minivmac4ios/Mini vMac/mnvm_core/GLOBGLUE.c

1 line
36 KiB
C
Executable File

/*
GLOBGLUE.c
Copyright (C) 2003 Bernd Schmidt, Philip Cummins, Paul C. Pratt
You can redistribute this file and/or modify it under the terms
of version 2 of the GNU General Public License as published by
the Free Software Foundation. You should have received a copy
of the license along with this file; see the file COPYING.
This file is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
license for more details.
*/
/*
GLOBal GLUE (or GLOB of GLUE)
Holds the program together.
Some code here adapted from "custom.c" in vMac by Philip Cummins,
in turn descended from code in the Un*x Amiga Emulator by
Bernd Schmidt.
*/
#ifndef AllFiles
#include "SYSDEPNS.h"
#include "MYOSGLUE.h"
#include "ENDIANAC.h"
#include "EMCONFIG.h"
#endif
#include "GLOBGLUE.h"
IMPORTPROC m68k_reset(void);
IMPORTPROC IWM_Reset(void);
IMPORTPROC SCC_Reset(void);
IMPORTPROC SCSI_Reset(void);
IMPORTPROC VIA1_Reset(void);
#if EmVIA2
IMPORTPROC VIA2_Reset(void);
#endif
IMPORTPROC Sony_Reset(void);
IMPORTPROC ExtnDisk_Access(CPTR p);
IMPORTPROC ExtnSony_Access(CPTR p);
#if EmVidCard
IMPORTPROC ExtnVideo_Access(CPTR p);
#endif
IMPORTPROC Sony_SetQuitOnEject(void);
IMPORTPROC m68k_IPLchangeNtfy(void);
IMPORTPROC MINEM68K_Init(
ui3b *fIPL);
IMPORTFUNC ui5b GetCyclesRemaining(void);
IMPORTPROC SetCyclesRemaining(ui5b n);
IMPORTPROC SetHeadATTel(ATTep p);
IMPORTFUNC ATTep FindATTel(CPTR addr);
IMPORTFUNC ui5b SCSI_Access(ui5b Data, blnr WriteMem, CPTR addr);
IMPORTFUNC ui5b SCC_Access(ui5b Data, blnr WriteMem, CPTR addr);
IMPORTFUNC ui5b IWM_Access(ui5b Data, blnr WriteMem, CPTR addr);
IMPORTFUNC ui5b VIA1_Access(ui5b Data, blnr WriteMem, CPTR addr);
#if EmVIA2
IMPORTFUNC ui5b VIA2_Access(ui5b Data, blnr WriteMem, CPTR addr);
#endif
#if EmASC
IMPORTFUNC ui5b ASC_Access(ui5b Data, blnr WriteMem, CPTR addr);
#endif
IMPORTFUNC ui3r get_vm_byte(CPTR addr);
IMPORTFUNC ui4r get_vm_word(CPTR addr);
IMPORTFUNC ui5r get_vm_long(CPTR addr);
IMPORTPROC put_vm_byte(CPTR addr, ui3r b);
IMPORTPROC put_vm_word(CPTR addr, ui4r w);
IMPORTPROC put_vm_long(CPTR addr, ui5r l);
GLOBALVAR ui5r my_disk_icon_addr;
GLOBALPROC customreset(void)
{
IWM_Reset();
SCC_Reset();
SCSI_Reset();
VIA1_Reset();
#if EmVIA2
VIA2_Reset();
#endif
Sony_Reset();
Extn_Reset();
#if CurEmMd <= kEmMd_Plus
WantMacReset = trueblnr;
/*
kludge, code in Finder appears
to do RESET and not expect
to come back. Maybe asserting
the RESET somehow causes
other hardware compenents to
later reset the 68000.
*/
#endif
}
GLOBALVAR ui3p RAM = nullpr;
#if EmVidCard
GLOBALVAR ui3p VidROM = nullpr;
#endif
#if IncludeVidMem
GLOBALVAR ui3p VidMem = nullpr;
#endif
GLOBALVAR ui3b Wires[kNumWires];
#if WantDisasm
IMPORTPROC m68k_WantDisasmContext(void);
#endif
#if WantDisasm
GLOBALPROC dbglog_StartLine(void)
{
m68k_WantDisasmContext();
dbglog_writeCStr(" ");
}
#endif
#if dbglog_HAVE
GLOBALPROC dbglog_WriteMemArrow(blnr WriteMem)
{
if (WriteMem) {
dbglog_writeCStr(" <- ");
} else {
dbglog_writeCStr(" -> ");
}
}
#endif
#if dbglog_HAVE
GLOBALPROC dbglog_AddrAccess(char *s, ui5r Data,
blnr WriteMem, ui5r addr)
{
dbglog_StartLine();
dbglog_writeCStr(s);
dbglog_writeCStr("[");
dbglog_writeHex(addr);
dbglog_writeCStr("]");
dbglog_WriteMemArrow(WriteMem);
dbglog_writeHex(Data);
dbglog_writeReturn();
}
#endif
#if dbglog_HAVE
GLOBALPROC dbglog_Access(char *s, ui5r Data, blnr WriteMem)
{
dbglog_StartLine();
dbglog_writeCStr(s);
dbglog_WriteMemArrow(WriteMem);
dbglog_writeHex(Data);
dbglog_writeReturn();
}
#endif
#if dbglog_HAVE
GLOBALPROC dbglog_WriteNote(char *s)
{
dbglog_StartLine();
dbglog_writeCStr(s);
dbglog_writeReturn();
}
#endif
#if dbglog_HAVE
GLOBALPROC dbglog_WriteSetBool(char *s, blnr v)
{
dbglog_StartLine();
dbglog_writeCStr(s);
dbglog_writeCStr(" <- ");
if (v) {
dbglog_writeCStr("1");
} else {
dbglog_writeCStr("0");
}
dbglog_writeReturn();
}
#endif
LOCALVAR blnr GotOneAbnormal = falseblnr;
#ifndef ReportAbnormalInterrupt
#define ReportAbnormalInterrupt 0
#endif
#if dbglog_HAVE
GLOBALPROC DoReportAbnormal(char *s)
#else
GLOBALPROC DoReportAbnormal(void)
#endif
{
#if dbglog_HAVE
dbglog_StartLine();
dbglog_writeCStr("*** abnormal : ");
dbglog_writeCStr(s);
dbglog_writeReturn();
#endif
if (! GotOneAbnormal) {
WarnMsgAbnormal();
#if ReportAbnormalInterrupt
SetInterruptButton(trueblnr);
