Move M68K to 'lib' directory

This commit is contained in:
InvisibleUp 2020-10-04 17:15:26 -04:00
parent 6941422033
commit 4e4f026173
39 changed files with 30260 additions and 1 deletions

27
lib/M68K/.gitignore vendored Normal file
View File

@ -0,0 +1,27 @@
build/*
*.pbxuser
!default.pbxuser
*.mode1v3
!default.mode1v3
*.mode2v3
!default.mode2v3
*.perspectivev3
!default.perspectivev3
xcuserdata
profile
*.moved-aside
DerivedData
.DS_Store
Thumbs.db
.svn
.BridgeSort
*.bak
.~*
*.orig
# Make output
*.o
m68kmake
m68kops.?
sim
tags

34
lib/M68K/Makefile Normal file
View File

@ -0,0 +1,34 @@
# Just a basic makefile to quickly test that everyting is working, it just
# compiles the .o and the generator
MUSASHIFILES = m68kcpu.c m68kdasm.c softfloat/softfloat.c
MUSASHIGENCFILES = m68kops.c
MUSASHIGENHFILES = m68kops.h
MUSASHIGENERATOR = m68kmake
EXE =
EXEPATH = ./
.CFILES = $(MAINFILES) $(OSDFILES) $(MUSASHIFILES) $(MUSASHIGENCFILES)
.OFILES = $(.CFILES:%.c=%.o)
CC = gcc
WARNINGS = -Wall -Wextra -pedantic
CFLAGS = $(WARNINGS)
LFLAGS = $(WARNINGS)
DELETEFILES = $(MUSASHIGENCFILES) $(MUSASHIGENHFILES) $(.OFILES) $(TARGET) $(MUSASHIGENERATOR)$(EXE)
all: $(.OFILES)
clean:
rm -f $(DELETEFILES)
m68kcpu.o: $(MUSASHIGENHFILES) m68kfpu.c m68kmmu.h softfloat/softfloat.c softfloat/softfloat.h
$(MUSASHIGENCFILES) $(MUSASHIGENHFILES): $(MUSASHIGENERATOR)$(EXE)
$(EXEPATH)$(MUSASHIGENERATOR)$(EXE)
$(MUSASHIGENERATOR)$(EXE): $(MUSASHIGENERATOR).c
$(CC) -o $(MUSASHIGENERATOR)$(EXE) $(MUSASHIGENERATOR).c

42
lib/M68K/example/Makefile Normal file
View File

@ -0,0 +1,42 @@
EXENAME = sim
OSD_DOS = osd_dos.c
OSDFILES = osd_linux.c # $(OSD_DOS)
MAINFILES = sim.c
MUSASHIFILES = m68kcpu.c m68kdasm.c softfloat/softfloat.c
MUSASHIGENCFILES = m68kops.c
MUSASHIGENHFILES = m68kops.h
MUSASHIGENERATOR = m68kmake
# EXE = .exe
# EXEPATH = .\\
EXE =
EXEPATH = ./
.CFILES = $(MAINFILES) $(OSDFILES) $(MUSASHIFILES) $(MUSASHIGENCFILES)
.OFILES = $(.CFILES:%.c=%.o)
CC = gcc
WARNINGS = -Wall -Wextra -pedantic
CFLAGS = $(WARNINGS)
LFLAGS = $(WARNINGS)
TARGET = $(EXENAME)$(EXE)
DELETEFILES = $(MUSASHIGENCFILES) $(MUSASHIGENHFILES) $(.OFILES) $(TARGET) $(MUSASHIGENERATOR)$(EXE)
all: $(TARGET)
clean:
rm -f $(DELETEFILES)
$(TARGET): $(MUSASHIGENHFILES) $(.OFILES) Makefile
$(CC) -o $@ $(.OFILES) $(LFLAGS) -lm
$(MUSASHIGENCFILES) $(MUSASHIGENHFILES): $(MUSASHIGENERATOR)$(EXE)
$(EXEPATH)$(MUSASHIGENERATOR)$(EXE)
$(MUSASHIGENERATOR)$(EXE): $(MUSASHIGENERATOR).c
$(CC) -o $(MUSASHIGENERATOR)$(EXE) $(MUSASHIGENERATOR).c

View File

@ -0,0 +1,290 @@
EXAMPLE:
-------
As an example, I'll build an imaginary hardware platform.
The system is fairly simple, comprising a 68000, an input device, an output
device, a non-maskable-interrupt device, and an interrupt controller.
The input device receives input from the user and asserts its interrupt
request line until its value is read. Reading from the input device's
memory-mapped port will both clear its interrupt request and read an ASCII
representation (8 bits) of what the user entered.
The output device reads value when it is selected through its memory-mapped
port and outputs it to a display. The value it reads will be interpreted as
an ASCII value and output to the display. The output device is fairly slow
(it can only process 1 byte per second), and so it asserts its interrupt
request line when it is ready to receive a byte. Writing to the output device
sends a byte to it. If the output device is not ready, the write is ignored.
Reading from the output device returns 0 and clears its interrupt request line
until another byte is written to it and 1 second elapses.
The non-maskable-interrupt (NMI) device, as can be surmised from the name,
generates a non-maskable-interrupt. This is connected to some kind of external
switch that the user can push to generate a NMI.
Since there are 3 devices interrupting the CPU, an interrupt controller is
needed. The interrupt controller takes 7 inputs and encodes the highest
priority asserted line on the 3 output pins. the input device is wired to IN2
and the output device is wired to IN1 on the controller. The NMI device is
wired to IN7 and all the other inputs are wired low.
The bus is also connected to a 1K ROM and a 256 byte RAM.
Beware: This platform places ROM and RAM in the same address range and uses
the FC pins to select the correct address space!
(You didn't expect me to make it easy, did you? =)
Here is the schematic in all its ASCII splendour:
-------------------------------------------------
NMI TIED
SWITCH LOW
| |
| +-+-+-+
| | | | | +------------------------------------------------+
| | | | | | +------------------------------------+ |
| | | | | | | | |
+-------------+ | |
|7 6 5 4 3 2 1| | |
| | | |
| INT CONTRLR | | |
| | | |
|i i i | | |
|2 1 0 | | |
+-------------+ | |
| | | | |
| | | +--------------------------------+--+ | |
o o o | | | | |
+--------------+ +-------+ +----------+ +---------+ +----------+
| I I I a | | | | | | r a i | | i |
| 2 1 0 23 | | | | | | e c | | |
| | | | | | | a k | | |
| | | | | | | d | | |
| | | | | | | | | |
| M68000 | | ROM | | RAM | | IN | | OUT |
| | | | | | | | | |
| a9|--|a9 |--| |--| |--| |
| a8|--|a8 |--| |--| |--| |
| a7|--|a7 |--|a7 |--| |--| |
| a6|--|a6 |--|a6 |--| |--| |
| a5|--|a5 |--|a5 |--| |--| |
| a4|--|a4 |--|a4 |--| |--| |
| a3|--|a3 |--|a3 |--| |--| |
| a2|--|a2 |--|a2 |--| |--| |
| a1|--|a1 |--|a1 |--| |--| |
| a0|--|a0 |--|a0 |--| |--| |
| | | | | | | | | |
| d15|--|d15 |--|d15 |--| |--| |
| d14|--|d14 |--|d14 |--| |--| |
| d13|--|d13 |--|d13 |--| |--| |
| d12|--|d12 |--|d12 |--| |--| |
| d11|--|d11 |--|d11 |--| |--| |
| d10|--|d10 |--|d10 |--| |--| |
| d9|--|d9 |--|d9 |--| |--| |
| d8|--|d8 |--|d8 |--| |--| |
| d7|--|d7 |--|d7 |--|d7 |--|d7 |
| d6|--|d6 |--|d6 |--|d6 |--|d6 |
| d5|--|d5 |--|d5 |--|d5 |--|d5 |
| d4|--|d4 |--|d4 |--|d4 |--|d4 |
| d3|--|d3 |--|d3 |--|d3 |--|d3 |
| d2|--|d2 |--|d2 |--|d2 |--|d2 |
| d1|--|d1 |--|d1 |--|d1 |--|d1 w |
| d0|--|d0 |--|d0 |--|d0 |--|d0 r |
| | | | | | | | | i a |
| a F F F | | | | | | | | t c |
|22 rW 2 1 0 | | cs | | cs rW | | | | e k |
+--------------+ +-------+ +----------+ +---------+ +----------+
| | | | | | | | | |
| | | | | | | | | |
| | | | | +-------+ +-----+ | +---+ |
| | | | | | IC1 | | IC2 | | |AND| |
| | | | | |a b c d| |a b c| | +---+ |
| | | | | +-------+ +-----+ | | | |
| | | | | | | | | | | | | | +--+
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| | | | +-----)-)-+-)----)-)-+ | | |
| | | +-------)-+---)----)-+ | | |
| | +---------+-----)----+ | | |
| | | | | |
| +------------------+-----------+----------------------+ |
| |
+-----------------------------------------------------------+
IC1: output=1 if a=0 and b=1 and c=0 and d=0
IC2: output=1 if a=0 and b=0 and c=1
Here is the listing for program.bin:
-----------------------------------
INPUT_ADDRESS equ $800000
OUTPUT_ADDRESS equ $400000
CIRCULAR_BUFFER equ $c0
CAN_OUTPUT equ $d0
STACK_AREA equ $100
vector_table:
00000000 0000 0100 dc.l STACK_AREA * 0: SP
00000004 0000 00c0 dc.l init * 1: PC
00000008 0000 0148 dc.l unhandled_exception * 2: bus error
0000000c 0000 0148 dc.l unhandled_exception * 3: address error
00000010 0000 0148 dc.l unhandled_exception * 4: illegal instruction
00000014 0000 0148 dc.l unhandled_exception * 5: zero divide
00000018 0000 0148 dc.l unhandled_exception * 6: chk
0000001c 0000 0148 dc.l unhandled_exception * 7: trapv
00000020 0000 0148 dc.l unhandled_exception * 8: privilege violation
00000024 0000 0148 dc.l unhandled_exception * 9: trace
00000028 0000 0148 dc.l unhandled_exception * 10: 1010
0000002c 0000 0148 dc.l unhandled_exception * 11: 1111
00000030 0000 0148 dc.l unhandled_exception * 12: -
00000034 0000 0148 dc.l unhandled_exception * 13: -
00000038 0000 0148 dc.l unhandled_exception * 14: -
0000003c 0000 0148 dc.l unhandled_exception * 15: uninitialized interrupt
00000040 0000 0148 dc.l unhandled_exception * 16: -
00000044 0000 0148 dc.l unhandled_exception * 17: -
00000048 0000 0148 dc.l unhandled_exception * 18: -
0000004c 0000 0148 dc.l unhandled_exception * 19: -
00000050 0000 0148 dc.l unhandled_exception * 20: -
00000054 0000 0148 dc.l unhandled_exception * 21: -
00000058 0000 0148 dc.l unhandled_exception * 22: -
0000005c 0000 0148 dc.l unhandled_exception * 23: -
00000060 0000 0148 dc.l unhandled_exception * 24: spurious interrupt
00000064 0000 0136 dc.l output_ready * 25: l1 irq
00000068 0000 010e dc.l input_ready * 26: l2 irq
0000006c 0000 0148 dc.l unhandled_exception * 27: l3 irq
00000070 0000 0148 dc.l unhandled_exception * 28: l4 irq
00000074 0000 0148 dc.l unhandled_exception * 29: l5 irq
00000078 0000 0148 dc.l unhandled_exception * 30: l6 irq
0000007c 0000 014e dc.l nmi * 31: l7 irq
00000080 0000 0148 dc.l unhandled_exception * 32: trap 0
00000084 0000 0148 dc.l unhandled_exception * 33: trap 1
00000088 0000 0148 dc.l unhandled_exception * 34: trap 2
0000008c 0000 0148 dc.l unhandled_exception * 35: trap 3
00000090 0000 0148 dc.l unhandled_exception * 36: trap 4
00000094 0000 0148 dc.l unhandled_exception * 37: trap 5
00000098 0000 0148 dc.l unhandled_exception * 38: trap 6
0000009c 0000 0148 dc.l unhandled_exception * 39: trap 7
000000a0 0000 0148 dc.l unhandled_exception * 40: trap 8
000000a4 0000 0148 dc.l unhandled_exception * 41: trap 9
000000a8 0000 0148 dc.l unhandled_exception * 42: trap 10
000000ac 0000 0148 dc.l unhandled_exception * 43: trap 11
000000b0 0000 0148 dc.l unhandled_exception * 44: trap 12
000000b4 0000 0148 dc.l unhandled_exception * 45: trap 13
000000b8 0000 0148 dc.l unhandled_exception * 46: trap 14
000000bc 0000 0148 dc.l unhandled_exception * 47: trap 15
* This is the end of the useful part of the table.
* We will now do the Capcom thing and put code starting at $c0.
init:
* Copy the exception vector table to RAM.
000000c0 227c 0000 0000 move.l #0, a1 * a1 is RAM index
000000c6 303c 002f move.w #47, d0 * d0 is counter (48 vectors)
000000ca 41fa 0006 lea.l (copy_table,PC), a0 * a0 is scratch
000000ce 2208 move.l a0, d1 * d1 is ROM index
000000d0 4481 neg.l d1
copy_table:
000000d2 22fb 18fe dc.l $22fb18fe * stoopid as68k generates 020 code here
* move.l (copy_table,PC,d1.l), (a1)+
000000d6 5841 addq #4, d1
000000d8 51c8 fff8 dbf d0, copy_table
main_init:
* Initialize main program
000000dc 11fc 0000 00d0 move.b #0, CAN_OUTPUT
000000e2 4df8 00c0 lea.l CIRCULAR_BUFFER, a6
000000e6 7c00 moveq #0, d6 * output buffer ptr
000000e8 7e00 moveq #0, d7 * input buffer ptr
000000ea 027c f8ff andi #$f8ff, SR * clear interrupt mask
main:
* Main program
000000ee 4a38 00d0 tst.b CAN_OUTPUT * can we output?
000000f2 67fa beq main
000000f4 be06 cmp.b d6, d7 * is there data?
000000f6 67f6 beq main
000000f8 11fc 0000 00d0 move.b #0, CAN_OUTPUT
000000fe 13f6 6000 0040 move.b (0,a6,d6.w), OUTPUT_ADDRESS * write data
0000
00000106 5246 addq #1, d6
00000108 0206 000f andi.b #15, d6 * update circular buffer
0000010c 60e0 bra main
input_ready:
0000010e 2f00 move.l d0, -(a7)
00000110 2f01 move.l d1, -(a7)
00000112 1239 0080 0000 move.b INPUT_ADDRESS, d1 * read data
00000118 1007 move.b d7, d0 * check if buffer full
0000011a 5240 addq #1, d0
0000011c 0200 000f andi.b #15, d0
00000120 bc00 cmp.b d0, d6
00000122 6700 000c beq input_ready_quit * throw away if full
00000126 1d81 7000 move.b d1, (0,a6,d7.w) * store the data
0000012a 5247 addq #1, d7
0000012c 0207 000f andi.b #15, d7 * update circular buffer
input_ready_quit:
00000130 221f move.l (a7)+, d1
00000132 201f move.l (a7)+, d0
00000134 4e73 rte
output_ready:
00000136 2f00 move.l d0, -(a7)
00000138 11fc 0001 00d0 move.b #1, CAN_OUTPUT
0000013e 1039 0040 0000 move.b OUTPUT_ADDRESS, d0 * acknowledge the interrupt
00000144 201f move.l (a7)+, d0
00000146 4e73 rte
unhandled_exception:
00000148 4e72 2700 stop #$2700 * wait for NMI
0000014c 60fa bra unhandled_exception * shouldn't get here
nmi:
* perform a soft reset
0000014e 46fc 2700 move #$2700, SR * set status register
00000152 2e7a feac move.l (vector_table,PC), a7 * reset stack pointer
00000156 4e70 reset * reset peripherals
00000158 4efa feaa jmp (vector_table+4,PC) * reset program counter
END
Compiling the example host environment:
--------------------------------------
I've only put in an os-dependant portion for dos/windows, so you'll either
have to compile for that system or make your own osd code based on osd_dos.c
and modify the makefile accordingly.
I compiled this example using the compiler from mingw (www.mingw.org) but you
could also use djgpp (www.delorie.com).
- Copy the m68k files to a directory. Then extract the files from example.zip to
the same directory, overwriting m68kconf.h. program.bin is the actual 68000
program you will be running.
- Make your own osd_get_key() in the same fashion as in osd_dos.c if you're not
compiling for dos/windows.
- Type make
- Perform the necessary animal sacrifices.
- Type sim program.bin
Keys:
ESC - quits the simulator
~ - generates an NMI interrupt
Any other key - Genearate input for the input device
Note: I've cheated a bit in the emulation. There is no speed control
to set the speed the CPU runs at; it simply runs as fast as your
processor can run it.
To add speed control, you will need a high-precision timestamp
function (like the RDTSC instruction for newer Pentium CPUs)
and a bit of arithmetic to make the cycles argument for m68k_execute().
I'll leave that as an excercise to the reader.

