syn68k/runtime/native/i386/host-native.c

618 lines
17 KiB
C
Raw Normal View History

2008-09-26 14:25:10 +00:00
#include "syn68k_private.h"
#ifdef GENERATE_NATIVE_CODE
#include "native.h"
#include "i386-isa.h"
#include "interrupt.h"
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#ifndef offsetof
#define offsetof(t, f) ((int32) &(((t *) 0)->f))
#endif
/* Set to TRUE if we are on an i486 or better, which means we can use
* the bswap instruction.
*/
uint8 have_i486_p;
/* This stub will get copied to the native code entry point for a block,
* and then backpatched if it's actually used.
*/
host_code_t native_to_synth_stub[] =
{
0xBE, 0x78, 0x56, 0x34, 0x12, /* movl $0x12345678,%esi */
0xE9, 0x79, 0x56, 0x34, 0x12, /* jmp $0x12345679 */
};
void
host_backpatch_native_to_synth_stub (Block *b, host_code_t *stub,
uint32 *synth_opcode)
{
assert (!memcmp (stub, native_to_synth_stub, NATIVE_TO_SYNTH_STUB_BYTES));
assert (sizeof native_to_synth_stub == NATIVE_TO_SYNTH_STUB_BYTES);
/* Fill in the new synthetic PC so it points to the operands of
* the first synthetic instruction.
*/
*(uint32 *)(stub + 1) = ((uint32) synth_opcode) + 4;
/* Fill in the jmp's relative offset so that it jumps to the
* handler code for this synthetic opcode. The branch is relative
* to the _end_ of the bytes for the jmp instruction.
*/
*(uint32 *)(stub + 6) = *synth_opcode - (((uint32) stub) + 10);
}
#ifdef SYNCHRONOUS_INTERRUPTS
/* These stubs use comparisons with %ebp as a hack. Since our
* interrupt changed flag is either -1 or LONG_MAX, as long as
* %ebp is somewhere in between it will work. This makes the code
* slightly more compact and faster (since the alternative is to use a
* constant zero, and instructions with two constants take longer to
* decode). We verify below that INTERRUPT_STATUS_CHANGED < %ebp and
* INTERRUPT_STATUS_UNCHANGED >= %ebp. We overwrite some of the
* constant operands when we backpatch the stub.
*/
#ifdef USE_BIOS_TIMER
host_code_t check_interrupt_stub[] =
{
0x64, 0x39, 0x2D, 0x78, 0x56, 0x34, 0x12, /* cmpl %ebp,%fs:0x12345678 */
0xB8, 0x78, 0x56, 0x34, 0x12, /* movl $my_m68k_pc,%eax */
0x0F, 0x88, 0x78, 0x56, 0x34, 0x12, /* js host_interrupt_... */
};
#else /* !USE_BIOS_TIMER */
host_code_t check_interrupt_stub[] =
{
#ifdef __CHECKER__
0x83, 0x3D, 0x78, 0x56, 0x34, 0x12, 0x00, /* cmpl $0,0x12345678 */
0xB8, 0x78, 0x56, 0x34, 0x12, /* movl $my_m68k_pc,%eax */
0x0F, 0x88, 0x78, 0x56, 0x34, 0x12, /* js host_interrupt_... */
#else /* !__CHECKER__ */
/* The "0x99" here is really "0xNN" and gets replaced below. */
0x39, 0x6D, 0x99, /* cmpl %ebp,0xNN(%ebp) */
0xB8, 0x78, 0x56, 0x34, 0x12, /* movl $my_m68k_pc,%eax */
0x0F, 0x88, 0x78, 0x56, 0x34, 0x12, /* js host_interrupt_... */
#endif /* !__CHECKER__ */
};
#endif /* !USE_BIOS_TIMER */
/* This is just here to fool the C compiler. */
extern host_code_t host_interrupt_status_changed[]
asm ("_host_interrupt_status_changed");
/* This is the stub called from the emulator when the interrupt status
* changes. %eax contains the m68k PC of the instruction about to be
* executed when the interrupt was detected. This stub calls
* interrupt_process_any_pending() to handle the interrupt; that function
* returns the m68k pc at which execution should resume. Note that we
* don't recursively enter the emulator here, we just adjust the m68k PC
* and jump back into the fray.