#endif
GotOneAbnormal = trueblnr;
}
}
/* map of address space */
#define kRAM_Base 0x00000000 /* when overlay off */
#if (CurEmMd == kEmMd_PB100)
#define kRAM_ln2Spc 23
#elif (CurEmMd == kEmMd_II) || (CurEmMd == kEmMd_IIx)
#define kRAM_ln2Spc 23
#else
#define kRAM_ln2Spc 22
#endif
#if IncludeVidMem
#if CurEmMd == kEmMd_PB100
#define kVidMem_Base 0x00FA0000
#define kVidMem_ln2Spc 16
#else
#define kVidMem_Base 0x00540000
#define kVidMem_ln2Spc 18
#endif
#endif
#if CurEmMd == kEmMd_PB100
#define kSCSI_Block_Base 0x00F90000
#define kSCSI_ln2Spc 16
#else
#define kSCSI_Block_Base 0x00580000
#define kSCSI_ln2Spc 19
#endif
#define kRAM_Overlay_Base 0x00600000 /* when overlay on */
#define kRAM_Overlay_Top 0x00800000
#if CurEmMd == kEmMd_PB100
#define kSCCRd_Block_Base 0x00FD0000
#define kSCC_ln2Spc 16
#else
#define kSCCRd_Block_Base 0x00800000
#define kSCC_ln2Spc 22
#endif
#if CurEmMd != kEmMd_PB100
#define kSCCWr_Block_Base 0x00A00000
#define kSCCWr_Block_Top 0x00C00000
#endif
#if CurEmMd == kEmMd_PB100
#define kIWM_Block_Base 0x00F60000
#define kIWM_ln2Spc 16
#else
#define kIWM_Block_Base 0x00C00000
#define kIWM_ln2Spc 21
#endif
#if CurEmMd == kEmMd_PB100
#define kVIA1_Block_Base 0x00F70000
#define kVIA1_ln2Spc 16
#else
#define kVIA1_Block_Base 0x00E80000
#define kVIA1_ln2Spc 19
#endif
#if CurEmMd == kEmMd_PB100
#define kASC_Block_Base 0x00FB0000
#define kASC_ln2Spc 16
#endif
#define kASC_Mask 0x00000FFF
#if IncludeExtnPbufs
LOCALFUNC tMacErr PbufTransferVM(CPTR Buffera,
tPbuf i, ui5r offset, ui5r count, blnr IsWrite)
{
tMacErr result;
ui5b contig;
ui3p Buffer;
label_1:
if (0 == count) {
result = mnvm_noErr;
} else {
Buffer = get_real_address0(count, ! IsWrite, Buffera, &contig);
if (0 == contig) {
result = mnvm_miscErr;
} else {
PbufTransfer(Buffer, i, offset, contig, IsWrite);
offset += contig;
Buffera += contig;
count -= contig;
goto label_1;
}
}
return result;
}
#endif
/* extension mechanism */
#if IncludeExtnPbufs
#define kCmndPbufFeatures 1
#define kCmndPbufNew 2
#define kCmndPbufDispose 3
#define kCmndPbufGetSize 4
#define kCmndPbufTransfer 5
#endif
#if IncludeExtnPbufs
LOCALPROC ExtnParamBuffers_Access(CPTR p)
{
tMacErr result = mnvm_controlErr;
switch (get_vm_word(p + ExtnDat_commnd)) {
case kCmndVersion:
put_vm_word(p + ExtnDat_version, 1);
result = mnvm_noErr;
break;
case kCmndPbufFeatures:
put_vm_long(p + ExtnDat_params + 0, 0);
result = mnvm_noErr;
break;
case kCmndPbufNew:
{
tPbuf Pbuf_No;
ui5b count = get_vm_long(p + ExtnDat_params + 4);
/* reserved word at offset 2, should be zero */
result = PbufNew(count, &Pbuf_No);
put_vm_word(p + ExtnDat_params + 0, Pbuf_No);
}
break;
case kCmndPbufDispose:
{
tPbuf Pbuf_No = get_vm_word(p + ExtnDat_params + 0);
/* reserved word at offset 2, should be zero */
result = CheckPbuf(Pbuf_No);
if (mnvm_noErr == result) {
PbufDispose(Pbuf_No);
}
}
break;
case kCmndPbufGetSize:
{
ui5r Count;
tPbuf Pbuf_No = get_vm_word(p + ExtnDat_params + 0);
/* reserved word at offset 2, should be zero */
result = PbufGetSize(Pbuf_No, &Count);
if (mnvm_noErr == result) {
put_vm_long(p + ExtnDat_params + 4, Count);
}
}
break;
case kCmndPbufTransfer:
{
ui5r PbufCount;
tPbuf Pbuf_No = get_vm_word(p + ExtnDat_params + 0);
/* reserved word at offset 2, should be zero */
ui5r offset = get_vm_long(p + ExtnDat_params + 4);
ui5r count = get_vm_long(p + ExtnDat_params + 8);
CPTR Buffera = get_vm_long(p + ExtnDat_params + 12);
blnr IsWrite =
(get_vm_word(p + ExtnDat_params + 16) != 0);
result = PbufGetSize(Pbuf_No, &PbufCount);
if (mnvm_noErr == result) {
ui5r endoff = offset + count;
if ((endoff < offset) /* overflow */
|| (endoff > PbufCount))
{
result = mnvm_eofErr;
} else {
result = PbufTransferVM(Buffera,
Pbuf_No, offset, count, IsWrite);
}
}
}
break;
}
put_vm_word(p + ExtnDat_result, result);
}
#endif
#if IncludeExtnHostTextClipExchange
#define kCmndHTCEFeatures 1
#define kCmndHTCEExport 2
#define kCmndHTCEImport 3
#endif
#if IncludeExtnHostTextClipExchange
LOCALPROC ExtnHostTextClipExchange_Access(CPTR p)
{
tMacErr result = mnvm_controlErr;
switch (get_vm_word(p + ExtnDat_commnd)) {
case kCmndVersion:
put_vm_word(p + ExtnDat_version, 1);
result = mnvm_noErr;
break;
case kCmndHTCEFeatures:
put_vm_long(p + ExtnDat_params + 0, 0);
result = mnvm_noErr;
break;
case kCmndHTCEExport:
{
tPbuf Pbuf_No = get_vm_word(p + ExtnDat_params + 0);