1
lib/M68K/example/m68k.h Symbolic link
View File

@ -0,0 +1 @@
../m68k.h

1
lib/M68K/example/m68k_in.c Symbolic link
View File

@ -0,0 +1 @@
../m68k_in.c

220
lib/M68K/example/m68kconf.h Normal file
View File

@ -0,0 +1,220 @@
/* ======================================================================== */
/* ========================= LICENSING & COPYRIGHT ======================== */
/* ======================================================================== */
/*
* MUSASHI
* Version 3.32
*
* A portable Motorola M680x0 processor emulation engine.
* Copyright Karl Stenerud. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef M68KCONF__HEADER
#define M68KCONF__HEADER
/* Configuration switches.
* Use OPT_SPECIFY_HANDLER for configuration options that allow callbacks.
* OPT_SPECIFY_HANDLER causes the core to link directly to the function
* or macro you specify, rather than using callback functions whose pointer
* must be passed in using m68k_set_xxx_callback().
*/
#define OPT_OFF 0
#define OPT_ON 1
#define OPT_SPECIFY_HANDLER 2
/* ======================================================================== */
/* ============================== MAME STUFF ============================== */
/* ======================================================================== */
/* If you're compiling this for MAME, only change M68K_COMPILE_FOR_MAME
* to OPT_ON and use m68kmame.h to configure the 68k core.
*/
#ifndef M68K_COMPILE_FOR_MAME
#define M68K_COMPILE_FOR_MAME OPT_OFF
#endif /* M68K_COMPILE_FOR_MAME */
#if M68K_COMPILE_FOR_MAME == OPT_OFF
/* ======================================================================== */
/* ============================= CONFIGURATION ============================ */
/* ======================================================================== */
/* Turn ON if you want to use the following M68K variants */
#define M68K_EMULATE_010 OPT_ON
#define M68K_EMULATE_EC020 OPT_ON
#define M68K_EMULATE_020 OPT_ON
#define M68K_EMULATE_040 OPT_ON
/* If ON, the CPU will call m68k_read_immediate_xx() for immediate addressing
* and m68k_read_pcrelative_xx() for PC-relative addressing.
* If off, all read requests from the CPU will be redirected to m68k_read_xx()
*/
#define M68K_SEPARATE_READS OPT_OFF
/* If ON, the CPU will call m68k_write_32_pd() when it executes move.l with a
* predecrement destination EA mode instead of m68k_write_32().
* To simulate real 68k behavior, m68k_write_32_pd() must first write the high
* word to [address+2], and then write the low word to [address].
*/
#define M68K_SIMULATE_PD_WRITES OPT_OFF
/* If ON, CPU will call the interrupt acknowledge callback when it services an
* interrupt.
* If off, all interrupts will be autovectored and all interrupt requests will
* auto-clear when the interrupt is serviced.
*/
#define M68K_EMULATE_INT_ACK OPT_SPECIFY_HANDLER
#define M68K_INT_ACK_CALLBACK(A) cpu_irq_ack(A)
/* If ON, CPU will call the breakpoint acknowledge callback when it encounters
* a breakpoint instruction and it is running a 68010+.
*/
#define M68K_EMULATE_BKPT_ACK OPT_OFF
#define M68K_BKPT_ACK_CALLBACK() your_bkpt_ack_handler_function()
/* If ON, the CPU will monitor the trace flags and take trace exceptions
*/
#define M68K_EMULATE_TRACE OPT_OFF
/* If ON, CPU will call the output reset callback when it encounters a reset
* instruction.
*/
#define M68K_EMULATE_RESET OPT_SPECIFY_HANDLER
#define M68K_RESET_CALLBACK() cpu_pulse_reset()
/* If ON, CPU will call the callback when it encounters a cmpi.l #v, dn
* instruction.
*/
#define M68K_CMPILD_HAS_CALLBACK OPT_OFF
#define M68K_CMPILD_CALLBACK(v,r) your_cmpild_handler_function(v,r)
/* If ON, CPU will call the callback when it encounters a rte
* instruction.
*/
#define M68K_RTE_HAS_CALLBACK OPT_OFF
#define M68K_RTE_CALLBACK() your_rte_handler_function()
/* If ON, CPU will call the callback when it encounters a tas
* instruction.
*/
#define M68K_TAS_HAS_CALLBACK OPT_OFF
#define M68K_TAS_CALLBACK() your_tas_handler_function()
/* If ON, CPU will call the callback when it encounters an illegal instruction
* passing the opcode as argument. If the callback returns 1, then it's considered
* as a normal instruction, and the illegal exception in canceled. If it returns 0,
* the exception occurs normally.
* The callback looks like int callback(int opcode)
* You should put OPT_SPECIFY_HANDLER here if you cant to use it, otherwise it will
* use a dummy default handler and you'll have to call m68k_set_illg_instr_callback explicitely
*/
#define M68K_ILLG_HAS_CALLBACK OPT_OFF
#define M68K_ILLG_CALLBACK(opcode) op_illg(opcode)
/* If ON, CPU will call the set fc callback on every memory access to
* differentiate between user/supervisor, program/data access like a real
* 68000 would. This should be enabled and the callback should be set if you
* want to properly emulate the m68010 or higher. (moves uses function codes
* to read/write data from different address spaces)
*/
#define M68K_EMULATE_FC OPT_SPECIFY_HANDLER
#define M68K_SET_FC_CALLBACK(A) cpu_set_fc(A)
/* If ON, CPU will call the pc changed callback when it changes the PC by a
* large value. This allows host programs to be nicer when it comes to
* fetching immediate data and instructions on a banked memory system.
*/
#define M68K_MONITOR_PC OPT_OFF
#define M68K_SET_PC_CALLBACK(A) your_pc_changed_handler_function(A)
/* If ON, CPU will call the instruction hook callback before every
* instruction.
*/
#define M68K_INSTRUCTION_HOOK OPT_SPECIFY_HANDLER
#define M68K_INSTRUCTION_CALLBACK(pc) cpu_instr_callback(pc)
/* If ON, the CPU will emulate the 4-byte prefetch queue of a real 68000 */
#define M68K_EMULATE_PREFETCH OPT_ON
/* If ON, the CPU will generate address error exceptions if it tries to
* access a word or longword at an odd address.
* NOTE: This is only emulated properly for 68000 mode.
*/
#define M68K_EMULATE_ADDRESS_ERROR OPT_ON
/* Turn ON to enable logging of illegal instruction calls.
* M68K_LOG_FILEHANDLE must be #defined to a stdio file stream.
* Turn on M68K_LOG_1010_1111 to log all 1010 and 1111 calls.
*/
#define M68K_LOG_ENABLE OPT_OFF
#define M68K_LOG_1010_1111 OPT_OFF
#define M68K_LOG_FILEHANDLE some_file_handle
/* ----------------------------- COMPATIBILITY ---------------------------- */
/* The following options set optimizations that violate the current ANSI
* standard, but will be compliant under the forthcoming C9X standard.
*/
/* If ON, the enulation core will use 64-bit integers to speed up some
* operations.
*/
#define M68K_USE_64_BIT OPT_ON
#include "sim.h"
#define m68k_read_memory_8(A) cpu_read_byte(A)
#define m68k_read_memory_16(A) cpu_read_word(A)
#define m68k_read_memory_32(A) cpu_read_long(A)
#define m68k_read_disassembler_16(A) cpu_read_word_dasm(A)
#define m68k_read_disassembler_32(A) cpu_read_long_dasm(A)
#define m68k_write_memory_8(A, V) cpu_write_byte(A, V)
#define m68k_write_memory_16(A, V) cpu_write_word(A, V)
#define m68k_write_memory_32(A, V) cpu_write_long(A, V)
#endif /* M68K_COMPILE_FOR_MAME */
/* ======================================================================== */
/* ============================== END OF FILE ============================= */
/* ======================================================================== */
#endif /* M68KCONF__HEADER */

1
lib/M68K/example/m68kcpu.c Symbolic link
View File

@ -0,0 +1 @@
../m68kcpu.c

1
lib/M68K/example/m68kcpu.h Symbolic link
View File

@ -0,0 +1 @@
../m68kcpu.h

1
lib/M68K/example/m68kdasm.c Symbolic link
View File

@ -0,0 +1 @@
../m68kdasm.c

1
lib/M68K/example/m68kfpu.c Symbolic link
View File

@ -0,0 +1 @@
../m68kfpu.c

1
lib/M68K/example/m68kmake.c Symbolic link
View File

@ -0,0 +1 @@
../m68kmake.c

1
lib/M68K/example/m68kmmu.h Symbolic link
View File

@ -0,0 +1 @@
../m68kmmu.h

6
lib/M68K/example/osd.h Normal file
View File

@ -0,0 +1,6 @@
#ifndef HEADER__OSD
#define HEADER__OSD
int osd_get_char(void);
#endif /* HEADER__OSD */

View File

@ -0,0 +1,16 @@
#include "osd.h"
/* OS-dependant code to get a character from the user.
* This function must not block, and must either return an ASCII code or -1.
*/
#include <conio.h>
int osd_get_char(void)
{
int ch = -1;
if(kbhit())
{
while(kbhit())
ch = getch();
}
return ch;
}

View File

@ -0,0 +1,46 @@
#include <stdio.h>
#include <termios.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/time.h>
void changemode(int dir)
{
static struct termios oldt, newt;
if ( dir == 1 )
{
tcgetattr( STDIN_FILENO, &oldt);
newt = oldt;
newt.c_lflag &= ~( ICANON | ECHO );
tcsetattr( STDIN_FILENO, TCSANOW, &newt);
}
else
tcsetattr( STDIN_FILENO, TCSANOW, &oldt);
}
int kbhit (void)
{
struct timeval tv;
fd_set rdfs;
tv.tv_sec = 0;
tv.tv_usec = 0;
FD_ZERO(&rdfs);
FD_SET (STDIN_FILENO, &rdfs);
select(STDIN_FILENO+1, &rdfs, NULL, NULL, &tv);
return FD_ISSET(STDIN_FILENO, &rdfs);
}
int osd_get_char() {
changemode(1);
int ch = -1;
while(kbhit())
ch = getchar();
changemode(0);
return ch;
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 348 B