*/
asm (".text\n\t"
".align 4\n"
"_host_interrupt_status_changed:\n\t"
#ifdef USE_BIOS_TIMER
"pushl %fs\n\t"
#endif
"pushl %eax\n\t"
"call _interrupt_process_any_pending\n\t"
"pushl %eax\n\t"
"call _hash_lookup_code_and_create_if_needed\n\t"
"movl %eax,%esi\n\t"
"addl $8,%esp\n\t"
"movl (%eax),%eax\n\t"
"addl $4,%esi\n\t"
#ifdef USE_BIOS_TIMER
"popl %fs\n\t"
#endif
"jmp *%eax");
void
host_backpatch_check_interrupt_stub (Block *b, host_code_t *stub)
{
assert (!memcmp (stub, check_interrupt_stub, CHECK_INTERRUPT_STUB_BYTES));
assert (sizeof check_interrupt_stub == CHECK_INTERRUPT_STUB_BYTES);
/* No need to replace the flag's address; this part of
* check_interrupt_stub[] was already patched in host_native_code_init.
*/
/* Move this block's m68k start address into %eax. */
*(uint32 *)(stub + CHECK_INTERRUPT_STUB_BYTES - 10) = b->m68k_start_address;
/* Fill in the conditional branch's relative offset to cause it
* to branch to the interrupt handler.
*/
*(uint32 *)(stub + CHECK_INTERRUPT_STUB_BYTES - 4)
= (((int32) host_interrupt_status_changed)
- (((int32) stub) + CHECK_INTERRUPT_STUB_BYTES));
}
#endif /* SYNCHRONOUS_INTERRUPTS */
void
host_native_code_init ()
{
uint32 scratch1, scratch2;
#ifdef __GNUC__
uint8 i486_p;
/* Adapted from _Assembly Language: For Real Programmers Only_ p. 561.
* This code determines if we are on an i486 or higher. We care because
* those chips have the "bswap" instruction for byte swapping.
*/
asm ("pushfl\n\t"
"pushfl\n\t"
"popl %0\n\t"
"xorl $0x40000,%0\n\t"
"pushl %0\n\t"
"popfl\n\t"
"pushfl\n\t"
"popl %1\n\t"
"cmpl %0,%1\n\t"
"jnz 1f\n\t"
"xorl $0x40000,%0\n\t"
"pushl %0\n\t"
"popfl\n\t"
"pushfl\n\t"
"popl %1\n\t"
"cmpl %0,%1\n"
"1:\n\t"
"setz %b2\n\t"
"popfl"
: "=r" (scratch1), "=r" (scratch2), "=q" (i486_p));
2008-09-26 14:25:10 +00:00
have_i486_p = i486_p;
#else /* !__GNUC__ */
#warning "We don't know if we're on an i486!"
have_i486_p = FALSE; /* Assume the worst. */
#endif /* !__GNUC__ */
#ifdef SYNCHRONOUS_INTERRUPTS
#ifndef __CHECKER__
/* This is for the %ebp hack we use in the check_interrupt stub. */
assert (INTERRUPT_STATUS_CHANGED < ((int32) &cpu_state)
&& INTERRUPT_STATUS_UNCHANGED >= ((int32) &cpu_state));
#endif
#ifdef USE_BIOS_TIMER
*(uint32 *)(&check_interrupt_stub[3]) = dos_interrupt_flag_addr;
#else /* !USE_BIOS_TIMER */
assert (offsetof (CPUState, interrupt_status_changed) < 128);
# ifdef __CHECKER__
*(void **)(&check_interrupt_stub[2]) = &cpu_state.interrupt_status_changed;
# else /* !__CHECKER__ */
check_interrupt_stub[2] = offsetof (CPUState, interrupt_status_changed);
# endif /* !__CHECKER__ */
#endif /* !USE_BIOS_TIMER */
#endif /* SYNCHRONOUS_INTERRUPTS */
}
int
host_alloc_reg (cache_info_t *c, host_code_t **codep,
unsigned cc_spill_if_changed,
host_reg_mask_t legal)
{
static int last_smashed = 0; /* Explained below. */
guest_reg_status_t *r;
int i, reg;
/* First do a quick check for a totally free register. We want
* to try the higher registers first, because they are less in demand,
* and if this guy actually wants one, let's give it to him.