result = CheckPbuf(Pbuf_No);
if (mnvm_noErr == result) {
result = HTCEexport(Pbuf_No);
}
}
break;
case kCmndHTCEImport:
{
tPbuf Pbuf_No;
result = HTCEimport(&Pbuf_No);
put_vm_word(p + ExtnDat_params + 0, Pbuf_No);
}
break;
}
put_vm_word(p + ExtnDat_result, result);
}
#endif
#define kFindExtnExtension 0x64E1F58A
#define kDiskDriverExtension 0x4C9219E6
#if IncludeExtnPbufs
#define kHostParamBuffersExtension 0x314C87BF
#endif
#if IncludeExtnHostTextClipExchange
#define kHostClipExchangeExtension 0x27B130CA
#endif
#define kCmndFindExtnFind 1
#define kCmndFindExtnId2Code 2
#define kCmndFindExtnCount 3
#define kParamFindExtnTheExtn 8
#define kParamFindExtnTheId 12
LOCALPROC ExtnFind_Access(CPTR p)
{
tMacErr result = mnvm_controlErr;
switch (get_vm_word(p + ExtnDat_commnd)) {
case kCmndVersion:
put_vm_word(p + ExtnDat_version, 1);
result = mnvm_noErr;
break;
case kCmndFindExtnFind:
{
ui5b extn = get_vm_long(p + kParamFindExtnTheExtn);
if (extn == kDiskDriverExtension) {
put_vm_word(p + kParamFindExtnTheId, kExtnDisk);
result = mnvm_noErr;
} else
#if IncludeExtnPbufs
if (extn == kHostParamBuffersExtension) {
put_vm_word(p + kParamFindExtnTheId,
kExtnParamBuffers);
result = mnvm_noErr;
} else
#endif
#if IncludeExtnHostTextClipExchange
if (extn == kHostClipExchangeExtension) {
put_vm_word(p + kParamFindExtnTheId,
kExtnHostTextClipExchange);
result = mnvm_noErr;
} else
#endif
if (extn == kFindExtnExtension) {
put_vm_word(p + kParamFindExtnTheId,
kExtnFindExtn);
result = mnvm_noErr;
} else
{
/* not found */
}
}
break;
case kCmndFindExtnId2Code:
{
ui4r extn = get_vm_word(p + kParamFindExtnTheId);
if (extn == kExtnDisk) {
put_vm_long(p + kParamFindExtnTheExtn,
kDiskDriverExtension);
result = mnvm_noErr;
} else
#if IncludeExtnPbufs
if (extn == kExtnParamBuffers) {
put_vm_long(p + kParamFindExtnTheExtn,
kHostParamBuffersExtension);
result = mnvm_noErr;
} else
#endif
#if IncludeExtnHostTextClipExchange
if (extn == kExtnHostTextClipExchange) {
put_vm_long(p + kParamFindExtnTheExtn,
kHostClipExchangeExtension);
result = mnvm_noErr;
} else
#endif
if (extn == kExtnFindExtn) {
put_vm_long(p + kParamFindExtnTheExtn,
kFindExtnExtension);
result = mnvm_noErr;
} else
{
/* not found */
}
}
break;
case kCmndFindExtnCount:
put_vm_word(p + kParamFindExtnTheId, kNumExtns);
result = mnvm_noErr;
break;
}
put_vm_word(p + ExtnDat_result, result);
}
#define kDSK_Params_Hi 0
#define kDSK_Params_Lo 1
#define kDSK_QuitOnEject 3 /* obsolete */
LOCALVAR ui4b ParamAddrHi;
LOCALPROC Extn_Access(ui5b Data, CPTR addr)
{
switch (addr) {
case kDSK_Params_Hi:
ParamAddrHi = Data;
break;
case kDSK_Params_Lo:
{
CPTR p = ParamAddrHi << 16 | Data;
ParamAddrHi = (ui4b) - 1;
if (kcom_callcheck == get_vm_word(p + ExtnDat_checkval))
{
put_vm_word(p + ExtnDat_checkval, 0);
switch (get_vm_word(p + ExtnDat_extension)) {
case kExtnFindExtn:
ExtnFind_Access(p);
break;
#if EmVidCard
case kExtnVideo:
ExtnVideo_Access(p);
break;
#endif
#if IncludeExtnPbufs
case kExtnParamBuffers:
ExtnParamBuffers_Access(p);
break;
#endif
#if IncludeExtnHostTextClipExchange
case kExtnHostTextClipExchange:
ExtnHostTextClipExchange_Access(p);
break;
#endif
case kExtnDisk:
ExtnDisk_Access(p);
break;
case kExtnSony:
ExtnSony_Access(p);
break;
default:
put_vm_word(p + ExtnDat_result,
mnvm_controlErr);
break;
}
}
}
break;
case kDSK_QuitOnEject:
/* obsolete, kept for compatibility */
Sony_SetQuitOnEject();
break;
}
}
GLOBALPROC Extn_Reset(void)
{
ParamAddrHi = (ui4b) - 1;
}
/* implementation of read/write for everything but RAM and ROM */
#define kSCC_Mask 0x03
#define kVIA1_Mask 0x00000F
#if EmVIA2
#define kVIA2_Mask 0x00000F
#endif
#define kIWM_Mask 0x00000F /* Allocated Memory Bandwidth for IWM */
#if CurEmMd <= kEmMd_512Ke
#define ROM_CmpZeroMask 0
#elif CurEmMd <= kEmMd_Plus
#define ROM_CmpZeroMask 0x00020000
#elif CurEmMd <= kEmMd_PB100
#define ROM_CmpZeroMask 0
#elif CurEmMd <= kEmMd_IIx
#define ROM_CmpZeroMask 0
#else
#error "ROM_CmpZeroMask not defined"
#endif
#define kROM_cmpmask (0x00F00000 | ROM_CmpZeroMask)
#if CurEmMd <= kEmMd_512Ke
#define Overlay_ROM_CmpZeroMask 0x00100000
#elif CurEmMd <= kEmMd_Plus
#define Overlay_ROM_CmpZeroMask 0x00020000
#elif CurEmMd <= kEmMd_Classic
#define Overlay_ROM_CmpZeroMask 0x00300000
#elif CurEmMd <= kEmMd_PB100
#define Overlay_ROM_CmpZeroMask 0
#elif CurEmMd <= kEmMd_IIx
#define Overlay_ROM_CmpZeroMask 0