563
lib/M68K/example/sim.c Normal file
View File

@ -0,0 +1,563 @@
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <time.h>
#include "sim.h"
#include "m68k.h"
#include "osd.h"
void disassemble_program();
/* Memory-mapped IO ports */
#define INPUT_ADDRESS 0x800000
#define OUTPUT_ADDRESS 0x400000
/* IRQ connections */
#define IRQ_NMI_DEVICE 7
#define IRQ_INPUT_DEVICE 2
#define IRQ_OUTPUT_DEVICE 1
/* Time between characters sent to output device (seconds) */
#define OUTPUT_DEVICE_PERIOD 1
/* ROM and RAM sizes */
#define MAX_ROM 0xfff
#define MAX_RAM 0xff
/* Read/write macros */
#define READ_BYTE(BASE, ADDR) (BASE)[ADDR]
#define READ_WORD(BASE, ADDR) (((BASE)[ADDR]<<8) | \
(BASE)[(ADDR)+1])
#define READ_LONG(BASE, ADDR) (((BASE)[ADDR]<<24) | \
((BASE)[(ADDR)+1]<<16) | \
((BASE)[(ADDR)+2]<<8) | \
(BASE)[(ADDR)+3])
#define WRITE_BYTE(BASE, ADDR, VAL) (BASE)[ADDR] = (VAL)&0xff
#define WRITE_WORD(BASE, ADDR, VAL) (BASE)[ADDR] = ((VAL)>>8) & 0xff; \
(BASE)[(ADDR)+1] = (VAL)&0xff
#define WRITE_LONG(BASE, ADDR, VAL) (BASE)[ADDR] = ((VAL)>>24) & 0xff; \
(BASE)[(ADDR)+1] = ((VAL)>>16)&0xff; \
(BASE)[(ADDR)+2] = ((VAL)>>8)&0xff; \
(BASE)[(ADDR)+3] = (VAL)&0xff
/* Prototypes */
void exit_error(char* fmt, ...);
unsigned int cpu_read_byte(unsigned int address);
unsigned int cpu_read_word(unsigned int address);
unsigned int cpu_read_long(unsigned int address);
void cpu_write_byte(unsigned int address, unsigned int value);
void cpu_write_word(unsigned int address, unsigned int value);
void cpu_write_long(unsigned int address, unsigned int value);
void cpu_pulse_reset(void);
void cpu_set_fc(unsigned int fc);
int cpu_irq_ack(int level);
void nmi_device_reset(void);
void nmi_device_update(void);
int nmi_device_ack(void);
void input_device_reset(void);
void input_device_update(void);
int input_device_ack(void);
unsigned int input_device_read(void);
void input_device_write(unsigned int value);
void output_device_reset(void);
void output_device_update(void);
int output_device_ack(void);
unsigned int output_device_read(void);
void output_device_write(unsigned int value);
void int_controller_set(unsigned int value);
void int_controller_clear(unsigned int value);
void get_user_input(void);
/* Data */
unsigned int g_quit = 0; /* 1 if we want to quit */
unsigned int g_nmi = 0; /* 1 if nmi pending */
int g_input_device_value = -1; /* Current value in input device */
unsigned int g_output_device_ready = 0; /* 1 if output device is ready */
time_t g_output_device_last_output; /* Time of last char output */
unsigned int g_int_controller_pending = 0; /* list of pending interrupts */
unsigned int g_int_controller_highest_int = 0; /* Highest pending interrupt */
unsigned char g_rom[MAX_ROM+1]; /* ROM */
unsigned char g_ram[MAX_RAM+1]; /* RAM */
unsigned int g_fc; /* Current function code from CPU */
/* Exit with an error message. Use printf syntax. */
void exit_error(char* fmt, ...)
{
static int guard_val = 0;
char buff[100];
unsigned int pc;
va_list args;
if(guard_val)
return;
else
guard_val = 1;
va_start(args, fmt);
vfprintf(stderr, fmt, args);
va_end(args);
fprintf(stderr, "\n");
pc = m68k_get_reg(NULL, M68K_REG_PPC);
m68k_disassemble(buff, pc, M68K_CPU_TYPE_68000);
fprintf(stderr, "At %04x: %s\n", pc, buff);
exit(EXIT_FAILURE);
}
/* Read data from RAM, ROM, or a device */
unsigned int cpu_read_byte(unsigned int address)
{
if(g_fc & 2) /* Program */
{
if(address > MAX_ROM)
exit_error("Attempted to read byte from ROM address %08x", address);
return READ_BYTE(g_rom, address);
}
/* Otherwise it's data space */
switch(address)
{
case INPUT_ADDRESS:
return input_device_read();
case OUTPUT_ADDRESS:
return output_device_read();
default:
break;
}
if(address > MAX_RAM)
exit_error("Attempted to read byte from RAM address %08x", address);
return READ_BYTE(g_ram, address);
}
unsigned int cpu_read_word(unsigned int address)
{
if(g_fc & 2) /* Program */
{
if(address > MAX_ROM)
exit_error("Attempted to read word from ROM address %08x", address);
return READ_WORD(g_rom, address);
}
/* Otherwise it's data space */
switch(address)
{
case INPUT_ADDRESS:
return input_device_read();
case OUTPUT_ADDRESS:
return output_device_read();
default:
break;
}
if(address > MAX_RAM)
exit_error("Attempted to read word from RAM address %08x", address);
return READ_WORD(g_ram, address);
}
unsigned int cpu_read_long(unsigned int address)
{
if(g_fc & 2) /* Program */
{
if(address > MAX_ROM)
exit_error("Attempted to read long from ROM address %08x", address);
return READ_LONG(g_rom, address);
}
/* Otherwise it's data space */
switch(address)
{
case INPUT_ADDRESS:
return input_device_read();
case OUTPUT_ADDRESS:
return output_device_read();
default:
break;
}
if(address > MAX_RAM)
exit_error("Attempted to read long from RAM address %08x", address);
return READ_LONG(g_ram, address);
}
unsigned int cpu_read_word_dasm(unsigned int address)
{
if(address > MAX_ROM)
exit_error("Disassembler attempted to read word from ROM address %08x", address);
return READ_WORD(g_rom, address);
}
unsigned int cpu_read_long_dasm(unsigned int address)
{
if(address > MAX_ROM)
exit_error("Dasm attempted to read long from ROM address %08x", address);
return READ_LONG(g_rom, address);
}
/* Write data to RAM or a device */
void cpu_write_byte(unsigned int address, unsigned int value)
{
if(g_fc & 2) /* Program */
exit_error("Attempted to write %02x to ROM address %08x", value&0xff, address);
/* Otherwise it's data space */
switch(address)
{
case INPUT_ADDRESS:
input_device_write(value&0xff);
return;
case OUTPUT_ADDRESS:
output_device_write(value&0xff);
return;
default:
break;
}
if(address > MAX_RAM)
exit_error("Attempted to write %02x to RAM address %08x", value&0xff, address);
WRITE_BYTE(g_ram, address, value);
}
void cpu_write_word(unsigned int address, unsigned int value)
{
if(g_fc & 2) /* Program */
exit_error("Attempted to write %04x to ROM address %08x", value&0xffff, address);
/* Otherwise it's data space */
switch(address)
{
case INPUT_ADDRESS:
input_device_write(value&0xffff);
return;
case OUTPUT_ADDRESS:
output_device_write(value&0xffff);
return;
default:
break;
}
if(address > MAX_RAM)
exit_error("Attempted to write %04x to RAM address %08x", value&0xffff, address);
WRITE_WORD(g_ram, address, value);
}
void cpu_write_long(unsigned int address, unsigned int value)
{
if(g_fc & 2) /* Program */
exit_error("Attempted to write %08x to ROM address %08x", value, address);
/* Otherwise it's data space */
switch(address)
{
case INPUT_ADDRESS:
input_device_write(value);
return;
case OUTPUT_ADDRESS:
output_device_write(value);
return;
default:
break;
}
if(address > MAX_RAM)
exit_error("Attempted to write %08x to RAM address %08x", value, address);
WRITE_LONG(g_ram, address, value);
}
/* Called when the CPU pulses the RESET line */
void cpu_pulse_reset(void)
{
nmi_device_reset();
output_device_reset();
input_device_reset();
}
/* Called when the CPU changes the function code pins */
void cpu_set_fc(unsigned int fc)
{
g_fc = fc;
}
/* Called when the CPU acknowledges an interrupt */
int cpu_irq_ack(int level)
{
switch(level)
{
case IRQ_NMI_DEVICE:
return nmi_device_ack();
case IRQ_INPUT_DEVICE:
return input_device_ack();
case IRQ_OUTPUT_DEVICE:
return output_device_ack();
}
return M68K_INT_ACK_SPURIOUS;
}
/* Implementation for the NMI device */
void nmi_device_reset(void)
{
g_nmi = 0;
}
void nmi_device_update(void)
{
if(g_nmi)
{
g_nmi = 0;
int_controller_set(IRQ_NMI_DEVICE);
}
}
int nmi_device_ack(void)
{
printf("\nNMI\n");fflush(stdout);
int_controller_clear(IRQ_NMI_DEVICE);
return M68K_INT_ACK_AUTOVECTOR;
}
/* Implementation for the input device */
void input_device_reset(void)
{
g_input_device_value = -1;
int_controller_clear(IRQ_INPUT_DEVICE);
}
void input_device_update(void)
{
if(g_input_device_value >= 0)
int_controller_set(IRQ_INPUT_DEVICE);
}
int input_device_ack(void)
{
return M68K_INT_ACK_AUTOVECTOR;
}
unsigned int input_device_read(void)
{
int value = g_input_device_value > 0 ? g_input_device_value : 0;
int_controller_clear(IRQ_INPUT_DEVICE);
g_input_device_value = -1;
return value;
}
void input_device_write(unsigned int value)
{
(void)value;
}
/* Implementation for the output device */
void output_device_reset(void)
{
g_output_device_last_output = time(NULL);
g_output_device_ready = 0;
int_controller_clear(IRQ_OUTPUT_DEVICE);
}
void output_device_update(void)
{
if(!g_output_device_ready)
{
if((time(NULL) - g_output_device_last_output) >= OUTPUT_DEVICE_PERIOD)
{
g_output_device_ready = 1;
int_controller_set(IRQ_OUTPUT_DEVICE);
}
}
}
int output_device_ack(void)
{
return M68K_INT_ACK_AUTOVECTOR;
}
unsigned int output_device_read(void)
{
int_controller_clear(IRQ_OUTPUT_DEVICE);
return 0;
}
void output_device_write(unsigned int value)
{
char ch;
if(g_output_device_ready)
{
ch = value & 0xff;
printf("%c", ch);
g_output_device_last_output = time(NULL);
g_output_device_ready = 0;
int_controller_clear(IRQ_OUTPUT_DEVICE);
}
}
/* Implementation for the interrupt controller */
void int_controller_set(unsigned int value)
{
unsigned int old_pending = g_int_controller_pending;
g_int_controller_pending |= (1<<value);
if(old_pending != g_int_controller_pending && value > g_int_controller_highest_int)
{
g_int_controller_highest_int = value;
m68k_set_irq(g_int_controller_highest_int);
}
}
void int_controller_clear(unsigned int value)
{
g_int_controller_pending &= ~(1<<value);
for(g_int_controller_highest_int = 7;g_int_controller_highest_int > 0;g_int_controller_highest_int--)
if(g_int_controller_pending & (1<<g_int_controller_highest_int))
break;
m68k_set_irq(g_int_controller_highest_int);
}
/* Parse user input and update any devices that need user input */
void get_user_input(void)
{
static int last_ch = -1;
int ch = osd_get_char();
if(ch >= 0)
{
switch(ch)
{
case 0x1b:
g_quit = 1;
break;
case '~':
if(last_ch != ch)
g_nmi = 1;
break;
default:
g_input_device_value = ch;
}
}
last_ch = ch;
}
/* Disassembler */
void make_hex(char* buff, unsigned int pc, unsigned int length)
{
char* ptr = buff;
for(;length>0;length -= 2)
{
sprintf(ptr, "%04x", cpu_read_word_dasm(pc));
pc += 2;
ptr += 4;
if(length > 2)
*ptr++ = ' ';
}
}
void disassemble_program()
{
unsigned int pc;
unsigned int instr_size;
char buff[100];
char buff2[100];
pc = cpu_read_long_dasm(4);
while(pc <= 0x16e)
{
instr_size = m68k_disassemble(buff, pc, M68K_CPU_TYPE_68000);
make_hex(buff2, pc, instr_size);
printf("%03x: %-20s: %s\n", pc, buff2, buff);
pc += instr_size;
}
fflush(stdout);
}
void cpu_instr_callback(int pc)
{
(void)pc;
/* The following code would print out instructions as they are executed */
/*
static char buff[100];
static char buff2[100];
static unsigned int pc;
static unsigned int instr_size;
pc = m68k_get_reg(NULL, M68K_REG_PC);
instr_size = m68k_disassemble(buff, pc, M68K_CPU_TYPE_68000);
make_hex(buff2, pc, instr_size);
printf("E %03x: %-20s: %s\n", pc, buff2, buff);
fflush(stdout);
*/
}
/* The main loop */
int main(int argc, char* argv[])
{
FILE* fhandle;
if(argc != 2)
{
printf("Usage: sim <program file>\n");
exit(-1);
}
if((fhandle = fopen(argv[1], "rb")) == NULL)
exit_error("Unable to open %s", argv[1]);
if(fread(g_rom, 1, MAX_ROM+1, fhandle) <= 0)
exit_error("Error reading %s", argv[1]);
// disassemble_program();
m68k_init();
m68k_set_cpu_type(M68K_CPU_TYPE_68000);
m68k_pulse_reset();
input_device_reset();
output_device_reset();
nmi_device_reset();
g_quit = 0;
while(!g_quit)
{
// Our loop requires some interleaving to allow us to update the
// input, output, and nmi devices.
get_user_input();
// Values to execute determine the interleave rate.
// Smaller values allow for more accurate interleaving with multiple
// devices/CPUs but is more processor intensive.
// 100000 is usually a good value to start at, then work from there.
// Note that I am not emulating the correct clock speed!
m68k_execute(100000);
output_device_update();
input_device_update();
nmi_device_update();
}
return 0;
}

15
lib/M68K/example/sim.h Normal file
View File

@ -0,0 +1,15 @@
#ifndef SIM__HEADER
#define SIM__HEADER
unsigned int cpu_read_byte(unsigned int address);
unsigned int cpu_read_word(unsigned int address);
unsigned int cpu_read_long(unsigned int address);
void cpu_write_byte(unsigned int address, unsigned int value);
void cpu_write_word(unsigned int address, unsigned int value);
void cpu_write_long(unsigned int address, unsigned int value);
void cpu_pulse_reset(void);
void cpu_set_fc(unsigned int fc);
int cpu_irq_ack(int level);
void cpu_instr_callback(int pc);
#endif /* SIM__HEADER */

115
lib/M68K/history.txt Normal file
View File

@ -0,0 +1,115 @@
The history of Musashi for anyone who might be interested:
---------------------------------------------------------
Musashi was born out of sheer boredom.
I needed something to code, and so having had fun with a few of the emulators
around, I decided to try my hand at CPU emulation.
I had owned an Amiga for many years and had done some assembly coding on it so
I figured it would be the ideal chip to cut my teeth on.
Had I known then how much work was involved in emulating a chip like this, I
may not have even started ;-)
15-Jul-2013: Musashi license changed to MIT.
10-Jun-2002: Musashi 3.4 released
- Added various undocumented m68k features thanks to Bart
Trzynadlowski's experiments.
See http://dynarec.com/~bart/files/68knotes.txt for details.
- Fixed a bug that caused privilege violation and illegal
instruction exceptions to stack the wrong PC value.
- Added emulation of address errors (Note: this only works
in 68000 mode. All other CPUs require a LOT of overhead
to emulate this. I'm not sure if I'll implement them or not.
27-Jan-2001: Musashi 3.3 released
- Fixed problem when displaying negative numbers in disassembler
- Fixed cpu type selector - was allowing 020 instructions to be
disassembled when in 000 mode.
- Fixed opcode jumptable generator (ambiguous operators in the
test for f-line ops)
- Fixed signed/unsigned problem in divl and mull opcodes (not
sure if this was causing an error but best to be sure)
- Cleaned up the naming scheme for the opcode handlers
14-Aug-2000: Musashi 3.2 released
- Fixed RTE bug that killed the program counter when in m68020
mode.
- Minor fixes in negx and nbcd.
- renamed d68k.c to m68kdasm.c and merged d68k.h into m68k.h.
d68k_read_xxx() instructions have been renamed to
m68k_read_xxx_disassembler().
- Rewrote exception processing and fixed 68020 stack frame
problems.
- FINALLY fixed the mull and divl instructions.
- Added 64-bit safe code fixes.
- Added 64-bit optimizations (these will only be ANSI compliant
under c9x, and so to use them you must turn on M68K_USE_64_BIT
in m68kconf.h).
28-May-2000: Musashi 3.1 released
- Fixed bug in m68k_get_reg() that retrieved the wrong value for
the status register.
- Fixed register bug in movec.
- Fixed cpu type comparison problem that caused indexed
addressing modes to be incorrectly interpreted when in m68ec020
mode.
- Added code to speed up busy waiting on some branch instructions.
- Fixed some bfxxx opcode bugs.
05-Apr-2000: Musashi 3.0 released
- Major code overhaul.
- Rewrote code generator program and changed the format of
m68k_in.c.
- Added support for m68ec020.
- Removed timing from the opcode handlers.
- Added correct timing for m68000, m68010, and m68020.
Note: 68020 timing is the cache timing from the manual.
- Removed the m68k_peek_xxx() and m68k_poke_xxx() instructions and
replaced them with m68k_get_reg() and m68k_set_reg().
- Added support for function codes.
- Revamped m68kconf.h to be easier to configure and more powerful.
- Added option to separate immediate and normal reads.
- Added support for (undocumented) m68000 instruction prefetch.
- Rewrote indexed addressing mode handling.
- Rewrote interrupt handling.
- Fixed a masking bug for m68k_get_reg() when requesting the PC.
- Moved the instruction table sorting routine to m68kmake.c so
that it is invoked at compile time rather than at runtime.
- Rewrote the exception handling routines to support different
stack frames (needed for m68020 emulation).
- Rewrote faster status register and condition code flag handling
functions / macros.
- Fixed function code handling to fetch from program space when
using pc-relative addressing.
- Fixed initial program counter and stack pointer fetching on
reset (loads from program space now).
- A lot of code cleanup.
- LOTS of bugfixes (especially in the m68020 code).
13-May-1999: Musashi 2.2 released
- Added support for m68020.
- Lots of bugfixes.
25-Mar-1999: Musashi 2.1 released
- Added support for m68010.
- Many bugfixes.
17-Mar-1999: Musashi 2.0 released
- Major code overhaul.
- Replaced monolithic codebase with a code generator program.
- Added correct m68000 timing.
- Moved timing into the opcode handlers.
06-Jan-1999: Musashi 1.0 released
20-Dec-1998: Beta release of Musashi v0.5 that could run Rastan Saga under MAME
(barely).
04-Dec-1998: Final prototype v0.4
20-Nov-1998: First prototype v0.1
11-Jun-1998: Early disassembler
12-May-1998: First outline

