIP] - start_code) == (sizeof(code) - 1);
#endif
return true;
}
#endif
int main(void)
{
if (vm_init() < 0)
return 1;
page_size = vm_get_page_size();
if ((page = (char *)vm_acquire(page_size)) == VM_MAP_FAILED)
return 2;
memset((void *)page, 0, page_size);
if (vm_protect((char *)page, page_size, VM_PAGE_READ) < 0)
return 3;
if (!sigsegv_install_handler(sigsegv_test_handler))
return 4;
#ifdef __GNUC__
b_region = &&L_b_region1;
e_region = &&L_e_region1;
#endif
/* This is a really awful hack but otherwise gcc is smart enough
* (or bug'ous enough?) to optimize the labels and place them
* e.g. at the "main" entry point, which is wrong.
*/
volatile int label_hack = 3;
switch (label_hack) {
case 3:
L_b_region1:
page[REF_INDEX] = REF_VALUE;
if (page[REF_INDEX] != REF_VALUE)
exit(20);
page[REF_INDEX] = REF_VALUE;
BARRIER();
// fall-through
case 2:
L_e_region1:
BARRIER();
break;
}
if (handler_called != 1)
return 5;
#ifdef HAVE_SIGSEGV_SKIP_INSTRUCTION
if (!sigsegv_install_handler(sigsegv_insn_handler))
return 6;
if (vm_protect((char *)page, page_size, VM_PAGE_READ | VM_PAGE_WRITE) < 0)
return 7;
for (int i = 0; i < page_size; i++)
page[i] = (i + 1) % page_size;
if (vm_protect((char *)page, page_size, VM_PAGE_NOACCESS) < 0)
return 8;
#define TEST_SKIP_INSTRUCTION(TYPE) do { \
const unsigned long TAG = 0x12345678 | \
(sizeof(long) == 8 ? 0x9abcdef0UL << 31 : 0); \
TYPE data = *((TYPE *)(page + sizeof(TYPE))); \
volatile unsigned long effect = data + TAG; \
if (effect != TAG) \
return 9; \
} while (0)
#ifdef __GNUC__
b_region = &&L_b_region2;
e_region = &&L_e_region2;
#ifdef DEBUG
printf("switch footage : \n");
printf(" 4 : %p\n", &&L_b_4_region2);
printf(" 5 : %p\n", &&L_b_5_region2);
printf(" 8 : %p\n", &&L_b_8_region2);
printf(" 6 : %p\n", &&L_b_6_region2);
printf(" 7 : %p\n", &&L_b_7_region2);
printf(" 9 : %p\n", &&L_b_9_region2);
printf(" 1 : %p\n", &&L_b_1_region2);
#endif
#endif
switch (label_hack) {
case 3:
L_b_region2:
TEST_SKIP_INSTRUCTION(unsigned char);
BARRIER();
case 4:
L_b_4_region2:
TEST_SKIP_INSTRUCTION(unsigned short);
BARRIER();
case 5:
L_b_5_region2:
TEST_SKIP_INSTRUCTION(unsigned int);
BARRIER();
case 8:
L_b_8_region2:
TEST_SKIP_INSTRUCTION(unsigned long);
BARRIER();
case 6:
L_b_6_region2:
TEST_SKIP_INSTRUCTION(signed char);
BARRIER();
case 7:
L_b_7_region2:
TEST_SKIP_INSTRUCTION(signed short);
BARRIER();
case 9:
L_b_9_region2:
TEST_SKIP_INSTRUCTION(signed int);
BARRIER();
case 1:
L_b_1_region2:
TEST_SKIP_INSTRUCTION(signed long);
BARRIER();
// fall-through
case 2:
L_e_region2:
BARRIER();
break;
}
if (!arch_insn_skipper_tests())
return 20;
#endif
vm_exit();
return 0;
}
#endif