#else
#error "Overlay_ROM_CmpZeroMask not defined"
#endif
enum {
kMMDV_VIA1,
#if EmVIA2
kMMDV_VIA2,
#endif
kMMDV_SCC,
kMMDV_Extn,
#if EmASC
kMMDV_ASC,
#endif
kMMDV_SCSI,
kMMDV_IWM,
kNumMMDVs
};
enum {
#if CurEmMd >= kEmMd_SE
kMAN_OverlayOff,
#endif
kNumMANs
};
LOCALVAR ATTer ATTListA[MaxATTListN];
LOCALVAR ui4r LastATTel;
LOCALPROC AddToATTList(ATTep p)
{
ui4r NewLast = LastATTel + 1;
if (NewLast >= MaxATTListN) {
ReportAbnormal("MaxATTListN not big enough");
} else {
ATTListA[LastATTel] = *p;
LastATTel = NewLast;
}
}
LOCALPROC InitATTList(void)
{
LastATTel = 0;
}
LOCALPROC FinishATTList(void)
{
{
/* add guard */
ATTer r;
r.cmpmask = 0;
r.cmpvalu = 0;
r.usemask = 0;
r.usebase = nullpr;
r.Access = 0;
AddToATTList(&r);
}
{
ui4r i = LastATTel;
ATTep p = &ATTListA[LastATTel];
ATTep h = nullpr;
while (0 != i) {
--i;
--p;
p->Next = h;
h = p;
}
#if 0 /* verify list. not for final version */
{
ATTep q1;
ATTep q2;
for (q1 = h; nullpr != q1->Next; q1 = q1->Next) {
if ((q1->cmpvalu & ~ q1->cmpmask) != 0) {
ReportAbnormal("ATTListA bad entry");
}
for (q2 = q1->Next; nullpr != q2->Next; q2 = q2->Next) {
ui5r common_mask = (q1->cmpmask) & (q2->cmpmask);
if ((q1->cmpvalu & common_mask) ==
(q2->cmpvalu & common_mask))
{
ReportAbnormal("ATTListA Conflict");
}
}
}
}
#endif
SetHeadATTel(h);
}
}
#if (CurEmMd == kEmMd_II) || (CurEmMd == kEmMd_IIx)
LOCALPROC SetUp_RAM24(void)
{
ATTer r;
ui5r bankbit = 0x00100000 << (((VIA2_iA7 << 1) | VIA2_iA6) << 1);
#if kRAMa_Size == kRAMb_Size
if (kRAMa_Size == bankbit) {
/* properly set up balanced RAM */
r.cmpmask = 0x00FFFFFF & ~ ((1 << kRAM_ln2Spc) - 1);
r.cmpvalu = 0;
r.usemask = ((1 << kRAM_ln2Spc) - 1) & (kRAM_Size - 1);
r.usebase = RAM;
r.Access = kATTA_readwritereadymask;
AddToATTList(&r);
} else
#endif
{
bankbit &= 0x00FFFFFF; /* if too large, always use RAMa */
if (0 != bankbit) {
#if kRAMb_Size != 0
r.cmpmask = bankbit
| (0x00FFFFFF & ~ ((1 << kRAM_ln2Spc) - 1));
r.cmpvalu = bankbit;
r.usemask = ((1 << kRAM_ln2Spc) - 1) & (kRAMb_Size - 1);
r.usebase = kRAMa_Size + RAM;
r.Access = kATTA_readwritereadymask;
AddToATTList(&r);
#endif
}
{
r.cmpmask = bankbit
| (0x00FFFFFF & ~ ((1 << kRAM_ln2Spc) - 1));
r.cmpvalu = 0;
r.usemask = ((1 << kRAM_ln2Spc) - 1) & (kRAMa_Size - 1);
r.usebase = RAM;
r.Access = kATTA_readwritereadymask;
AddToATTList(&r);
}
}
}
#endif
#if (CurEmMd == kEmMd_II) || (CurEmMd == kEmMd_IIx)
LOCALPROC SetUp_io(void)
{
ATTer r;
if (Addr32) {
r.cmpmask = 0xFF01E000;
r.cmpvalu = 0x50000000;
} else {
r.cmpmask = 0x00F1E000;
r.cmpvalu = 0x00F00000;
}
r.usebase = nullpr;
r.Access = kATTA_mmdvmask;
r.MMDV = kMMDV_VIA1;
AddToATTList(&r);
if (Addr32) {
r.cmpmask = 0xFF01E000;
r.cmpvalu = 0x50000000 | 0x2000;
} else {
r.cmpmask = 0x00F1E000;
r.cmpvalu = 0x00F00000 | 0x2000;
}
r.usebase = nullpr;
r.Access = kATTA_mmdvmask;
r.MMDV = kMMDV_VIA2;
AddToATTList(&r);
if (Addr32) {
r.cmpmask = 0xFF01E000;
r.cmpvalu = 0x50000000 | 0x4000;
} else {
r.cmpmask = 0x00F1E000;
r.cmpvalu = 0x00F00000 | 0x4000;
}
r.usebase = nullpr;
r.Access = kATTA_mmdvmask;
r.MMDV = kMMDV_SCC;
AddToATTList(&r);
if (Addr32) {
r.cmpmask = 0xFF01E000;
r.cmpvalu = 0x50000000 | 0x0C000;
} else {
r.cmpmask = 0x00F1E000;
r.cmpvalu = 0x00F00000 | 0x0C000;
}
r.usebase = nullpr;
r.Access = kATTA_mmdvmask;
r.MMDV = kMMDV_Extn;
AddToATTList(&r);
if (Addr32) {
r.cmpmask = 0xFF01E000;
r.cmpvalu = 0x50000000 | 0x10000;
} else {
r.cmpmask = 0x00F1E000;
r.cmpvalu = 0x00F00000 | 0x10000;
}
r.usebase = nullpr;
r.Access = kATTA_mmdvmask;
r.MMDV = kMMDV_SCSI;
AddToATTList(&r);
if (Addr32) {
r.cmpmask = 0xFF01E000;
r.cmpvalu = 0x50000000 | 0x14000;
} else {
r.cmpmask = 0x00F1E000;
r.cmpvalu = 0x00F00000 | 0x14000;
}
r.usebase = nullpr;
r.Access = kATTA_mmdvmask;
r.MMDV = kMMDV_ASC;
AddToATTList(&r);
if (Addr32) {
r.cmpmask = 0xFF01E000;
r.cmpvalu = 0x50000000 | 0x16000;
} else {
r.cmpmask = 0x00F1E000;
r.cmpvalu = 0x00F00000 | 0x16000;
}
r.usebase = nullpr;
r.Access = kATTA_mmdvmask;
r.MMDV = kMMDV_IWM;
AddToATTList(&r);
#if 0
case 14:
/*
fail, nothing supposed to be here,
but rom accesses it anyway
*/
{
ui5r addr2 = addr & 0x1FFFF;
if ((addr2 != 0x1DA00) && (addr2 != 0x1DC00)) {
ReportAbnormal("another unknown access");
}
}
get_fail_realblock(p);
break;
#endif
}
#endif
#if (CurEmMd == kEmMd_II) || (CurEmMd == kEmMd_IIx)
LOCALPROC SetUp_address24(void)
{
ATTer r;