10653
lib/M68K/m68k_in.c Normal file

File diff suppressed because it is too large Load Diff

210
lib/M68K/m68kconf.h Normal file
View File

@ -0,0 +1,210 @@
/* ======================================================================== */
/* ========================= LICENSING & COPYRIGHT ======================== */
/* ======================================================================== */
/*
* MUSASHI
* Version 3.32
*
* A portable Motorola M680x0 processor emulation engine.
* Copyright Karl Stenerud. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef M68KCONF__HEADER
#define M68KCONF__HEADER
/* Configuration switches.
* Use OPT_SPECIFY_HANDLER for configuration options that allow callbacks.
* OPT_SPECIFY_HANDLER causes the core to link directly to the function
* or macro you specify, rather than using callback functions whose pointer
* must be passed in using m68k_set_xxx_callback().
*/
#define OPT_OFF 0
#define OPT_ON 1
#define OPT_SPECIFY_HANDLER 2
/* ======================================================================== */
/* ============================== MAME STUFF ============================== */
/* ======================================================================== */
/* If you're compiling this for MAME, only change M68K_COMPILE_FOR_MAME
* to OPT_ON and use m68kmame.h to configure the 68k core.
*/
#ifndef M68K_COMPILE_FOR_MAME
#define M68K_COMPILE_FOR_MAME OPT_OFF
#endif /* M68K_COMPILE_FOR_MAME */
#if M68K_COMPILE_FOR_MAME == OPT_OFF
/* ======================================================================== */
/* ============================= CONFIGURATION ============================ */
/* ======================================================================== */
/* Turn ON if you want to use the following M68K variants */
#define M68K_EMULATE_010 OPT_ON
#define M68K_EMULATE_EC020 OPT_OFF
#define M68K_EMULATE_020 OPT_ON
#define M68K_EMULATE_030 OPT_OFF
#define M68K_EMULATE_040 OPT_OFF
/* If ON, the CPU will call m68k_read_immediate_xx() for immediate addressing
* and m68k_read_pcrelative_xx() for PC-relative addressing.
* If off, all read requests from the CPU will be redirected to m68k_read_xx()
*/
#define M68K_SEPARATE_READS OPT_OFF
/* If ON, the CPU will call m68k_write_32_pd() when it executes move.l with a
* predecrement destination EA mode instead of m68k_write_32().
* To simulate real 68k behavior, m68k_write_32_pd() must first write the high
* word to [address+2], and then write the low word to [address].
*/
#define M68K_SIMULATE_PD_WRITES OPT_ON
/* If ON, CPU will call the interrupt acknowledge callback when it services an
* interrupt.
* If off, all interrupts will be autovectored and all interrupt requests will
* auto-clear when the interrupt is serviced.
*/
#define M68K_EMULATE_INT_ACK OPT_OFF
#define M68K_INT_ACK_CALLBACK(A) your_int_ack_handler_function(A)
/* If ON, CPU will call the breakpoint acknowledge callback when it encounters
* a breakpoint instruction and it is running a 68010+.
*/
#define M68K_EMULATE_BKPT_ACK OPT_OFF
#define M68K_BKPT_ACK_CALLBACK() your_bkpt_ack_handler_function()
/* If ON, the CPU will monitor the trace flags and take trace exceptions
*/
#define M68K_EMULATE_TRACE OPT_OFF
/* If ON, CPU will call the output reset callback when it encounters a reset
* instruction.
*/
#define M68K_EMULATE_RESET OPT_OFF
#define M68K_RESET_CALLBACK() your_reset_handler_function()
/* If ON, CPU will call the callback when it encounters a cmpi.l #v, dn
* instruction.
*/
#define M68K_CMPILD_HAS_CALLBACK OPT_OFF
#define M68K_CMPILD_CALLBACK(v,r) your_cmpild_handler_function(v,r)
/* If ON, CPU will call the callback when it encounters a rte
* instruction.
*/
#define M68K_RTE_HAS_CALLBACK OPT_OFF
#define M68K_RTE_CALLBACK() your_rte_handler_function()
/* If ON, CPU will call the callback when it encounters a tas
* instruction.
*/
#define M68K_TAS_HAS_CALLBACK OPT_OFF
#define M68K_TAS_CALLBACK() your_tas_handler_function()
/* If ON, CPU will call the callback when it encounters an illegal instruction
* passing the opcode as argument. If the callback returns 1, then it's considered
* as a normal instruction, and the illegal exception in canceled. If it returns 0,
* the exception occurs normally.
* The callback looks like int callback(int opcode)
* You should put OPT_SPECIFY_HANDLER here if you cant to use it, otherwise it will
* use a dummy default handler and you'll have to call m68k_set_illg_instr_callback explicitely
*/
#define M68K_ILLG_HAS_CALLBACK OPT_OFF
#define M68K_ILLG_CALLBACK(opcode) op_illg(opcode)
/* If ON, CPU will call the set fc callback on every memory access to
* differentiate between user/supervisor, program/data access like a real
* 68000 would. This should be enabled and the callback should be set if you
* want to properly emulate the m68010 or higher. (moves uses function codes
* to read/write data from different address spaces)
*/
#define M68K_EMULATE_FC OPT_OFF
#define M68K_SET_FC_CALLBACK(A) your_set_fc_handler_function(A)
/* If ON, CPU will call the pc changed callback when it changes the PC by a
* large value. This allows host programs to be nicer when it comes to
* fetching immediate data and instructions on a banked memory system.
*/
#define M68K_MONITOR_PC OPT_OFF
#define M68K_SET_PC_CALLBACK(A) your_pc_changed_handler_function(A)
/* If ON, CPU will call the instruction hook callback before every
* instruction.
*/
#define M68K_INSTRUCTION_HOOK OPT_SPECIFY_HANDLER
#define M68K_INSTRUCTION_CALLBACK(pc) m68k_instruction_hook(pc)
/* If ON, the CPU will emulate the 4-byte prefetch queue of a real 68000 */
#define M68K_EMULATE_PREFETCH OPT_OFF
/* If ON, the CPU will generate address error exceptions if it tries to
* access a word or longword at an odd address.
* NOTE: This is only emulated properly for 68000 mode.
*/
#define M68K_EMULATE_ADDRESS_ERROR OPT_OFF
/* Turn ON to enable logging of illegal instruction calls.
* M68K_LOG_FILEHANDLE must be #defined to a stdio file stream.
* Turn on M68K_LOG_1010_1111 to log all 1010 and 1111 calls.
*/
#define M68K_LOG_ENABLE OPT_OFF
#define M68K_LOG_1010_1111 OPT_OFF
#define M68K_LOG_FILEHANDLE some_file_handle
/* Emulate PMMU : if you enable this, there will be a test to see if the current chip has some enabled pmmu added to every memory access,
* so enable this only if it's useful */
#define M68K_EMULATE_PMMU OPT_OFF
/* ----------------------------- COMPATIBILITY ---------------------------- */
/* The following options set optimizations that violate the current ANSI
* standard, but will be compliant under the forthcoming C9X standard.
*/
/* If ON, the enulation core will use 64-bit integers to speed up some
* operations.
*/
#define M68K_USE_64_BIT OPT_ON
#endif /* M68K_COMPILE_FOR_MAME */
/* ======================================================================== */
/* ============================== END OF FILE ============================= */
/* ======================================================================== */
#endif /* M68KCONF__HEADER */

1223
lib/M68K/m68kcpu.c Normal file

File diff suppressed because it is too large Load Diff

2150
lib/M68K/m68kcpu.h Normal file

File diff suppressed because it is too large Load Diff

4004
lib/M68K/m68kdasm.c Normal file

File diff suppressed because it is too large Load Diff

1770
lib/M68K/m68kfpu.c Normal file

File diff suppressed because it is too large Load Diff

1408
lib/M68K/m68kmake.c Normal file

File diff suppressed because it is too large Load Diff

321
lib/M68K/m68kmmu.h Normal file
View File

@ -0,0 +1,321 @@
/*
m68kmmu.h - PMMU implementation for 68851/68030/68040
By R. Belmont
Copyright Nicola Salmoria and the MAME Team.
Visit http://mamedev.org for licensing and usage restrictions.
*/
/*
pmmu_translate_addr: perform 68851/68030-style PMMU address translation
*/
uint pmmu_translate_addr(uint addr_in)
{
uint32 addr_out, tbl_entry = 0, tbl_entry2, tamode = 0, tbmode = 0, tcmode = 0;
uint root_aptr, root_limit, tofs, is, abits, bbits, cbits;
uint resolved, tptr, shift;
resolved = 0;
addr_out = addr_in;
// if SRP is enabled and we're in supervisor mode, use it
if ((m68ki_cpu.mmu_tc & 0x02000000) && (m68ki_get_sr() & 0x2000))
{
root_aptr = m68ki_cpu.mmu_srp_aptr;
root_limit = m68ki_cpu.mmu_srp_limit;
}
else // else use the CRP
{
root_aptr = m68ki_cpu.mmu_crp_aptr;
root_limit = m68ki_cpu.mmu_crp_limit;
}
// get initial shift (# of top bits to ignore)
is = (m68ki_cpu.mmu_tc>>16) & 0xf;
abits = (m68ki_cpu.mmu_tc>>12)&0xf;
bbits = (m68ki_cpu.mmu_tc>>8)&0xf;
cbits = (m68ki_cpu.mmu_tc>>4)&0xf;
// fprintf(stderr,"PMMU: tcr %08x limit %08x aptr %08x is %x abits %d bbits %d cbits %d\n", m68ki_cpu.mmu_tc, root_limit, root_aptr, is, abits, bbits, cbits);
// get table A offset
tofs = (addr_in<<is)>>(32-abits);
// find out what format table A is
switch (root_limit & 3)
{
case 0: // invalid, should cause MMU exception
case 1: // page descriptor, should cause direct mapping
fatalerror("680x0 PMMU: Unhandled root mode\n");
break;
case 2: // valid 4 byte descriptors
tofs *= 4;
// fprintf(stderr,"PMMU: reading table A entry at %08x\n", tofs + (root_aptr & 0xfffffffc));
tbl_entry = m68k_read_memory_32( tofs + (root_aptr & 0xfffffffc));
tamode = tbl_entry & 3;
// fprintf(stderr,"PMMU: addr %08x entry %08x mode %x tofs %x\n", addr_in, tbl_entry, tamode, tofs);
break;
case 3: // valid 8 byte descriptors
tofs *= 8;
// fprintf(stderr,"PMMU: reading table A entries at %08x\n", tofs + (root_aptr & 0xfffffffc));
tbl_entry2 = m68k_read_memory_32( tofs + (root_aptr & 0xfffffffc));
tbl_entry = m68k_read_memory_32( tofs + (root_aptr & 0xfffffffc)+4);
tamode = tbl_entry2 & 3;
// fprintf(stderr,"PMMU: addr %08x entry %08x entry2 %08x mode %x tofs %x\n", addr_in, tbl_entry, tbl_entry2, tamode, tofs);
break;
}
// get table B offset and pointer
tofs = (addr_in<<(is+abits))>>(32-bbits);
tptr = tbl_entry & 0xfffffff0;
// find out what format table B is, if any
switch (tamode)
{
case 0: // invalid, should cause MMU exception
fatalerror("680x0 PMMU: Unhandled Table A mode %d (addr_in %08x)\n", tamode, addr_in);
break;
case 2: // 4-byte table B descriptor
tofs *= 4;
// fprintf(stderr,"PMMU: reading table B entry at %08x\n", tofs + tptr);
tbl_entry = m68k_read_memory_32( tofs + tptr);
tbmode = tbl_entry & 3;
// fprintf(stderr,"PMMU: addr %08x entry %08x mode %x tofs %x\n", addr_in, tbl_entry, tbmode, tofs);
break;
case 3: // 8-byte table B descriptor
tofs *= 8;
// fprintf(stderr,"PMMU: reading table B entries at %08x\n", tofs + tptr);
tbl_entry2 = m68k_read_memory_32( tofs + tptr);
tbl_entry = m68k_read_memory_32( tofs + tptr + 4);
tbmode = tbl_entry2 & 3;
// fprintf(stderr,"PMMU: addr %08x entry %08x entry2 %08x mode %x tofs %x\n", addr_in, tbl_entry, tbl_entry2, tbmode, tofs);
break;
case 1: // early termination descriptor
tbl_entry &= 0xffffff00;
shift = is+abits;
addr_out = ((addr_in<<shift)>>shift) + tbl_entry;
resolved = 1;
break;
}
// if table A wasn't early-out, continue to process table B
if (!resolved)
{
// get table C offset and pointer
tofs = (addr_in<<(is+abits+bbits))>>(32-cbits);
tptr = tbl_entry & 0xfffffff0;
switch (tbmode)
{
case 0: // invalid, should cause MMU exception
fatalerror("680x0 PMMU: Unhandled Table B mode %d (addr_in %08x PC %x)\n", tbmode, addr_in, REG_PC);
break;
case 2: // 4-byte table C descriptor
tofs *= 4;
// fprintf(stderr,"PMMU: reading table C entry at %08x\n", tofs + tptr);
tbl_entry = m68k_read_memory_32(tofs + tptr);
tcmode = tbl_entry & 3;
// fprintf(stderr,"PMMU: addr %08x entry %08x mode %x tofs %x\n", addr_in, tbl_entry, tbmode, tofs);
break;
case 3: // 8-byte table C descriptor
tofs *= 8;
// fprintf(stderr,"PMMU: reading table C entries at %08x\n", tofs + tptr);
tbl_entry2 = m68k_read_memory_32(tofs + tptr);
tbl_entry = m68k_read_memory_32(tofs + tptr + 4);
tcmode = tbl_entry2 & 3;
// fprintf(stderr,"PMMU: addr %08x entry %08x entry2 %08x mode %x tofs %x\n", addr_in, tbl_entry, tbl_entry2, tbmode, tofs);
break;
case 1: // termination descriptor
tbl_entry &= 0xffffff00;
shift = is+abits+bbits;
addr_out = ((addr_in<<shift)>>shift) + tbl_entry;
resolved = 1;
break;
}
}
if (!resolved)
{
switch (tcmode)
{
case 0: // invalid, should cause MMU exception
case 2: // 4-byte ??? descriptor
case 3: // 8-byte ??? descriptor
fatalerror("680x0 PMMU: Unhandled Table B mode %d (addr_in %08x PC %x)\n", tbmode, addr_in, REG_PC);
break;
case 1: // termination descriptor
tbl_entry &= 0xffffff00;
shift = is+abits+bbits+cbits;
addr_out = ((addr_in<<shift)>>shift) + tbl_entry;
resolved = 1;
break;
}
}
// fprintf(stderr,"PMMU: [%08x] => [%08x]\n", addr_in, addr_out);
return addr_out;
}
/*
m68881_mmu_ops: COP 0 MMU opcode handling
*/
void m68881_mmu_ops()
{
uint16 modes;
uint32 ea = m68ki_cpu.ir & 0x3f;
uint64 temp64;
// catch the 2 "weird" encodings up front (PBcc)
if ((m68ki_cpu.ir & 0xffc0) == 0xf0c0)
{
fprintf(stderr,"680x0: unhandled PBcc\n");
return;
}
else if ((m68ki_cpu.ir & 0xffc0) == 0xf080)
{
fprintf(stderr,"680x0: unhandled PBcc\n");
return;
}
else // the rest are 1111000xxxXXXXXX where xxx is the instruction family
{
switch ((m68ki_cpu.ir>>9) & 0x7)
{
case 0:
modes = OPER_I_16();
if ((modes & 0xfde0) == 0x2000) // PLOAD
{
fprintf(stderr,"680x0: unhandled PLOAD\n");
return;
}
else if ((modes & 0xe200) == 0x2000) // PFLUSH
{
fprintf(stderr,"680x0: unhandled PFLUSH PC=%x\n", REG_PC);
return;
}
else if (modes == 0xa000) // PFLUSHR
{
fprintf(stderr,"680x0: unhandled PFLUSHR\n");
return;
}
else if (modes == 0x2800) // PVALID (FORMAT 1)
{
fprintf(stderr,"680x0: unhandled PVALID1\n");
return;
}
else if ((modes & 0xfff8) == 0x2c00) // PVALID (FORMAT 2)
{
fprintf(stderr,"680x0: unhandled PVALID2\n");
return;
}
else if ((modes & 0xe000) == 0x8000) // PTEST
{
fprintf(stderr,"680x0: unhandled PTEST\n");
return;
}
else
{
switch ((modes>>13) & 0x7)
{
case 0: // MC68030/040 form with FD bit
case 2: // MC68881 form, FD never set
if (modes & 0x200)
{
switch ((modes>>10) & 7)
{
case 0: // translation control register
WRITE_EA_32(ea, m68ki_cpu.mmu_tc);
break;
case 2: // supervisor root pointer
WRITE_EA_64(ea, (uint64)m68ki_cpu.mmu_srp_limit<<32 | (uint64)m68ki_cpu.mmu_srp_aptr);
break;
case 3: // CPU root pointer
WRITE_EA_64(ea, (uint64)m68ki_cpu.mmu_crp_limit<<32 | (uint64)m68ki_cpu.mmu_crp_aptr);
break;
default:
fprintf(stderr,"680x0: PMOVE from unknown MMU register %x, PC %x\n", (modes>>10) & 7, REG_PC);
break;
}
}
else
{
switch ((modes>>10) & 7)
{
case 0: // translation control register
m68ki_cpu.mmu_tc = READ_EA_32(ea);
if (m68ki_cpu.mmu_tc & 0x80000000)
{
m68ki_cpu.pmmu_enabled = 1;
}
else
{
m68ki_cpu.pmmu_enabled = 0;
}
break;
case 2: // supervisor root pointer
temp64 = READ_EA_64(ea);
m68ki_cpu.mmu_srp_limit = (temp64>>32) & 0xffffffff;
m68ki_cpu.mmu_srp_aptr = temp64 & 0xffffffff;
break;
case 3: // CPU root pointer
temp64 = READ_EA_64(ea);
m68ki_cpu.mmu_crp_limit = (temp64>>32) & 0xffffffff;
m68ki_cpu.mmu_crp_aptr = temp64 & 0xffffffff;
break;
default:
fprintf(stderr,"680x0: PMOVE to unknown MMU register %x, PC %x\n", (modes>>10) & 7, REG_PC);
break;
}
}
break;
case 3: // MC68030 to/from status reg
if (modes & 0x200)
{
WRITE_EA_32(ea, m68ki_cpu.mmu_sr);
}
else
{
m68ki_cpu.mmu_sr = READ_EA_32(ea);
}
break;
default:
fprintf(stderr,"680x0: unknown PMOVE mode %x (modes %04x) (PC %x)\n", (modes>>13) & 0x7, modes, REG_PC);
break;
}
}
break;
default:
fprintf(stderr,"680x0: unknown PMMU instruction group %d\n", (m68ki_cpu.ir>>9) & 0x7);
break;
}
}
}