*/
for (i = NUM_HOST_REGS - 1; i >= 0; i--)
if (legal & (1L << i))
{
if (c->host_reg_to_guest_reg[i] == NO_REG)
return i;
}
/* Nope, didn't find any empty ones! Look for a non-dirty one. If we
* don't find that, take anything we can get. We keep a static variable
* around to keep track of the last cached register we took from someone.
* This way we can cycle through instead of continually hammering
* one recently used register.
*/
reg = NO_REG;
for (i = last_smashed - 1; i >= 0; i--)
if (legal & (1L << i))
{
r = &c->guest_reg_status[c->host_reg_to_guest_reg[i]];
if (!r->dirty_without_offset_p
&& (r->mapping != MAP_OFFSET || r->offset == 0))
goto found_it;
if (reg == NO_REG)
reg = i;
}
for (i = NUM_HOST_REGS - 1; i >= last_smashed; i--)
if (legal & (1L << i))
{
r = &c->guest_reg_status[c->host_reg_to_guest_reg[i]];
if (!r->dirty_without_offset_p
&& (r->mapping != MAP_OFFSET || r->offset == 0))
goto found_it;
if (reg == NO_REG)
reg = i;
}
if (reg == NO_REG)
return NO_REG;
i = reg;
found_it:
last_smashed = i;
host_spill_reg (c, codep, cc_spill_if_changed, c->host_reg_to_guest_reg[i]);
return i;
}
int
host_movel_reg_reg (COMMON_ARGS, int32 src_reg, int32 dst_reg)
{
return i386_movl_reg_reg (COMMON_ARG_NAMES, src_reg, dst_reg);
}
void
host_cache_reg (cache_info_t *c, host_code_t **codep,
unsigned cc_spill_if_changed, int guest_reg,
int host_reg)
{
guest_reg_status_t *r;
/* Load up the register. */
/* NOTE: you cannot use %ebp as the base without any constant offset
* on the i386. That is a special "escape" which means something else.
* You must use an explicit 0 offset if that's what you want.
*/
i386_movl_indoff_reg (c, codep, cc_spill_if_changed, M68K_CC_NONE, NO_REG,
offsetof (CPUState, regs[guest_reg].ul.n),
REG_EBP, host_reg);
/* Set up the guest reg info. */
r = &c->guest_reg_status[guest_reg];
r->host_reg = host_reg;
r->mapping = MAP_NATIVE;
r->dirty_without_offset_p = FALSE;
/* Keep track of what this host register is doing. */
c->host_reg_to_guest_reg[host_reg] = guest_reg;
}
void
host_unoffset_reg (cache_info_t *c, host_code_t **codep,
unsigned cc_spill_if_changed,
int guest_reg)
{
guest_reg_status_t *r;
int host_reg;
r = &c->guest_reg_status[guest_reg];
host_reg = r->host_reg;
if (host_reg != NO_REG && r->mapping == MAP_OFFSET)
{
int32 offset = r->offset;
if (offset != 0)
{
if (!cc_spill_if_changed)
{
if (offset == 1)
i386_incl_reg (c, codep, cc_spill_if_changed, M68K_CC_NONE,
NO_REG, host_reg);
else if (offset == -1)
i386_decl_reg (c, codep, cc_spill_if_changed, M68K_CC_NONE,
NO_REG, host_reg);
else if (offset < 0) /* Same speed but more readable. */
i386_subl_imm_reg (c, codep, cc_spill_if_changed, M68K_CC_NONE,
NO_REG, -offset, host_reg);
else
i386_addl_imm_reg (c, codep, cc_spill_if_changed, M68K_CC_NONE,
NO_REG, offset, host_reg);
}
else /* We can offset without spilling any cc's with leal. */
{
i386_leal_indoff (c, codep, M68K_CC_NONE, M68K_CC_NONE,
NO_REG, offset, host_reg, host_reg);
}
r->dirty_without_offset_p = TRUE;
}
r->mapping = MAP_NATIVE;
}
}
void
host_unoffset_regs (cache_info_t *c, host_code_t **codep,
unsigned cc_spill_if_changed)
{
int i;
for (i = NUM_GUEST_REGS - 1; i >= 0; i--)
host_unoffset_reg (c, codep, cc_spill_if_changed, i);
}
/* This canonicalizes all registers so they are ready to simply
* be written out to memory.