if (MemOverlay) {
ReportAbnormal("Overlay with 24 bit addressing");
}
if (MemOverlay) {
r.cmpmask = Overlay_ROM_CmpZeroMask |
(0x00FFFFFF & ~ ((1 << kRAM_ln2Spc) - 1));
r.cmpvalu = kRAM_Base;
r.usemask = kROM_Size - 1;
r.usebase = ROM;
r.Access = kATTA_readreadymask;
AddToATTList(&r);
} else {
SetUp_RAM24();
}
r.cmpmask = kROM_cmpmask;
r.cmpvalu = kROM_Base;
r.usemask = kROM_Size - 1;
r.usebase = ROM;
r.Access = kATTA_readreadymask;
AddToATTList(&r);
r.cmpmask = 0x00FFFFFF & ~ (0x100000 - 1);
r.cmpvalu = 0x900000;
r.usemask = (kVidMemRAM_Size - 1) & (0x100000 - 1);
r.usebase = VidMem;
r.Access = kATTA_readwritereadymask;
AddToATTList(&r);
#if kVidMemRAM_Size >= 0x00200000
r.cmpmask = 0x00FFFFFF & ~ (0x100000 - 1);
r.cmpvalu = 0xA00000;
r.usemask = (0x100000 - 1);
r.usebase = VidMem + (1 << 20);
r.Access = kATTA_readwritereadymask;
AddToATTList(&r);
#endif
#if kVidMemRAM_Size >= 0x00400000
r.cmpmask = 0x00FFFFFF & ~ (0x100000 - 1);
r.cmpvalu = 0xB00000;
r.usemask = (0x100000 - 1);
r.usebase = VidMem + (2 << 20);
r.Access = kATTA_readwritereadymask;
AddToATTList(&r);
r.cmpmask = 0x00FFFFFF & ~ (0x100000 - 1);
r.cmpvalu = 0xC00000;
r.usemask = (0x100000 - 1);
r.usebase = VidMem + (3 << 20);
r.Access = kATTA_readwritereadymask;
AddToATTList(&r);
#endif
SetUp_io();
}
#endif
#if (CurEmMd == kEmMd_II) || (CurEmMd == kEmMd_IIx)
LOCALPROC SetUp_address32(void)
{
ATTer r;
if (MemOverlay) {
r.cmpmask = ~ ((1 << 30) - 1);
r.cmpvalu = 0;
r.usemask = kROM_Size - 1;
r.usebase = ROM;
r.Access = kATTA_readreadymask;
AddToATTList(&r);
} else {
ui5r bankbit =
0x00100000 << (((VIA2_iA7 << 1) | VIA2_iA6) << 1);
#if kRAMa_Size == kRAMb_Size
if (kRAMa_Size == bankbit) {
/* properly set up balanced RAM */
r.cmpmask = ~ ((1 << 30) - 1);
r.cmpvalu = 0;
r.usemask = kRAM_Size - 1;
r.usebase = RAM;
r.Access = kATTA_readwritereadymask;
AddToATTList(&r);
} else
#endif
{
#if kRAMb_Size != 0
r.cmpmask = bankbit | ~ ((1 << 30) - 1);
r.cmpvalu = bankbit;
r.usemask = kRAMb_Size - 1;
r.usebase = kRAMa_Size + RAM;
r.Access = kATTA_readwritereadymask;
AddToATTList(&r);
#endif
r.cmpmask = bankbit | ~ ((1 << 30) - 1);
r.cmpvalu = 0;
r.usemask = kRAMa_Size - 1;
r.usebase = RAM;
r.Access = kATTA_readwritereadymask;
AddToATTList(&r);
}
}
r.cmpmask = ~ ((1 << 28) - 1);
r.cmpvalu = 0x40000000;
r.usemask = kROM_Size - 1;
r.usebase = ROM;
r.Access = kATTA_readreadymask;
AddToATTList(&r);
#if 0
/* haven't persuaded emulated computer to look here yet. */
/* NuBus super space */
r.cmpmask = ~ ((1 << 28) - 1);
r.cmpvalu = 0x90000000;
r.usemask = kVidMemRAM_Size - 1;
r.usebase = VidMem;
r.Access = kATTA_readwritereadymask;
AddToATTList(&r);
#endif
/* Standard NuBus space */
r.cmpmask = ~ ((1 << 20) - 1);
r.cmpvalu = 0xF9F00000;
r.usemask = kVidROM_Size - 1;
r.usebase = VidROM;
r.Access = kATTA_readreadymask;
AddToATTList(&r);
#if 0
r.cmpmask = ~ 0x007FFFFF;
r.cmpvalu = 0xF9000000;
r.usemask = 0x007FFFFF & (kVidMemRAM_Size - 1);
r.usebase = VidMem;
r.Access = kATTA_readwritereadymask;
AddToATTList(&r);
#endif
r.cmpmask = ~ 0x000FFFFF;
r.cmpvalu = 0xF9900000;
r.usemask = 0x000FFFFF & (kVidMemRAM_Size - 1);
r.usebase = VidMem;
r.Access = kATTA_readwritereadymask;
AddToATTList(&r);
/* kludge to allow more than 1M of Video Memory */
#if kVidMemRAM_Size >= 0x00200000
r.cmpmask = ~ 0x000FFFFF;
r.cmpvalu = 0xF9A00000;
r.usemask = 0x000FFFFF & (kVidMemRAM_Size - 1);
r.usebase = VidMem + (1 << 20);
r.Access = kATTA_readwritereadymask;
AddToATTList(&r);
#endif
#if kVidMemRAM_Size >= 0x00400000
r.cmpmask = ~ 0x000FFFFF;
r.cmpvalu = 0xF9B00000;
r.usemask = 0x000FFFFF & (kVidMemRAM_Size - 1);
r.usebase = VidMem + (2 << 20);
r.Access = kATTA_readwritereadymask;
AddToATTList(&r);
r.cmpmask = ~ 0x000FFFFF;
r.cmpvalu = 0xF9C00000;
r.usemask = 0x000FFFFF & (kVidMemRAM_Size - 1);
r.usebase = VidMem + (3 << 20);
r.Access = kATTA_readwritereadymask;
AddToATTList(&r);
#endif
SetUp_io();
#if 0
if ((addr >= 0x58000000) && (addr < 0x58000004)) {
/* test hardware. fail */
}
#endif
}
#endif
#if (CurEmMd == kEmMd_II) || (CurEmMd == kEmMd_IIx)
LOCALPROC SetUp_address(void)
{
if (Addr32) {
SetUp_address32();
} else {
SetUp_address24();
}
}
#endif
/*
unlike in the real Mac Plus, Mini vMac
will allow misaligned memory access,
since it is easier to allow it than
it is to correctly simulate a bus error
and back out of the current instruction.