342
lib/M68K/readme.txt Normal file
View File

@ -0,0 +1,342 @@
MUSASHI
=======
Version 4.10
A portable Motorola M680x0 processor emulation engine.
Copyright 1998-2002 Karl Stenerud. All rights reserved.
INTRODUCTION:
------------
Musashi is a Motorola 68000, 68010, 68EC020, 68020, 68EC030, 68030, 68EC040 and
68040 emulator written in C. This emulator was written with two goals in mind:
portability and speed.
The emulator is written to ANSI C89 specifications. It also uses inline
functions, which are C9X compliant.
It has been successfully running in the MAME project (www.mame.net) for years
and so has had time to mature.
LICENSE AND COPYRIGHT:
---------------------
Copyright © 1998-2001 Karl Stenerud
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
AVAILABILITY:
------------
The latest version of this code can be obtained at:
https://github.com/kstenerud/Musashi
CONTACTING THE AUTHOR:
---------------------
I can be reached at kstenerud@gmail.com
BASIC CONFIGURATION:
-------------------
The basic configuration will give you a standard 68000 that has sufficient
functionality to work in a primitive environment.
This setup assumes that you only have 1 device interrupting it, that the
device will always request an autovectored interrupt, and it will always clear
the interrupt before the interrupt service routine finishes (but could
possibly re-assert the interrupt).
You will have only one address space, no tracing, and no instruction prefetch.
To implement the basic configuration:
- Open m68kconf.h and verify that the settings for INLINE will work with your
compiler. (Currently set to "static __inline__", which works in gcc 2.9.
For C9X compliance, it should be "inline")
- In your host program, implement the following functions:
unsigned int m68k_read_memory_8(unsigned int address);
unsigned int m68k_read_memory_16(unsigned int address);
unsigned int m68k_read_memory_32(unsigned int address);
void m68k_write_memory_8(unsigned int address, unsigned int value);
void m68k_write_memory_16(unsigned int address, unsigned int value);
void m68k_write_memory_32(unsigned int address, unsigned int value);
- In your host program, be sure to call m68k_pulse_reset() once before calling
any of the other functions as this initializes the core.
- Use m68k_execute() to execute instructions and m68k_set_irq() to cause an
interrupt.
ADDING PROPER INTERRUPT HANDLING:
--------------------------------
The interrupt handling in the basic configuration doesn't emulate the
interrupt acknowledge phase of the CPU and automatically clears an interrupt
request during interrupt processing.
While this works for most systems, you may need more accurate interrupt
handling.
To add proper interrupt handling:
- In m68kconf.h, set M68K_EMULATE_INT_ACK to OPT_SPECIFY_HANDLER
- In m68kconf.h, set M68K_INT_ACK_CALLBACK(A) to your interrupt acknowledge
routine
- Your interrupt acknowledge routine must return an interrupt vector,
M68K_INT_ACK_AUTOVECTOR, or M68K_INT_ACK_SPURIOUS. most m68k
implementations just use autovectored interrupts.
- When the interrupting device is satisfied, you must call m68k_set_irq(0) to
remove the interrupt request.
MULTIPLE INTERRUPTS:
-------------------
The above system will work if you have only one device interrupting the CPU,
but if you have more than one device, you must do a bit more.
To add multiple interrupts:
- You must make an interrupt arbitration device that will take the highest
priority interrupt and encode it onto the IRQ pins on the CPU.
- The interrupt arbitration device should use m68k_set_irq() to set the
highest pending interrupt, or 0 for no interrupts pending.
SEPARATE IMMEDIATE READS:
------------------------
You can write faster memory access functions if you know whether you are
fetching from ROM or RAM. Immediate reads are always from the program space
(Always in ROM unless it is running self-modifying code).
To enable separate immediate reads:
- In m68kconf.h, turn on M68K_SEPARATE_READ_IMM.
- In your host program, implement the following functions:
unsigned int m68k_read_immediate_16(unsigned int address);
unsigned int m68k_read_immediate_32(unsigned int address);
Now you also have the pcrelative stuff:
unsigned int m68k_read_pcrelative_8(unsigned int address);
unsigned int m68k_read_pcrelative_16(unsigned int address);
unsigned int m68k_read_pcrelative_32(unsigned int address);
- If you need to know the current PC (for banking and such), set
M68K_MONITOR_PC to OPT_SPECIFY_HANDLER, and set M68K_SET_PC_CALLBACK(A) to
your routine.
- In the unlikely case where you need to emulate some PMMU in the immediate
reads and/or pcrealtive stuff, you'll need to explicitely call the
translation address mechanism from your user functions this way :
if (PMMU_ENABLED)
address = pmmu_translate_addr(address);
(this is handled automatically by normal memory accesses).
ADDRESS SPACES:
--------------
Most systems will only implement one address space, placing ROM at the lower
addresses and RAM at the higher. However, there is the possibility that a
system will implement ROM and RAM in the same address range, but in different
address spaces.
In this case, you might get away with assuming that immediate reads are in the
program space and all other reads are in the data space, if it weren't for the
fact that the exception vectors are fetched from the data space. As a result,
anyone implementing this kind of system will have to copy the vector table
from ROM to RAM using pc-relative instructions.
This makes things bad for emulation, because this means that a non-immediate
read is not necessarily in the data space.
The m68k deals with this by encoding the requested address space on the
function code pins:
FC
Address Space 210
------------------ ---
USER DATA 001
USER PROGRAM 010
SUPERVISOR DATA 101
SUPERVISOR PROGRAM 110
CPU SPACE 111 <-- not emulated in this core since we emulate
interrupt acknowledge in another way.
To emulate the function code pins:
- In m68kconf.h, set M68K_EMULATE_FC to OPT_SPECIFY_HANDLER and set
M68K_SET_FC_CALLBACK(A) to your function code handler function.
- Your function code handler should select the proper address space for
subsequent calls to m68k_read_xx (and m68k_write_xx for 68010+).
Note: immediate reads are always done from program space, so technically you
don't need to implement the separate immediate reads, although you could
gain more speed improvements leaving them in and doing some clever
programming.
USING DIFFERENT CPU TYPES:
-------------------------
The default is to enable only the 68000 cpu type. To change this, change the
settings for M68K_EMULATE_010 etc in m68kconf.h.
To set the CPU type you want to use:
- Make sure it is enabled in m68kconf.h. Current switches are:
M68K_EMULATE_010
M68K_EMULATE_EC020
M68K_EMULATE_020
- In your host program, call m68k_set_cpu_type() and then call
m68k_pulse_reset(). Valid CPU types are:
M68K_CPU_TYPE_68000,
M68K_CPU_TYPE_68010,
M68K_CPU_TYPE_68EC020,
M68K_CPU_TYPE_68020,
M68K_CPU_TYPE_68EC030,
M68K_CPU_TYPE_68030,
M68K_CPU_TYPE_68EC040,
M68K_CPU_TYPE_68040,
M68K_CPU_TYPE_SCC68070 (which is a 68010 with a 32 bit data bus).
CLOCK FREQUENCY:
---------------
In order to emulate the correct clock frequency, you will have to calculate
how long it takes the emulation to execute a certain number of "cycles" and
vary your calls to m68k_execute() accordingly.
As well, it is a good idea to take away the CPU's timeslice when it writes to
a memory-mapped port in order to give the device it wrote to a chance to
react.
You can use the functions m68k_cycles_run(), m68k_cycles_remaining(),
m68k_modify_timeslice(), and m68k_end_timeslice() to do this.
Try to use large cycle values in your calls to m68k_execute() since it will
increase throughput. You can always take away the timeslice later.
MORE CORRECT EMULATION:
----------------------
You may need to enable these in order to properly emulate some of the more
obscure functions of the m68k:
- M68K_EMULATE_BKPT_ACK causes the CPU to call a breakpoint handler on a BKPT
instruction
- M68K_EMULATE_TRACE causes the CPU to generate trace exceptions when the
trace bits are set
- M68K_EMULATE_RESET causes the CPU to call a reset handler on a RESET
instruction.
- M68K_EMULATE_PREFETCH emulates the 4-word instruction prefetch that is part
of the 68000/68010 (needed for Amiga emulation).
NOTE: if the CPU fetches a word or longword at an odd address when this
option is on, it will yield unpredictable results, which is why a real
68000 will generate an address error exception.
- M68K_EMULATE_ADDRESS_ERROR will cause the CPU to generate address error
exceptions if it attempts to read a word or longword at an odd address.
- call m68k_pulse_halt() to emulate the HALT pin.
CONVENIENCE FUNCTIONS:
---------------------
These are in here for programmer convenience:
- M68K_INSTRUCTION_HOOK lets you call a handler before each instruction.
- M68K_LOG_ENABLE and M68K_LOG_1010_1111 lets you log illegal and A/F-line
instructions.
MULTIPLE CPU EMULATION:
----------------------
The default is to use only one CPU. To use more than one CPU in this core,
there are some things to keep in mind:
- To have different cpus call different functions, use OPT_ON instead of
OPT_SPECIFY_HANDLER, and use the m68k_set_xxx_callback() functions to set
your callback handlers on a per-cpu basis.
- Be sure to call set_cpu_type() for each CPU you use.
- Use m68k_set_context() and m68k_get_context() to switch to another CPU.
LOAD AND SAVE CPU CONTEXTS FROM DISK:
------------------------------------
You can use them68k_load_context() and m68k_save_context() functions to load
and save the CPU state to disk.
GET/SET INFORMATION FROM THE CPU:
--------------------------------
You can use m68k_get_reg() and m68k_set_reg() to gain access to the internals
of the CPU.
EXAMPLE:
-------
The subdir example contains a full example (currently linux & Dos only).
Compilation
-----------
You can use the default Makefile in Musashi's directory, it works like this :
1st build m68kmake, which will build m68kops.c and m68kops.h based on the
contents of m68k_in.c.
Then compile m68kcpu.o and m68kops.o. Add m68kdasm.o if you want the
disassemble functions. When linking this to your project you will need libm
for the fpu emulation of the 68040.
Using some custom m68kconf.h outside Musashi's directory
--------------------------------------------------------
It can be useful to keep an untouched musashi directory in a project (from
git for example) and maintain a separate m68kconf.h specific to the
project. For this, pass -DMUSASHI_CNF="mycustomconfig.h" to gcc (or whatever
compiler you use). Notice that if you use an unix shell (or make which uses
the shell to launch its commands), then you need to escape the quotes like
this : -DMUSASHI_CNF=\"mycustomconfig.h\"

View File

@ -0,0 +1,78 @@
MAME note: this package is derived from the following original SoftFloat
package and has been "re-packaged" to work with MAME's conventions and
build system. The source files come from bits64/ and bits64/templates
in the original distribution as MAME requires a compiler with a 64-bit
integer type.
Package Overview for SoftFloat Release 2b
John R. Hauser
2002 May 27
----------------------------------------------------------------------------
Overview
SoftFloat is a software implementation of floating-point that conforms to
the IEC/IEEE Standard for Binary Floating-Point Arithmetic. SoftFloat is
distributed in the form of C source code. Compiling the SoftFloat sources
generates two things:
-- A SoftFloat object file (typically `softfloat.o') containing the complete
set of IEC/IEEE floating-point routines.
-- A `timesoftfloat' program for evaluating the speed of the SoftFloat
routines. (The SoftFloat module is linked into this program.)
The SoftFloat package is documented in four text files:
SoftFloat.txt Documentation for using the SoftFloat functions.
SoftFloat-source.txt Documentation for compiling SoftFloat.
SoftFloat-history.txt History of major changes to SoftFloat.
timesoftfloat.txt Documentation for using `timesoftfloat'.
Other files in the package comprise the source code for SoftFloat.
Please be aware that some work is involved in porting this software to other
targets. It is not just a matter of getting `make' to complete without
error messages. I would have written the code that way if I could, but
there are fundamental differences between systems that can't be hidden.
You should not attempt to compile SoftFloat without first reading both
`SoftFloat.txt' and `SoftFloat-source.txt'.
----------------------------------------------------------------------------
Legal Notice
SoftFloat was written by me, John R. Hauser. This work was made possible in
part by the International Computer Science Institute, located at Suite 600,
1947 Center Street, Berkeley, California 94704. Funding was partially
provided by the National Science Foundation under grant MIP-9311980. The
original version of this code was written as part of a project to build
a fixed-point vector processor in collaboration with the University of
California at Berkeley, overseen by Profs. Nelson Morgan and John Wawrzynek.
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL
LOSSES, COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO
FURTHERMORE EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER
SCIENCE INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES,
COSTS, OR OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE
SOFTWARE.
Derivative works are acceptable, even for commercial purposes, provided
that the minimal documentation requirements stated in the source code are
satisfied.
----------------------------------------------------------------------------
Contact Information
At the time of this writing, the most up-to-date information about
SoftFloat and the latest release can be found at the Web page `http://
www.cs.berkeley.edu/~jhauser/arithmetic/SoftFloat.html'.