*/
inline void
make_dirty_regs_native (cache_info_t *c, host_code_t **codep,
unsigned cc_spill_if_changed)
{
int i;
for (i = NUM_GUEST_REGS - 1; i >= 0; i--)
{
guest_reg_status_t *r;
int host_reg;
r = &c->guest_reg_status[i];
host_reg = r->host_reg;
if (host_reg != NO_REG)
{
switch (r->mapping)
{
case MAP_NATIVE:
break;
case MAP_OFFSET:
if (r->offset != 0)
{
if (!cc_spill_if_changed)
{
if (r->offset == 1)
i386_incl_reg (c, codep, cc_spill_if_changed,
M68K_CC_NONE, NO_REG, host_reg);
else if (r->offset == -1)
i386_decl_reg (c, codep, cc_spill_if_changed,
M68K_CC_NONE, NO_REG, host_reg);
else
i386_addl_imm_reg (c, codep, cc_spill_if_changed,
M68K_CC_NONE, NO_REG, r->offset,
host_reg);
}
else /* We can offset without spilling any cc's with leal. */
{
i386_leal_indoff (c, codep, M68K_CC_NONE,
M68K_CC_NONE, NO_REG, r->offset,
host_reg, host_reg);
}
r->dirty_without_offset_p = TRUE;
}
break;
case MAP_SWAP16:
if (r->dirty_without_offset_p)
HOST_SWAP16 (host_reg);
break;
case MAP_SWAP32:
if (r->dirty_without_offset_p)
HOST_SWAP32 (host_reg);
break;
default:
abort ();
}
r->mapping = MAP_NATIVE;
}
}
}
inline void
host_spill_reg (cache_info_t *c, host_code_t **codep,
unsigned cc_spill_if_changed,
int guest_reg)
{
guest_reg_status_t *r;
int host_reg;
r = &c->guest_reg_status[guest_reg];
host_reg = r->host_reg;
if (host_reg != NO_REG)
{
if (r->dirty_without_offset_p
|| (r->mapping == MAP_OFFSET && r->offset != 0))
{
/* Canonicalize the cached register before spilling it out. */
switch (r->mapping)
{
case MAP_NATIVE:
break;
case MAP_OFFSET:
host_unoffset_reg (c, codep, cc_spill_if_changed, guest_reg);
break;
case MAP_SWAP16:
HOST_SWAP16 (host_reg);
break;
case MAP_SWAP32:
host_swap32 (c, codep, cc_spill_if_changed, M68K_CC_NONE, NO_REG,
host_reg);
break;
default:
abort ();
}
/* NOTE: you cannot use %ebp as the base without any
* constant offset on the i386. That is a special "escape"
* which means something else. You must use an explicit 0
* offset if that's what you want.
*/
i386_movl_reg_indoff (c, codep, cc_spill_if_changed, M68K_CC_NONE,
NO_REG, host_reg,
offsetof (CPUState, regs[guest_reg].ul.n),
REG_EBP);
r->mapping = MAP_NATIVE;
r->dirty_without_offset_p = FALSE;
}
c->host_reg_to_guest_reg[host_reg] = NO_REG;
r->host_reg = NO_REG;
}
}
void
host_spill_regs (cache_info_t *c, host_code_t **codep,
unsigned cc_spill_if_changed)
{
int i;
/* Canonicalize all of the registers, and then spill all the dirty ones.