*/
#if (CurEmMd != kEmMd_II) && (CurEmMd != kEmMd_IIx)
LOCALPROC SetUp_RAM24(void)
{
ATTer r;
#if (0 == kRAMb_Size) || (kRAMa_Size == kRAMb_Size)
r.cmpmask = 0x00FFFFFF & ~ ((1 << kRAM_ln2Spc) - 1);
r.cmpvalu = kRAM_Base;
r.usemask = kRAM_Size - 1;
r.usebase = RAM;
r.Access = kATTA_readwritereadymask;
AddToATTList(&r);
#else
/* unbalanced memory */
#if 0 != (0x00FFFFFF & kRAMa_Size)
/* condition should always be true if configuration file right */
r.cmpmask = 0x00FFFFFF & (kRAMa_Size | ~ ((1 << kRAM_ln2Spc) - 1));
r.cmpvalu = kRAM_Base + kRAMa_Size;
r.usemask = kRAMb_Size - 1;
r.usebase = kRAMa_Size + RAM;
r.Access = kATTA_readwritereadymask;
AddToATTList(&r);
#endif
r.cmpmask = 0x00FFFFFF & (kRAMa_Size | ~ ((1 << kRAM_ln2Spc) - 1));
r.cmpvalu = kRAM_Base;
r.usemask = kRAMa_Size - 1;
r.usebase = RAM;
r.Access = kATTA_readwritereadymask;
AddToATTList(&r);
#endif
}
#endif
#if (CurEmMd != kEmMd_II) && (CurEmMd != kEmMd_IIx)
LOCALPROC SetUp_address(void)
{
ATTer r;
if (MemOverlay) {
r.cmpmask = Overlay_ROM_CmpZeroMask |
(0x00FFFFFF & ~ ((1 << kRAM_ln2Spc) - 1));
r.cmpvalu = kRAM_Base;
r.usemask = kROM_Size - 1;
r.usebase = ROM;
r.Access = kATTA_readreadymask;
AddToATTList(&r);
} else {
SetUp_RAM24();
}
r.cmpmask = kROM_cmpmask;
r.cmpvalu = kROM_Base;
#if (CurEmMd >= kEmMd_SE)
if (MemOverlay) {
r.usebase = nullpr;
r.Access = kATTA_ntfymask;
r.Ntfy = kMAN_OverlayOff;
} else
#endif
{
r.usemask = kROM_Size - 1;
r.usebase = ROM;
r.Access = kATTA_readreadymask;
}
AddToATTList(&r);
if (MemOverlay) {
r.cmpmask = 0x00E00000;
r.cmpvalu = kRAM_Overlay_Base;
#if (0 == kRAMb_Size) || (kRAMa_Size == kRAMb_Size)
r.usemask = kRAM_Size - 1;
/* note that cmpmask and usemask overlap for 4M */
r.usebase = RAM;
r.Access = kATTA_readwritereadymask;
#else
/* unbalanced memory */
r.usemask = kRAMb_Size - 1;
r.usebase = kRAMa_Size + RAM;
r.Access = kATTA_readwritereadymask;
#endif
AddToATTList(&r);
}
#if IncludeVidMem
r.cmpmask = 0x00FFFFFF & ~ ((1 << kVidMem_ln2Spc) - 1);
r.cmpvalu = kVidMem_Base;
r.usemask = kVidMemRAM_Size - 1;
r.usebase = VidMem;
r.Access = kATTA_readwritereadymask;
AddToATTList(&r);
#endif
r.cmpmask = 0x00FFFFFF & ~ ((1 << kVIA1_ln2Spc) - 1);
r.cmpvalu = kVIA1_Block_Base;
r.usebase = nullpr;
r.Access = kATTA_mmdvmask;
r.MMDV = kMMDV_VIA1;
AddToATTList(&r);
r.cmpmask = 0x00FFFFFF & ~ ((1 << kSCC_ln2Spc) - 1);
r.cmpvalu = kSCCRd_Block_Base;
r.usebase = nullpr;
r.Access = kATTA_mmdvmask;
r.MMDV = kMMDV_SCC;
AddToATTList(&r);
r.cmpmask = 0x00FFFFFF & ~ ((1 << kExtn_ln2Spc) - 1);
r.cmpvalu = kExtn_Block_Base;
r.usebase = nullpr;
r.Access = kATTA_mmdvmask;
r.MMDV = kMMDV_Extn;
AddToATTList(&r);
#if CurEmMd == kEmMd_PB100
r.cmpmask = 0x00FFFFFF & ~ ((1 << kASC_ln2Spc) - 1);
r.cmpvalu = kASC_Block_Base;
r.usebase = nullpr;
r.Access = kATTA_mmdvmask;
r.MMDV = kMMDV_ASC;
AddToATTList(&r);
#endif
r.cmpmask = 0x00FFFFFF & ~ ((1 << kSCSI_ln2Spc) - 1);
r.cmpvalu = kSCSI_Block_Base;
r.usebase = nullpr;
r.Access = kATTA_mmdvmask;
r.MMDV = kMMDV_SCSI;
AddToATTList(&r);
r.cmpmask = 0x00FFFFFF & ~ ((1 << kIWM_ln2Spc) - 1);
r.cmpvalu = kIWM_Block_Base;
r.usebase = nullpr;
r.Access = kATTA_mmdvmask;
r.MMDV = kMMDV_IWM;
AddToATTList(&r);
}
#endif
LOCALPROC SetUpMemBanks(void)
{
InitATTList();
SetUp_address();
FinishATTList();
}
#if 0
LOCALPROC get_fail_realblock(ATTep p)
{
p->cmpmask = 0;
p->cmpvalu = 0xFFFFFFFF;
p->usemask = 0;
p->usebase = nullpr;
p->Access = 0;
}
#endif
GLOBALFUNC ui5b MMDV_Access(ATTep p, ui5b Data,
blnr WriteMem, blnr ByteSize, CPTR addr)
{
switch (p->MMDV) {
case kMMDV_VIA1:
if (! ByteSize) {
ReportAbnormal("access VIA1 word");
} else if ((addr & 1) != 0) {
ReportAbnormal("access VIA1 odd");
} else {
#if CurEmMd != kEmMd_PB100
#if (CurEmMd == kEmMd_II) || (CurEmMd == kEmMd_IIx)
if ((addr & 0x000001FE) != 0x00000000)
#else
if ((addr & 0x000FE1FE) != 0x000FE1FE)
#endif
{
ReportAbnormal("access VIA1 nonstandard address");
}
#endif
Data = VIA1_Access(Data, WriteMem,
(addr >> 9) & kVIA1_Mask);
}
break;
#if EmVIA2
case kMMDV_VIA2:
if (! ByteSize) {
if ((! WriteMem)
&& ((0x3e00 == (addr & 0x1FFFF))
|| (0x3e02 == (addr & 0x1FFFF))))
{
/* for weirdness at offset 0x71E in ROM */
Data =
(VIA2_Access(Data, WriteMem,
(addr >> 9) & kVIA2_Mask) << 8)
| VIA2_Access(Data, WriteMem,
(addr >> 9) & kVIA2_Mask);
} else {
ReportAbnormal("access VIA2 word");
}
} else if ((addr & 1) != 0) {
if (0x3FFF == (addr & 0x1FFFF)) {
/*
for weirdness at offset 0x7C4 in ROM.