View File

@ -0,0 +1,61 @@
/*----------------------------------------------------------------------------
| One of the macros `BIGENDIAN' or `LITTLEENDIAN' must be defined.
*----------------------------------------------------------------------------*/
#ifdef LSB_FIRST
#define LITTLEENDIAN
#else
#define BIGENDIAN
#endif
/*----------------------------------------------------------------------------
| The macro `BITS64' can be defined to indicate that 64-bit integer types are
| supported by the compiler.
*----------------------------------------------------------------------------*/
#define BITS64
/*----------------------------------------------------------------------------
| Each of the following `typedef's defines the most convenient type that holds
| integers of at least as many bits as specified. For example, `uint8' should
| be the most convenient type that can hold unsigned integers of as many as
| 8 bits. The `flag' type must be able to hold either a 0 or 1. For most
| implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
| to the same as `int'.
*----------------------------------------------------------------------------*/
typedef sint8 flag;
typedef sint8 int8;
typedef sint16 int16;
typedef sint32 int32;
typedef sint64 int64;
/*----------------------------------------------------------------------------
| Each of the following `typedef's defines a type that holds integers
| of _exactly_ the number of bits specified. For instance, for most
| implementation of C, `bits16' and `sbits16' should be `typedef'ed to
| `unsigned short int' and `signed short int' (or `short int'), respectively.
*----------------------------------------------------------------------------*/
typedef uint8 bits8;
typedef sint8 sbits8;
typedef uint16 bits16;
typedef sint16 sbits16;
typedef uint32 bits32;
typedef sint32 sbits32;
typedef uint64 bits64;
typedef sint64 sbits64;
/*----------------------------------------------------------------------------
| The `LIT64' macro takes as its argument a textual integer literal and
| if necessary ``marks'' the literal as having a 64-bit integer type.
| For example, the GNU C Compiler (`gcc') requires that 64-bit literals be
| appended with the letters `LL' standing for `long long', which is `gcc's
| name for the 64-bit integer type. Some compilers may allow `LIT64' to be
| defined as the identity macro: `#define LIT64( a ) a'.
*----------------------------------------------------------------------------*/
#define LIT64( a ) a##ULL
/*----------------------------------------------------------------------------
| The macro `INLINE' can be used before functions that should be inlined. If
| a compiler does not support explicit inlining, this macro should be defined
| to be `static'.
*----------------------------------------------------------------------------*/
// MAME defines INLINE

View File

@ -0,0 +1,42 @@
/*============================================================================
This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
Package, Release 2b.
Written by John R. Hauser. This work was made possible in part by the
International Computer Science Institute, located at Suite 600, 1947 Center
Street, Berkeley, California 94704. Funding was partially provided by the
National Science Foundation under grant MIP-9311980. The original version
of this code was written as part of a project to build a fixed-point vector
processor in collaboration with the University of California at Berkeley,
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
arithmetic/SoftFloat.html'.
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
Derivative works are acceptable, even for commercial purposes, so long as
(1) the source code for the derivative work includes prominent notice that
the work is derivative, and (2) the source code includes prominent notice with
these four paragraphs for those parts of this code that are retained.
=============================================================================*/
/*----------------------------------------------------------------------------
| Include common integer types and flags.
*----------------------------------------------------------------------------*/
#include "mamesf.h"
/*----------------------------------------------------------------------------
| Symbolic Boolean literals.
*----------------------------------------------------------------------------*/
#define FALSE 0
#define TRUE 1

View File

@ -0,0 +1,732 @@
/*============================================================================
This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
Arithmetic Package, Release 2b.
Written by John R. Hauser. This work was made possible in part by the
International Computer Science Institute, located at Suite 600, 1947 Center
Street, Berkeley, California 94704. Funding was partially provided by the
National Science Foundation under grant MIP-9311980. The original version
of this code was written as part of a project to build a fixed-point vector
processor in collaboration with the University of California at Berkeley,
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
arithmetic/SoftFloat.html'.
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
INSTITUTE (possibly via similar legal notice) AGAINST ALL LOSSES, COSTS, OR
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
Derivative works are acceptable, even for commercial purposes, so long as
(1) the source code for the derivative work includes prominent notice that
the work is derivative, and (2) the source code includes prominent notice with
these four paragraphs for those parts of this code that are retained.
=============================================================================*/
/*----------------------------------------------------------------------------
| Shifts `a' right by the number of bits given in `count'. If any nonzero
| bits are shifted off, they are ``jammed'' into the least significant bit of
| the result by setting the least significant bit to 1. The value of `count'
| can be arbitrarily large; in particular, if `count' is greater than 32, the
| result will be either 0 or 1, depending on whether `a' is zero or nonzero.
| The result is stored in the location pointed to by `zPtr'.
*----------------------------------------------------------------------------*/
static inline void shift32RightJamming( bits32 a, int16 count, bits32 *zPtr )
{
bits32 z;
if ( count == 0 ) {
z = a;
}
else if ( count < 32 ) {
z = ( a>>count ) | ( ( a<<( ( - count ) & 31 ) ) != 0 );
}
else {
z = ( a != 0 );
}
*zPtr = z;
}
/*----------------------------------------------------------------------------
| Shifts `a' right by the number of bits given in `count'. If any nonzero
| bits are shifted off, they are ``jammed'' into the least significant bit of
| the result by setting the least significant bit to 1. The value of `count'
| can be arbitrarily large; in particular, if `count' is greater than 64, the
| result will be either 0 or 1, depending on whether `a' is zero or nonzero.
| The result is stored in the location pointed to by `zPtr'.
*----------------------------------------------------------------------------*/
static inline void shift64RightJamming( bits64 a, int16 count, bits64 *zPtr )
{
bits64 z;
if ( count == 0 ) {
z = a;
}
else if ( count < 64 ) {
z = ( a>>count ) | ( ( a<<( ( - count ) & 63 ) ) != 0 );
}
else {
z = ( a != 0 );
}
*zPtr = z;
}
/*----------------------------------------------------------------------------
| Shifts the 128-bit value formed by concatenating `a0' and `a1' right by 64
| _plus_ the number of bits given in `count'. The shifted result is at most
| 64 nonzero bits; this is stored at the location pointed to by `z0Ptr'. The
| bits shifted off form a second 64-bit result as follows: The _last_ bit
| shifted off is the most-significant bit of the extra result, and the other
| 63 bits of the extra result are all zero if and only if _all_but_the_last_
| bits shifted off were all zero. This extra result is stored in the location
| pointed to by `z1Ptr'. The value of `count' can be arbitrarily large.
| (This routine makes more sense if `a0' and `a1' are considered to form
| a fixed-point value with binary point between `a0' and `a1'. This fixed-
| point value is shifted right by the number of bits given in `count', and
| the integer part of the result is returned at the location pointed to by
| `z0Ptr'. The fractional part of the result may be slightly corrupted as
| described above, and is returned at the location pointed to by `z1Ptr'.)
*----------------------------------------------------------------------------*/
static inline void
shift64ExtraRightJamming(
bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
{
bits64 z0, z1;
int8 negCount = ( - count ) & 63;
if ( count == 0 ) {
z1 = a1;
z0 = a0;
}
else if ( count < 64 ) {
z1 = ( a0<<negCount ) | ( a1 != 0 );
z0 = a0>>count;
}
else {
if ( count == 64 ) {
z1 = a0 | ( a1 != 0 );
}
else {
z1 = ( ( a0 | a1 ) != 0 );
}
z0 = 0;
}
*z1Ptr = z1;
*z0Ptr = z0;
}
/*----------------------------------------------------------------------------
| Shifts the 128-bit value formed by concatenating `a0' and `a1' right by the
| number of bits given in `count'. Any bits shifted off are lost. The value
| of `count' can be arbitrarily large; in particular, if `count' is greater
| than 128, the result will be 0. The result is broken into two 64-bit pieces
| which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
*----------------------------------------------------------------------------*/
static inline void
shift128Right(
bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
{
bits64 z0, z1;
int8 negCount = ( - count ) & 63;
if ( count == 0 ) {
z1 = a1;
z0 = a0;
}
else if ( count < 64 ) {
z1 = ( a0<<negCount ) | ( a1>>count );
z0 = a0>>count;
}
else {
z1 = ( count < 64 ) ? ( a0>>( count & 63 ) ) : 0;
z0 = 0;
}
*z1Ptr = z1;
*z0Ptr = z0;
}
/*----------------------------------------------------------------------------
| Shifts the 128-bit value formed by concatenating `a0' and `a1' right by the
| number of bits given in `count'. If any nonzero bits are shifted off, they
| are ``jammed'' into the least significant bit of the result by setting the
| least significant bit to 1. The value of `count' can be arbitrarily large;
| in particular, if `count' is greater than 128, the result will be either
| 0 or 1, depending on whether the concatenation of `a0' and `a1' is zero or
| nonzero. The result is broken into two 64-bit pieces which are stored at
| the locations pointed to by `z0Ptr' and `z1Ptr'.
*----------------------------------------------------------------------------*/
static inline void
shift128RightJamming(
bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
{
bits64 z0, z1;
int8 negCount = ( - count ) & 63;
if ( count == 0 ) {
z1 = a1;
z0 = a0;
}
else if ( count < 64 ) {
z1 = ( a0<<negCount ) | ( a1>>count ) | ( ( a1<<negCount ) != 0 );
z0 = a0>>count;
}
else {
if ( count == 64 ) {
z1 = a0 | ( a1 != 0 );
}
else if ( count < 128 ) {
z1 = ( a0>>( count & 63 ) ) | ( ( ( a0<<negCount ) | a1 ) != 0 );
}
else {
z1 = ( ( a0 | a1 ) != 0 );
}
z0 = 0;
}
*z1Ptr = z1;
*z0Ptr = z0;
}
/*----------------------------------------------------------------------------
| Shifts the 192-bit value formed by concatenating `a0', `a1', and `a2' right
| by 64 _plus_ the number of bits given in `count'. The shifted result is
| at most 128 nonzero bits; these are broken into two 64-bit pieces which are
| stored at the locations pointed to by `z0Ptr' and `z1Ptr'. The bits shifted
| off form a third 64-bit result as follows: The _last_ bit shifted off is
| the most-significant bit of the extra result, and the other 63 bits of the
| extra result are all zero if and only if _all_but_the_last_ bits shifted off
| were all zero. This extra result is stored in the location pointed to by
| `z2Ptr'. The value of `count' can be arbitrarily large.
| (This routine makes more sense if `a0', `a1', and `a2' are considered
| to form a fixed-point value with binary point between `a1' and `a2'. This
| fixed-point value is shifted right by the number of bits given in `count',
| and the integer part of the result is returned at the locations pointed to
| by `z0Ptr' and `z1Ptr'. The fractional part of the result may be slightly
| corrupted as described above, and is returned at the location pointed to by
| `z2Ptr'.)
*----------------------------------------------------------------------------*/
static inline void
shift128ExtraRightJamming(
bits64 a0,
bits64 a1,
bits64 a2,
int16 count,
bits64 *z0Ptr,
bits64 *z1Ptr,
bits64 *z2Ptr
)
{
bits64 z0, z1, z2;
int8 negCount = ( - count ) & 63;
if ( count == 0 ) {
z2 = a2;
z1 = a1;
z0 = a0;
}
else {
if ( count < 64 ) {
z2 = a1<<negCount;
z1 = ( a0<<negCount ) | ( a1>>count );
z0 = a0>>count;
}
else {
if ( count == 64 ) {
z2 = a1;
z1 = a0;
}
else {
a2 |= a1;
if ( count < 128 ) {
z2 = a0<<negCount;
z1 = a0>>( count & 63 );
}
else {
z2 = ( count == 128 ) ? a0 : ( a0 != 0 );
z1 = 0;
}
}
z0 = 0;
}
z2 |= ( a2 != 0 );
}
*z2Ptr = z2;
*z1Ptr = z1;
*z0Ptr = z0;
}
/*----------------------------------------------------------------------------
| Shifts the 128-bit value formed by concatenating `a0' and `a1' left by the
| number of bits given in `count'. Any bits shifted off are lost. The value
| of `count' must be less than 64. The result is broken into two 64-bit
| pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
*----------------------------------------------------------------------------*/
static inline void
shortShift128Left(
bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
{
*z1Ptr = a1<<count;
*z0Ptr =
( count == 0 ) ? a0 : ( a0<<count ) | ( a1>>( ( - count ) & 63 ) );
}
/*----------------------------------------------------------------------------
| Shifts the 192-bit value formed by concatenating `a0', `a1', and `a2' left
| by the number of bits given in `count'. Any bits shifted off are lost.
| The value of `count' must be less than 64. The result is broken into three
| 64-bit pieces which are stored at the locations pointed to by `z0Ptr',
| `z1Ptr', and `z2Ptr'.
*----------------------------------------------------------------------------*/
static inline void
shortShift192Left(
bits64 a0,
bits64 a1,
bits64 a2,
int16 count,
bits64 *z0Ptr,
bits64 *z1Ptr,
bits64 *z2Ptr
)
{
bits64 z0, z1, z2;
int8 negCount;
z2 = a2<<count;
z1 = a1<<count;
z0 = a0<<count;
if ( 0 < count ) {
negCount = ( ( - count ) & 63 );
z1 |= a2>>negCount;
z0 |= a1>>negCount;
}
*z2Ptr = z2;
*z1Ptr = z1;
*z0Ptr = z0;
}
/*----------------------------------------------------------------------------
| Adds the 128-bit value formed by concatenating `a0' and `a1' to the 128-bit
| value formed by concatenating `b0' and `b1'. Addition is modulo 2^128, so
| any carry out is lost. The result is broken into two 64-bit pieces which
| are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
*----------------------------------------------------------------------------*/
static inline void
add128(
bits64 a0, bits64 a1, bits64 b0, bits64 b1, bits64 *z0Ptr, bits64 *z1Ptr )
{
bits64 z1;
z1 = a1 + b1;
*z1Ptr = z1;
*z0Ptr = a0 + b0 + ( z1 < a1 );
}
/*----------------------------------------------------------------------------
| Adds the 192-bit value formed by concatenating `a0', `a1', and `a2' to the
| 192-bit value formed by concatenating `b0', `b1', and `b2'. Addition is
| modulo 2^192, so any carry out is lost. The result is broken into three
| 64-bit pieces which are stored at the locations pointed to by `z0Ptr',
| `z1Ptr', and `z2Ptr'.
*----------------------------------------------------------------------------*/
static inline void
add192(
bits64 a0,
bits64 a1,
bits64 a2,
bits64 b0,
bits64 b1,
bits64 b2,
bits64 *z0Ptr,
bits64 *z1Ptr,
bits64 *z2Ptr
)
{
bits64 z0, z1, z2;
uint8 carry0, carry1;
z2 = a2 + b2;
carry1 = ( z2 < a2 );
z1 = a1 + b1;
carry0 = ( z1 < a1 );
z0 = a0 + b0;
z1 += carry1;
z0 += ( z1 < carry1 );
z0 += carry0;
*z2Ptr = z2;
*z1Ptr = z1;
*z0Ptr = z0;
}
/*----------------------------------------------------------------------------
| Subtracts the 128-bit value formed by concatenating `b0' and `b1' from the
| 128-bit value formed by concatenating `a0' and `a1'. Subtraction is modulo
| 2^128, so any borrow out (carry out) is lost. The result is broken into two
| 64-bit pieces which are stored at the locations pointed to by `z0Ptr' and
| `z1Ptr'.
*----------------------------------------------------------------------------*/
static inline void
sub128(
bits64 a0, bits64 a1, bits64 b0, bits64 b1, bits64 *z0Ptr, bits64 *z1Ptr )
{
*z1Ptr = a1 - b1;
*z0Ptr = a0 - b0 - ( a1 < b1 );
}
/*----------------------------------------------------------------------------
| Subtracts the 192-bit value formed by concatenating `b0', `b1', and `b2'
| from the 192-bit value formed by concatenating `a0', `a1', and `a2'.
| Subtraction is modulo 2^192, so any borrow out (carry out) is lost. The
| result is broken into three 64-bit pieces which are stored at the locations
| pointed to by `z0Ptr', `z1Ptr', and `z2Ptr'.
*----------------------------------------------------------------------------*/
static inline void
sub192(
bits64 a0,
bits64 a1,
bits64 a2,
bits64 b0,
bits64 b1,
bits64 b2,
bits64 *z0Ptr,
bits64 *z1Ptr,
bits64 *z2Ptr
)
{
bits64 z0, z1, z2;
uint8 borrow0, borrow1;
z2 = a2 - b2;
borrow1 = ( a2 < b2 );
z1 = a1 - b1;
borrow0 = ( a1 < b1 );
z0 = a0 - b0;
z0 -= ( z1 < borrow1 );
z1 -= borrow1;
z0 -= borrow0;
*z2Ptr = z2;
*z1Ptr = z1;
*z0Ptr = z0;
}
/*----------------------------------------------------------------------------
| Multiplies `a' by `b' to obtain a 128-bit product. The product is broken
| into two 64-bit pieces which are stored at the locations pointed to by
| `z0Ptr' and `z1Ptr'.
*----------------------------------------------------------------------------*/
static inline void mul64To128( bits64 a, bits64 b, bits64 *z0Ptr, bits64 *z1Ptr )
{
bits32 aHigh, aLow, bHigh, bLow;
bits64 z0, zMiddleA, zMiddleB, z1;
aLow = a;
aHigh = a>>32;
bLow = b;
bHigh = b>>32;
z1 = ( (bits64) aLow ) * bLow;
zMiddleA = ( (bits64) aLow ) * bHigh;
zMiddleB = ( (bits64) aHigh ) * bLow;
z0 = ( (bits64) aHigh ) * bHigh;
zMiddleA += zMiddleB;
z0 += ( ( (bits64) ( zMiddleA < zMiddleB ) )<<32 ) + ( zMiddleA>>32 );
zMiddleA <<= 32;
z1 += zMiddleA;
z0 += ( z1 < zMiddleA );
*z1Ptr = z1;
*z0Ptr = z0;
}
/*----------------------------------------------------------------------------
| Multiplies the 128-bit value formed by concatenating `a0' and `a1' by
| `b' to obtain a 192-bit product. The product is broken into three 64-bit
| pieces which are stored at the locations pointed to by `z0Ptr', `z1Ptr', and
| `z2Ptr'.
*----------------------------------------------------------------------------*/
static inline void
mul128By64To192(
bits64 a0,
bits64 a1,
bits64 b,
bits64 *z0Ptr,
bits64 *z1Ptr,
bits64 *z2Ptr
)
{
bits64 z0, z1, z2, more1;
mul64To128( a1, b, &z1, &z2 );
mul64To128( a0, b, &z0, &more1 );
add128( z0, more1, 0, z1, &z0, &z1 );
*z2Ptr = z2;
*z1Ptr = z1;
*z0Ptr = z0;
}
/*----------------------------------------------------------------------------
| Multiplies the 128-bit value formed by concatenating `a0' and `a1' to the
| 128-bit value formed by concatenating `b0' and `b1' to obtain a 256-bit
| product. The product is broken into four 64-bit pieces which are stored at
| the locations pointed to by `z0Ptr', `z1Ptr', `z2Ptr', and `z3Ptr'.
*----------------------------------------------------------------------------*/
static inline void
mul128To256(
bits64 a0,
bits64 a1,
bits64 b0,
bits64 b1,
bits64 *z0Ptr,
bits64 *z1Ptr,
bits64 *z2Ptr,
bits64 *z3Ptr
)
{
bits64 z0, z1, z2, z3;
bits64 more1, more2;
mul64To128( a1, b1, &z2, &z3 );
mul64To128( a1, b0, &z1, &more2 );
add128( z1, more2, 0, z2, &z1, &z2 );
mul64To128( a0, b0, &z0, &more1 );
add128( z0, more1, 0, z1, &z0, &z1 );
mul64To128( a0, b1, &more1, &more2 );
add128( more1, more2, 0, z2, &more1, &z2 );
add128( z0, z1, 0, more1, &z0, &z1 );
*z3Ptr = z3;
*z2Ptr = z2;
*z1Ptr = z1;
*z0Ptr = z0;
}
/*----------------------------------------------------------------------------
| Returns an approximation to the 64-bit integer quotient obtained by dividing
| `b' into the 128-bit value formed by concatenating `a0' and `a1'. The
| divisor `b' must be at least 2^63. If q is the exact quotient truncated
| toward zero, the approximation returned lies between q and q + 2 inclusive.
| If the exact quotient q is larger than 64 bits, the maximum positive 64-bit
| unsigned integer is returned.
*----------------------------------------------------------------------------*/
static inline bits64 estimateDiv128To64( bits64 a0, bits64 a1, bits64 b )
{
bits64 b0, b1;
bits64 rem0, rem1, term0, term1;
bits64 z;
if ( b <= a0 ) return LIT64( 0xFFFFFFFFFFFFFFFF );
b0 = b>>32;
z = ( b0<<32 <= a0 ) ? LIT64( 0xFFFFFFFF00000000 ) : ( a0 / b0 )<<32;
mul64To128( b, z, &term0, &term1 );
sub128( a0, a1, term0, term1, &rem0, &rem1 );
while ( ( (sbits64) rem0 ) < 0 ) {
z -= LIT64( 0x100000000 );
b1 = b<<32;
add128( rem0, rem1, b0, b1, &rem0, &rem1 );
}
rem0 = ( rem0<<32 ) | ( rem1>>32 );
z |= ( b0<<32 <= rem0 ) ? 0xFFFFFFFF : rem0 / b0;
return z;
}
/*----------------------------------------------------------------------------
| Returns an approximation to the square root of the 32-bit significand given
| by `a'. Considered as an integer, `a' must be at least 2^31. If bit 0 of
| `aExp' (the least significant bit) is 1, the integer returned approximates
| 2^31*sqrt(`a'/2^31), where `a' is considered an integer. If bit 0 of `aExp'
| is 0, the integer returned approximates 2^31*sqrt(`a'/2^30). In either
| case, the approximation returned lies strictly within +/-2 of the exact
| value.
*----------------------------------------------------------------------------*/
static inline bits32 estimateSqrt32( int16 aExp, bits32 a )
{
static const bits16 sqrtOddAdjustments[] = {
0x0004, 0x0022, 0x005D, 0x00B1, 0x011D, 0x019F, 0x0236, 0x02E0,
0x039C, 0x0468, 0x0545, 0x0631, 0x072B, 0x0832, 0x0946, 0x0A67
};
static const bits16 sqrtEvenAdjustments[] = {
0x0A2D, 0x08AF, 0x075A, 0x0629, 0x051A, 0x0429, 0x0356, 0x029E,
0x0200, 0x0179, 0x0109, 0x00AF, 0x0068, 0x0034, 0x0012, 0x0002
};
int8 index;
bits32 z;
index = ( a>>27 ) & 15;
if ( aExp & 1 ) {
z = 0x4000 + ( a>>17 ) - sqrtOddAdjustments[ index ];
z = ( ( a / z )<<14 ) + ( z<<15 );
a >>= 1;
}
else {
z = 0x8000 + ( a>>17 ) - sqrtEvenAdjustments[ index ];
z = a / z + z;
z = ( 0x20000 <= z ) ? 0xFFFF8000 : ( z<<15 );
if ( z <= a ) return (bits32) ( ( (sbits32) a )>>1 );
}
return ( (bits32) ( ( ( (bits64) a )<<31 ) / z ) ) + ( z>>1 );
}
/*----------------------------------------------------------------------------
| Returns the number of leading 0 bits before the most-significant 1 bit of
| `a'. If `a' is zero, 32 is returned.
*----------------------------------------------------------------------------*/
static int8 countLeadingZeros32( bits32 a )
{
static const int8 countLeadingZerosHigh[] = {
8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
int8 shiftCount;
shiftCount = 0;
if ( a < 0x10000 ) {
shiftCount += 16;
a <<= 16;
}
if ( a < 0x1000000 ) {
shiftCount += 8;
a <<= 8;
}
shiftCount += countLeadingZerosHigh[ a>>24 ];
return shiftCount;
}
/*----------------------------------------------------------------------------
| Returns the number of leading 0 bits before the most-significant 1 bit of
| `a'. If `a' is zero, 64 is returned.
*----------------------------------------------------------------------------*/
static int8 countLeadingZeros64( bits64 a )
{
int8 shiftCount;
shiftCount = 0;
if ( a < ( (bits64) 1 )<<32 ) {
shiftCount += 32;
}
else {
a >>= 32;
}
shiftCount += countLeadingZeros32( a );
return shiftCount;
}
/*----------------------------------------------------------------------------
| Returns 1 if the 128-bit value formed by concatenating `a0' and `a1'
| is equal to the 128-bit value formed by concatenating `b0' and `b1'.
| Otherwise, returns 0.
*----------------------------------------------------------------------------*/
static inline flag eq128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
{
return ( a0 == b0 ) && ( a1 == b1 );
}
/*----------------------------------------------------------------------------
| Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less
| than or equal to the 128-bit value formed by concatenating `b0' and `b1'.
| Otherwise, returns 0.
*----------------------------------------------------------------------------*/
static inline flag le128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
{
return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 <= b1 ) );
}
/*----------------------------------------------------------------------------
| Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less
| than the 128-bit value formed by concatenating `b0' and `b1'. Otherwise,
| returns 0.
*----------------------------------------------------------------------------*/
static inline flag lt128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
{
return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 < b1 ) );
}
/*----------------------------------------------------------------------------
| Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is
| not equal to the 128-bit value formed by concatenating `b0' and `b1'.
| Otherwise, returns 0.
*----------------------------------------------------------------------------*/
static inline flag ne128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
{
return ( a0 != b0 ) || ( a1 != b1 );
}
/*-----------------------------------------------------------------------------
| Changes the sign of the extended double-precision floating-point value 'a'.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
static inline floatx80 floatx80_chs(floatx80 reg)
{
reg.high ^= 0x8000;
return reg;
}