* Doing it this way gives us slightly better Pentium pairability,
* since instead of code like:
* addl $4,%edi
* movl %edi,_a0
* addl $4,%esi
* movl %esi,_a1
* rorw $8,%eax
* movl %eax,_d0
*
* we get:
*
* addl $4,%edi
* addl $4,%esi
* rorw $8,%eax
* movl %edi,_a0
* movl %esi,_a1
* movl %eax,_d0
*
* Not a huge win, since the spill of the previous guy can overlap with
* the canonicalization of the next one, but this is a relatively
* cheap optimization.
*/
make_dirty_regs_native (c, codep, cc_spill_if_changed);
for (i = NUM_GUEST_REGS - 1; i >= 0; i--)
{
guest_reg_status_t *r;
int host_reg;
r = &c->guest_reg_status[i];
host_reg = r->host_reg;
if (host_reg != NO_REG)
{
if (r->dirty_without_offset_p)
{
/* NOTE: you cannot use %ebp as the base without any
* constant offset on the i386. That is a special "escape"
* which means something else. You must use an explicit 0
* offset if that's what you want.
*/
i386_movl_reg_indoff (c, codep, cc_spill_if_changed,
M68K_CC_NONE, NO_REG, host_reg,
offsetof (CPUState, regs[i].ul.n),
REG_EBP);
r->dirty_without_offset_p = FALSE;
}
c->host_reg_to_guest_reg[host_reg] = NO_REG;
r->host_reg = NO_REG;
}
}
}
void
host_spill_cc_bits (cache_info_t *c, host_code_t **codep, unsigned spill_cc)
{
unsigned cc;
assert (!(spill_cc & ~M68K_CC_ALL));
cc = spill_cc & c->cached_cc & c->dirty_cc;
if (cc)
{
if (cc & M68K_CCZ)
i386_setnz_indoff (c, codep, 0, 0, NO_REG,
offsetof (CPUState, ccnz), REG_EBP);
if (cc & M68K_CCN)
i386_sets_indoff (c, codep, 0, 0, NO_REG,
offsetof (CPUState, ccn), REG_EBP);
if (cc & M68K_CCC)
i386_setc_indoff (c, codep, 0, 0, NO_REG,
offsetof (CPUState, ccc), REG_EBP);
if (cc & M68K_CCV)
i386_seto_indoff (c, codep, 0, 0, NO_REG,
offsetof (CPUState, ccv), REG_EBP);
if (cc & M68K_CCX)
i386_setc_indoff (c, codep, 0, 0, NO_REG,
offsetof (CPUState, ccx), REG_EBP);
c->dirty_cc &= ~cc;
}
/* We typically call this when we are about to clobber cc bits, so we
* should mark them as not being cached. In special circumstances,
* like conditional branches, we'll want to remember that the cc bits
* _are_ actually cached.
*/
c->cached_cc &= ~spill_cc;
}
int
host_swap16 (COMMON_ARGS, int32 host_reg)
{
HOST_SWAP16 (host_reg);
return 0;
}
int
host_swap16_to_32 (COMMON_ARGS, int32 host_reg)
{
i386_rorl_imm_reg (c, codep, cc_spill_if_changed, M68K_CC_NONE, NO_REG, 16,
host_reg);
return i386_rorw_imm_reg (c, codep, 0, M68K_CC_NONE, NO_REG, 8,
host_reg);
}
int
host_swap32 (COMMON_ARGS, int32 host_reg)
{
if (have_i486_p)
{
i386_bswap (c, codep, cc_spill_if_changed, M68K_CC_NONE, NO_REG,
host_reg);
}
else
{
i386_rorw_imm_reg (c, codep, cc_spill_if_changed, M68K_CC_NONE, NO_REG,
8, host_reg);
i386_rorl_imm_reg (c, codep, M68K_CC_NONE, M68K_CC_NONE, NO_REG,
16, host_reg);
i386_rorw_imm_reg (c, codep, M68K_CC_NONE, M68K_CC_NONE, NO_REG,
8, host_reg);
}
return 0;
}
int
host_swap32_to_16 (COMMON_ARGS, int32 host_reg)
{
i386_rorw_imm_reg (c, codep, cc_spill_if_changed, M68K_CC_NONE, NO_REG,
8, host_reg);
return i386_rorl_imm_reg (c, codep, 0, M68K_CC_NONE, NO_REG,
16, host_reg);
}
#endif