looks like bug.
*/
Data = VIA2_Access(Data, WriteMem,
(addr >> 9) & kVIA2_Mask);
} else {
ReportAbnormal("access VIA2 odd");
}
} else {
if ((addr & 0x000001FE) != 0x00000000) {
ReportAbnormal("access VIA2 nonstandard address");
}
Data = VIA2_Access(Data, WriteMem,
(addr >> 9) & kVIA2_Mask);
}
break;
#endif
case kMMDV_SCC:
#if (CurEmMd >= kEmMd_SE) \
&& ! ((CurEmMd == kEmMd_II) || (CurEmMd == kEmMd_IIx))
if ((addr & 0x00100000) == 0) {
ReportAbnormal("access SCC unassigned address");
} else
#endif
if (! ByteSize) {
ReportAbnormal("Attemped Phase Adjust");
} else
#if ! ((CurEmMd == kEmMd_II) || (CurEmMd == kEmMd_IIx))
if (WriteMem != ((addr & 1) != 0)) {
if (WriteMem) {
#if CurEmMd >= kEmMd_512Ke
#if CurEmMd != kEmMd_PB100
ReportAbnormal("access SCC even/odd");
/*
This happens on boot with 64k ROM.
*/
#endif
#endif
} else {
SCC_Reset();
}
} else
#endif
#if (CurEmMd != kEmMd_PB100) \
&& ! ((CurEmMd == kEmMd_II) || (CurEmMd == kEmMd_IIx))
if (WriteMem != (addr >= kSCCWr_Block_Base)) {
ReportAbnormal("access SCC wr/rd base wrong");
} else
#endif
{
#if CurEmMd != kEmMd_PB100
#if (CurEmMd == kEmMd_II) || (CurEmMd == kEmMd_IIx)
if ((addr & 0x1FF9) != 0x00000000)
#else
if ((addr & 0x001FFFF8) != 0x001FFFF8)
#endif
{
ReportAbnormal("access SCC nonstandard address");
}
#endif
Data = SCC_Access(Data, WriteMem,
(addr >> 1) & kSCC_Mask);
}
break;
case kMMDV_Extn:
if (ByteSize) {
ReportAbnormal("access Sony byte");
} else if ((addr & 1) != 0) {
ReportAbnormal("access Sony odd");
} else if (! WriteMem) {
ReportAbnormal("access Sony read");
} else {
Extn_Access(Data, (addr >> 1) & 0x0F);
}
break;
#if EmASC
case kMMDV_ASC:
if (! ByteSize) {
#if (CurEmMd == kEmMd_II) || (CurEmMd == kEmMd_IIx)
if (WriteMem) {
(void) ASC_Access((Data >> 8) & 0x00FF,
WriteMem, addr & kASC_Mask);
Data = ASC_Access((Data) & 0x00FF,
WriteMem, (addr + 1) & kASC_Mask);
} else {
Data =
(ASC_Access((Data >> 8) & 0x00FF,
WriteMem, addr & kASC_Mask) << 8)
| ASC_Access((Data) & 0x00FF,
WriteMem, (addr + 1) & kASC_Mask);
}
#else
ReportAbnormal("access ASC word");
#endif
} else {
Data = ASC_Access(Data, WriteMem, addr & kASC_Mask);
}
break;
#endif
case kMMDV_SCSI:
if (! ByteSize) {
ReportAbnormal("access SCSI word");
} else
#if ! ((CurEmMd == kEmMd_II) || (CurEmMd == kEmMd_IIx))
if (WriteMem != ((addr & 1) != 0)) {
ReportAbnormal("access SCSI even/odd");
} else
#endif
{
#if (CurEmMd == kEmMd_II) || (CurEmMd == kEmMd_IIx)
if ((addr & 0x1F8F) != 0x00000000) {
ReportAbnormal("access SCSI nonstandard address");
}
#endif
Data = SCSI_Access(Data, WriteMem, (addr >> 4) & 0x07);
}
break;
case kMMDV_IWM:
#if (CurEmMd >= kEmMd_SE) \
&& ! ((CurEmMd == kEmMd_II) || (CurEmMd == kEmMd_IIx))
if ((addr & 0x00100000) == 0) {
ReportAbnormal("access IWM unassigned address");
} else
#endif
if (! ByteSize) {
#if ExtraAbnormalReports
ReportAbnormal("access IWM word");
/*
This happens when quitting 'Glider 3.1.2'.
perhaps a bad handle is being disposed of.