View File

@ -0,0 +1,470 @@
/*============================================================================
This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
Arithmetic Package, Release 2b.
Written by John R. Hauser. This work was made possible in part by the
International Computer Science Institute, located at Suite 600, 1947 Center
Street, Berkeley, California 94704. Funding was partially provided by the
National Science Foundation under grant MIP-9311980. The original version
of this code was written as part of a project to build a fixed-point vector
processor in collaboration with the University of California at Berkeley,
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
arithmetic/SoftFloat.html'.
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
Derivative works are acceptable, even for commercial purposes, so long as
(1) the source code for the derivative work includes prominent notice that
the work is derivative, and (2) the source code includes prominent notice with
these four paragraphs for those parts of this code that are retained.
=============================================================================*/
/*----------------------------------------------------------------------------
| Underflow tininess-detection mode, statically initialized to default value.
| (The declaration in `softfloat.h' must match the `int8' type here.)
*----------------------------------------------------------------------------*/
int8 float_detect_tininess = float_tininess_after_rounding;
/*----------------------------------------------------------------------------
| Raises the exceptions specified by `flags'. Floating-point traps can be
| defined here if desired. It is currently not possible for such a trap to
| substitute a result value. If traps are not implemented, this routine
| should be simply `float_exception_flags |= flags;'.
*----------------------------------------------------------------------------*/
void float_raise( int8 flags )
{
float_exception_flags |= flags;
}
/*----------------------------------------------------------------------------
| Internal canonical NaN format.
*----------------------------------------------------------------------------*/
typedef struct {
flag sign;
bits64 high, low;
} commonNaNT;
/*----------------------------------------------------------------------------
| The pattern for a default generated single-precision NaN.
*----------------------------------------------------------------------------*/
#define float32_default_nan 0xFFFFFFFF
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is a NaN;
| otherwise returns 0.
*----------------------------------------------------------------------------*/
flag float32_is_nan( float32 a )
{
return ( 0xFF000000 < (bits32) ( a<<1 ) );
}
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is a signaling
| NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/
flag float32_is_signaling_nan( float32 a )
{
return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
}
/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point NaN
| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
static commonNaNT float32ToCommonNaN( float32 a )
{
commonNaNT z;
if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
z.sign = a>>31;
z.low = 0;
z.high = ( (bits64) a )<<41;
return z;
}
/*----------------------------------------------------------------------------
| Returns the result of converting the canonical NaN `a' to the single-
| precision floating-point format.
*----------------------------------------------------------------------------*/
static float32 commonNaNToFloat32( commonNaNT a )
{
return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 );
}
/*----------------------------------------------------------------------------
| Takes two single-precision floating-point values `a' and `b', one of which
| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
static float32 propagateFloat32NaN( float32 a, float32 b )
{
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
aIsNaN = float32_is_nan( a );
aIsSignalingNaN = float32_is_signaling_nan( a );
bIsNaN = float32_is_nan( b );
bIsSignalingNaN = float32_is_signaling_nan( b );
a |= 0x00400000;
b |= 0x00400000;
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
if ( aIsNaN ) {
return ( aIsSignalingNaN & bIsNaN ) ? b : a;
}
else {
return b;
}
}
/*----------------------------------------------------------------------------
| The pattern for a default generated double-precision NaN.
*----------------------------------------------------------------------------*/
#define float64_default_nan LIT64( 0xFFFFFFFFFFFFFFFF )
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is a NaN;
| otherwise returns 0.
*----------------------------------------------------------------------------*/
flag float64_is_nan( float64 a )
{
return ( LIT64( 0xFFE0000000000000 ) < (bits64) ( a<<1 ) );
}
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is a signaling
| NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/
flag float64_is_signaling_nan( float64 a )
{
return
( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
&& ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
}
/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point NaN
| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
static commonNaNT float64ToCommonNaN( float64 a )
{
commonNaNT z;
if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
z.sign = a>>63;
z.low = 0;
z.high = a<<12;
return z;
}
/*----------------------------------------------------------------------------
| Returns the result of converting the canonical NaN `a' to the double-
| precision floating-point format.
*----------------------------------------------------------------------------*/
static float64 commonNaNToFloat64( commonNaNT a )
{
return
( ( (bits64) a.sign )<<63 )
| LIT64( 0x7FF8000000000000 )
| ( a.high>>12 );
}
/*----------------------------------------------------------------------------
| Takes two double-precision floating-point values `a' and `b', one of which
| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
static float64 propagateFloat64NaN( float64 a, float64 b )
{
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
aIsNaN = float64_is_nan( a );
aIsSignalingNaN = float64_is_signaling_nan( a );
bIsNaN = float64_is_nan( b );
bIsSignalingNaN = float64_is_signaling_nan( b );
a |= LIT64( 0x0008000000000000 );
b |= LIT64( 0x0008000000000000 );
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
if ( aIsNaN ) {
return ( aIsSignalingNaN & bIsNaN ) ? b : a;
}
else {
return b;
}
}
#ifdef FLOATX80
/*----------------------------------------------------------------------------
| The pattern for a default generated extended double-precision NaN. The
| `high' and `low' values hold the most- and least-significant bits,
| respectively.
*----------------------------------------------------------------------------*/
#define floatx80_default_nan_high 0xFFFF
#define floatx80_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is a
| NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/
flag floatx80_is_nan( floatx80 a )
{
return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 );
}
/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is a
| signaling NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/
flag floatx80_is_signaling_nan( floatx80 a )
{
bits64 aLow;
aLow = a.low & ~ LIT64( 0x4000000000000000 );
return
( ( a.high & 0x7FFF ) == 0x7FFF )
&& (bits64) ( aLow<<1 )
&& ( a.low == aLow );
}
/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
| invalid exception is raised.
*----------------------------------------------------------------------------*/
static commonNaNT floatx80ToCommonNaN( floatx80 a )
{
commonNaNT z;
if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
z.sign = a.high>>15;
z.low = 0;
z.high = a.low<<1;
return z;
}
/*----------------------------------------------------------------------------
| Returns the result of converting the canonical NaN `a' to the extended
| double-precision floating-point format.
*----------------------------------------------------------------------------*/
static floatx80 commonNaNToFloatx80( commonNaNT a )
{
floatx80 z;
z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 );
z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF;
return z;
}
/*----------------------------------------------------------------------------
| Takes two extended double-precision floating-point values `a' and `b', one
| of which is a NaN, and returns the appropriate NaN result. If either `a' or
| `b' is a signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b )
{
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
aIsNaN = floatx80_is_nan( a );
aIsSignalingNaN = floatx80_is_signaling_nan( a );
bIsNaN = floatx80_is_nan( b );
bIsSignalingNaN = floatx80_is_signaling_nan( b );
a.low |= LIT64( 0xC000000000000000 );
b.low |= LIT64( 0xC000000000000000 );
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
if ( aIsNaN ) {
return ( aIsSignalingNaN & bIsNaN ) ? b : a;
}
else {
return b;
}
}
#define EXP_BIAS 0x3FFF
/*----------------------------------------------------------------------------
| Returns the fraction bits of the extended double-precision floating-point
| value `a'.
*----------------------------------------------------------------------------*/
static inline bits64 extractFloatx80Frac( floatx80 a )
{
return a.low;
}
/*----------------------------------------------------------------------------
| Returns the exponent bits of the extended double-precision floating-point
| value `a'.
*----------------------------------------------------------------------------*/
static inline int32 extractFloatx80Exp( floatx80 a )
{
return a.high & 0x7FFF;
}
/*----------------------------------------------------------------------------
| Returns the sign bit of the extended double-precision floating-point value
| `a'.
*----------------------------------------------------------------------------*/
static inline flag extractFloatx80Sign( floatx80 a )
{
return a.high>>15;
}
#endif
#ifdef FLOAT128
/*----------------------------------------------------------------------------
| The pattern for a default generated quadruple-precision NaN. The `high' and
| `low' values hold the most- and least-significant bits, respectively.
*----------------------------------------------------------------------------*/
#define float128_default_nan_high LIT64( 0xFFFFFFFFFFFFFFFF )
#define float128_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is a NaN;
| otherwise returns 0.
*----------------------------------------------------------------------------*/
flag float128_is_nan( float128 a )
{
return
( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) )
&& ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
}
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is a
| signaling NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/
flag float128_is_signaling_nan( float128 a )
{
return
( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
&& ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
}
/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point NaN
| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
static commonNaNT float128ToCommonNaN( float128 a )
{
commonNaNT z;
if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
z.sign = a.high>>63;
shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
return z;
}
/*----------------------------------------------------------------------------
| Returns the result of converting the canonical NaN `a' to the quadruple-
| precision floating-point format.
*----------------------------------------------------------------------------*/
static float128 commonNaNToFloat128( commonNaNT a )
{
float128 z;
shift128Right( a.high, a.low, 16, &z.high, &z.low );
z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF800000000000 );
return z;
}
/*----------------------------------------------------------------------------
| Takes two quadruple-precision floating-point values `a' and `b', one of
| which is a NaN, and returns the appropriate NaN result. If either `a' or
| `b' is a signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
static float128 propagateFloat128NaN( float128 a, float128 b )
{
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
aIsNaN = float128_is_nan( a );
aIsSignalingNaN = float128_is_signaling_nan( a );
bIsNaN = float128_is_nan( b );
bIsSignalingNaN = float128_is_signaling_nan( b );
a.high |= LIT64( 0x0000800000000000 );
b.high |= LIT64( 0x0000800000000000 );
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
if ( aIsNaN ) {
return ( aIsSignalingNaN & bIsNaN ) ? b : a;
}
else {
return b;
}
}
#endif