*/
#endif
} else
#if (CurEmMd == kEmMd_II) || (CurEmMd == kEmMd_IIx)
if ((addr & 1) != 0) {
ReportAbnormal("access IWM odd");
} else
#else
if ((addr & 1) == 0) {
ReportAbnormal("access IWM even");
} else
#endif
{
#if (CurEmMd != kEmMd_PB100) \
&& ! ((CurEmMd == kEmMd_II) || (CurEmMd == kEmMd_IIx))
if ((addr & 0x001FE1FF) != 0x001FE1FF) {
ReportAbnormal("access IWM nonstandard address");
}
#endif
Data = IWM_Access(Data, WriteMem,
(addr >> 9) & kIWM_Mask);
}
break;
}
return Data;
}
GLOBALFUNC blnr MemAccessNtfy(ATTep pT)
{
blnr v = falseblnr;
switch (pT->Ntfy) {
#if CurEmMd >= kEmMd_SE
case kMAN_OverlayOff:
pT->Access = kATTA_readreadymask;
MemOverlay = 0;
SetUpMemBanks();
v = trueblnr;
break;
#endif
}
return v;
}
GLOBALPROC MemOverlay_ChangeNtfy(void)
{
#if CurEmMd <= kEmMd_Plus
SetUpMemBanks();
#elif (CurEmMd == kEmMd_II) || (CurEmMd == kEmMd_IIx)
SetUpMemBanks();
#endif
}
#if (CurEmMd == kEmMd_II) || (CurEmMd == kEmMd_IIx)
GLOBALPROC Addr32_ChangeNtfy(void)
{
SetUpMemBanks();
}
#endif
LOCALFUNC ATTep get_address_realblock1(blnr WriteMem, CPTR addr)
{
ATTep p;
Label_Retry:
p = FindATTel(addr);
if (0 != (p->Access &
(WriteMem ? kATTA_writereadymask : kATTA_readreadymask)))
{
/* ok */
} else {
if (0 != (p->Access & kATTA_ntfymask)) {
if (MemAccessNtfy(p)) {
goto Label_Retry;
}
}
p = nullpr; /* fail */
}
return p;
}
GLOBALFUNC ui3p get_real_address0(ui5b L, blnr WritableMem, CPTR addr,
ui5b *actL)
{
ui5b RealSize;
ui5b bankleft;
ui3p p;
ATTep q;
q = get_address_realblock1(WritableMem, addr);
if (nullpr == q) {
*actL = 0;
p = nullpr;
} else {
ui5b bankoffset = addr & q->usemask;
RealSize = q->usemask + 1;
bankleft = RealSize - bankoffset;
p = bankoffset + q->usebase;
if (bankleft >= L) {
/* this block is big enough (by far the most common case) */
*actL = L;
} else {
/*
not big enough, look if following block
is contiguous in real memory.
*/
ui3p bankend;
ui5b n = L;
label_1:
addr += bankleft;
n -= bankleft;
bankend = RealSize + q->usebase;
q = get_address_realblock1(WritableMem, addr);
if ((nullpr == q)
|| (q->usebase != bankend))
{
/* following block not contiguous */
*actL = L - n;
} else {
RealSize = q->usemask + 1;
if (RealSize >= n) {
/* following block is contiguous and big enough */
*actL = L; /* ok */
} else {
bankoffset = addr & q->usemask;
if (bankoffset != 0) {
ReportAbnormal(
"problem with get_address_realblock1");
}
bankleft = RealSize;
goto label_1;
}
}
}
}
return p;
}
GLOBALVAR blnr InterruptButton = falseblnr;
GLOBALPROC SetInterruptButton(blnr v)
{
if (InterruptButton != v) {
InterruptButton = v;
VIAorSCCinterruptChngNtfy();
}
}
LOCALVAR ui3b CurIPL = 0;
GLOBALPROC VIAorSCCinterruptChngNtfy(void)
{
#if (CurEmMd == kEmMd_II) || (CurEmMd == kEmMd_IIx)
ui3b NewIPL;
if (InterruptButton) {
NewIPL = 7;
} else if (SCCInterruptRequest) {
NewIPL = 4;
} else if (VIA2_InterruptRequest) {
NewIPL = 2;
} else if (VIA1_InterruptRequest) {
NewIPL = 1;
} else {
NewIPL = 0;
}
#else
ui3b VIAandNotSCC = VIA1_InterruptRequest
& ~ SCCInterruptRequest;
ui3b NewIPL = VIAandNotSCC
| (SCCInterruptRequest << 1)
| (InterruptButton << 2);
#endif
if (NewIPL != CurIPL) {
CurIPL = NewIPL;
m68k_IPLchangeNtfy();
}
}
GLOBALFUNC blnr AddrSpac_Init(void)
{
int i;
for (i = 0; i < kNumWires; i++) {
Wires[i] = 1;
}
MINEM68K_Init(
&CurIPL);
return trueblnr;
}
GLOBALPROC Memory_Reset(void)
{
MemOverlay = 1;
SetUpMemBanks();
}
#if (CurEmMd == kEmMd_II) || (CurEmMd == kEmMd_IIx)
EXPORTPROC PowerOff_ChangeNtfy(void);
GLOBALPROC PowerOff_ChangeNtfy(void)
{
if (! VIA2_iB2) {
ForceMacOff = trueblnr;
}
}
#endif
/* user event queue utilities */
#if HaveMasterMyEvtQLock
GLOBALVAR ui4r MasterMyEvtQLock = 0;
/*
Takes a few ticks to process button event because
of debounce code of Mac. So have this mechanism
to prevent processing further events meanwhile.
*/
#endif
GLOBALFUNC blnr FindKeyEvent(int *VirtualKey, blnr *KeyDown)
{
MyEvtQEl *p;
if (
#if HaveMasterMyEvtQLock
(0 == MasterMyEvtQLock) &&
#endif
(nullpr != (p = MyEvtQOutP())))
{
if (MyEvtQElKindKey == p->kind) {
*VirtualKey = p->u.press.key;
*KeyDown = p->u.press.down;
MyEvtQOutDone();
return trueblnr;
}
}
return falseblnr;
}
/* task management */
#ifdef _VIA_Debug
#include <stdio.h>
#endif
GLOBALVAR uimr ICTactive;
GLOBALVAR iCountt ICTwhen[kNumICTs];
GLOBALPROC ICT_Zap(void)
{
ICTactive = 0;
}
LOCALPROC InsertICT(int taskid, iCountt when)
{
ICTwhen[taskid] = when;
ICTactive |= (1 << taskid);
}
GLOBALVAR iCountt NextiCount = 0;
GLOBALFUNC iCountt GetCuriCount(void)
{
return NextiCount - GetCyclesRemaining();
}
GLOBALPROC ICT_add(int taskid, ui5b n)
{
/* n must be > 0 */
si5r x = GetCyclesRemaining();
ui5b when = NextiCount - x + n;
#ifdef _VIA_Debug
fprintf(stderr, "ICT_add: %d, %d, %d\n", when, taskid, n);
#endif
InsertICT(taskid, when);
if (x > (si5r)n) {
SetCyclesRemaining(n);
NextiCount = when;
}
}