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,460 @@
/*============================================================================
This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
Package, Release 2b.
Written by John R. Hauser. This work was made possible in part by the
International Computer Science Institute, located at Suite 600, 1947 Center
Street, Berkeley, California 94704. Funding was partially provided by the
National Science Foundation under grant MIP-9311980. The original version
of this code was written as part of a project to build a fixed-point vector
processor in collaboration with the University of California at Berkeley,
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
arithmetic/SoftFloat.html'.
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
Derivative works are acceptable, even for commercial purposes, so long as
(1) the source code for the derivative work includes prominent notice that
the work is derivative, and (2) the source code includes prominent notice with
these four paragraphs for those parts of this code that are retained.
=============================================================================*/
/*----------------------------------------------------------------------------
| The macro `FLOATX80' must be defined to enable the extended double-precision
| floating-point format `floatx80'. If this macro is not defined, the
| `floatx80' type will not be defined, and none of the functions that either
| input or output the `floatx80' type will be defined. The same applies to
| the `FLOAT128' macro and the quadruple-precision format `float128'.
*----------------------------------------------------------------------------*/
#define FLOATX80
#define FLOAT128
/*----------------------------------------------------------------------------
| Software IEC/IEEE floating-point types.
*----------------------------------------------------------------------------*/
typedef bits32 float32;
typedef bits64 float64;
#ifdef FLOATX80
typedef struct {
bits16 high;
bits64 low;
} floatx80;
#endif
#ifdef FLOAT128
typedef struct {
bits64 high, low;
} float128;
#endif
/*----------------------------------------------------------------------------
| Primitive arithmetic functions, including multi-word arithmetic, and
| division and square root approximations. (Can be specialized to target if
| desired.)
*----------------------------------------------------------------------------*/
#include "softfloat-macros"
/*----------------------------------------------------------------------------
| Software IEC/IEEE floating-point underflow tininess-detection mode.
*----------------------------------------------------------------------------*/
extern int8 float_detect_tininess;
enum {
float_tininess_after_rounding = 0,
float_tininess_before_rounding = 1
};
/*----------------------------------------------------------------------------
| Software IEC/IEEE floating-point rounding mode.
*----------------------------------------------------------------------------*/
extern int8 float_rounding_mode;
enum {
float_round_nearest_even = 0,
float_round_to_zero = 1,
float_round_down = 2,
float_round_up = 3
};
/*----------------------------------------------------------------------------
| Software IEC/IEEE floating-point exception flags.
*----------------------------------------------------------------------------*/
extern int8 float_exception_flags;
enum {
float_flag_invalid = 0x01, float_flag_denormal = 0x02, float_flag_divbyzero = 0x04, float_flag_overflow = 0x08,
float_flag_underflow = 0x10, float_flag_inexact = 0x20
};
/*----------------------------------------------------------------------------
| Routine to raise any or all of the software IEC/IEEE floating-point
| exception flags.
*----------------------------------------------------------------------------*/
void float_raise( int8 );
/*----------------------------------------------------------------------------
| Software IEC/IEEE integer-to-floating-point conversion routines.
*----------------------------------------------------------------------------*/
float32 int32_to_float32( int32 );
float64 int32_to_float64( int32 );
#ifdef FLOATX80
floatx80 int32_to_floatx80( int32 );
#endif
#ifdef FLOAT128
float128 int32_to_float128( int32 );
#endif
float32 int64_to_float32( int64 );
float64 int64_to_float64( int64 );
#ifdef FLOATX80
floatx80 int64_to_floatx80( int64 );
#endif
#ifdef FLOAT128
float128 int64_to_float128( int64 );
#endif
/*----------------------------------------------------------------------------
| Software IEC/IEEE single-precision conversion routines.
*----------------------------------------------------------------------------*/
int32 float32_to_int32( float32 );
int32 float32_to_int32_round_to_zero( float32 );
int64 float32_to_int64( float32 );
int64 float32_to_int64_round_to_zero( float32 );
float64 float32_to_float64( float32 );
#ifdef FLOATX80
floatx80 float32_to_floatx80( float32 );
#endif
#ifdef FLOAT128
float128 float32_to_float128( float32 );
#endif
/*----------------------------------------------------------------------------
| Software IEC/IEEE single-precision operations.
*----------------------------------------------------------------------------*/
float32 float32_round_to_int( float32 );
float32 float32_add( float32, float32 );
float32 float32_sub( float32, float32 );
float32 float32_mul( float32, float32 );
float32 float32_div( float32, float32 );
float32 float32_rem( float32, float32 );
float32 float32_sqrt( float32 );
flag float32_eq( float32, float32 );
flag float32_le( float32, float32 );
flag float32_lt( float32, float32 );
flag float32_eq_signaling( float32, float32 );
flag float32_le_quiet( float32, float32 );
flag float32_lt_quiet( float32, float32 );
flag float32_is_signaling_nan( float32 );
/*----------------------------------------------------------------------------
| Software IEC/IEEE double-precision conversion routines.
*----------------------------------------------------------------------------*/
int32 float64_to_int32( float64 );
int32 float64_to_int32_round_to_zero( float64 );
int64 float64_to_int64( float64 );
int64 float64_to_int64_round_to_zero( float64 );
float32 float64_to_float32( float64 );
#ifdef FLOATX80
floatx80 float64_to_floatx80( float64 );
#endif
#ifdef FLOAT128
float128 float64_to_float128( float64 );
#endif
/*----------------------------------------------------------------------------
| Software IEC/IEEE double-precision operations.
*----------------------------------------------------------------------------*/
float64 float64_round_to_int( float64 );
float64 float64_add( float64, float64 );
float64 float64_sub( float64, float64 );
float64 float64_mul( float64, float64 );
float64 float64_div( float64, float64 );
float64 float64_rem( float64, float64 );
float64 float64_sqrt( float64 );
flag float64_eq( float64, float64 );
flag float64_le( float64, float64 );
flag float64_lt( float64, float64 );
flag float64_eq_signaling( float64, float64 );
flag float64_le_quiet( float64, float64 );
flag float64_lt_quiet( float64, float64 );
flag float64_is_signaling_nan( float64 );
#ifdef FLOATX80
/*----------------------------------------------------------------------------
| Software IEC/IEEE extended double-precision conversion routines.
*----------------------------------------------------------------------------*/
int32 floatx80_to_int32( floatx80 );
int32 floatx80_to_int32_round_to_zero( floatx80 );
int64 floatx80_to_int64( floatx80 );
int64 floatx80_to_int64_round_to_zero( floatx80 );
float32 floatx80_to_float32( floatx80 );
float64 floatx80_to_float64( floatx80 );
#ifdef FLOAT128
float128 floatx80_to_float128( floatx80 );
#endif
floatx80 floatx80_scale(floatx80 a, floatx80 b);
/*----------------------------------------------------------------------------
| Packs the sign `zSign', exponent `zExp', and significand `zSig' into an
| extended double-precision floating-point value, returning the result.
*----------------------------------------------------------------------------*/
static inline floatx80 packFloatx80( flag zSign, int32 zExp, bits64 zSig )
{
floatx80 z;
z.low = zSig;
z.high = ( ( (bits16) zSign )<<15 ) + zExp;
return z;
}
/*----------------------------------------------------------------------------
| Software IEC/IEEE extended double-precision rounding precision. Valid
| values are 32, 64, and 80.
*----------------------------------------------------------------------------*/
extern int8 floatx80_rounding_precision;
/*----------------------------------------------------------------------------
| Software IEC/IEEE extended double-precision operations.
*----------------------------------------------------------------------------*/
floatx80 floatx80_round_to_int( floatx80 );
floatx80 floatx80_add( floatx80, floatx80 );
floatx80 floatx80_sub( floatx80, floatx80 );
floatx80 floatx80_mul( floatx80, floatx80 );
floatx80 floatx80_div( floatx80, floatx80 );
floatx80 floatx80_rem( floatx80, floatx80 );
floatx80 floatx80_sqrt( floatx80 );
flag floatx80_eq( floatx80, floatx80 );
flag floatx80_le( floatx80, floatx80 );
flag floatx80_lt( floatx80, floatx80 );
flag floatx80_eq_signaling( floatx80, floatx80 );
flag floatx80_le_quiet( floatx80, floatx80 );
flag floatx80_lt_quiet( floatx80, floatx80 );
flag floatx80_is_signaling_nan( floatx80 );
/* int floatx80_fsin(floatx80 &a);
int floatx80_fcos(floatx80 &a);
int floatx80_ftan(floatx80 &a); */
floatx80 floatx80_flognp1(floatx80 a);
floatx80 floatx80_flogn(floatx80 a);
floatx80 floatx80_flog2(floatx80 a);
floatx80 floatx80_flog10(floatx80 a);
// roundAndPackFloatx80 used to be in softfloat-round-pack, is now in softfloat.c
floatx80 roundAndPackFloatx80(int8 roundingPrecision, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1);
#endif
#ifdef FLOAT128
/*----------------------------------------------------------------------------
| Software IEC/IEEE quadruple-precision conversion routines.
*----------------------------------------------------------------------------*/
int32 float128_to_int32( float128 );
int32 float128_to_int32_round_to_zero( float128 );
int64 float128_to_int64( float128 );
int64 float128_to_int64_round_to_zero( float128 );
float32 float128_to_float32( float128 );
float64 float128_to_float64( float128 );
#ifdef FLOATX80
floatx80 float128_to_floatx80( float128 );
#endif
/*----------------------------------------------------------------------------
| Software IEC/IEEE quadruple-precision operations.
*----------------------------------------------------------------------------*/
float128 float128_round_to_int( float128 );
float128 float128_add( float128, float128 );
float128 float128_sub( float128, float128 );
float128 float128_mul( float128, float128 );
float128 float128_div( float128, float128 );
float128 float128_rem( float128, float128 );
float128 float128_sqrt( float128 );
flag float128_eq( float128, float128 );
flag float128_le( float128, float128 );
flag float128_lt( float128, float128 );
flag float128_eq_signaling( float128, float128 );
flag float128_le_quiet( float128, float128 );
flag float128_lt_quiet( float128, float128 );
flag float128_is_signaling_nan( float128 );
/*----------------------------------------------------------------------------
| Packs the sign `zSign', the exponent `zExp', and the significand formed
| by the concatenation of `zSig0' and `zSig1' into a quadruple-precision
| floating-point value, returning the result. After being shifted into the
| proper positions, the three fields `zSign', `zExp', and `zSig0' are simply
| added together to form the most significant 32 bits of the result. This
| means that any integer portion of `zSig0' will be added into the exponent.
| Since a properly normalized significand will have an integer portion equal
| to 1, the `zExp' input should be 1 less than the desired result exponent
| whenever `zSig0' and `zSig1' concatenated form a complete, normalized
| significand.
*----------------------------------------------------------------------------*/
static inline float128
packFloat128( flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 )
{
float128 z;
z.low = zSig1;
z.high = ( ( (bits64) zSign )<<63 ) + ( ( (bits64) zExp )<<48 ) + zSig0;
return z;
}
/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and extended significand formed by the concatenation of `zSig0', `zSig1',
| and `zSig2', and returns the proper quadruple-precision floating-point value
| corresponding to the abstract input. Ordinarily, the abstract value is
| simply rounded and packed into the quadruple-precision format, with the
| inexact exception raised if the abstract input cannot be represented
| exactly. However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
| returned. If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal quadruple-
| precision floating-point number.
| The input significand must be normalized or smaller. If the input
| significand is not normalized, `zExp' must be 0; in that case, the result
| returned is a subnormal number, and it must not require rounding. In the
| usual case that the input significand is normalized, `zExp' must be 1 less
| than the ``true'' floating-point exponent. The handling of underflow and
| overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
static inline float128
roundAndPackFloat128(
flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1, bits64 zSig2 )
{
int8 roundingMode;
flag roundNearestEven, increment, isTiny;
roundingMode = float_rounding_mode;
roundNearestEven = ( roundingMode == float_round_nearest_even );
increment = ( (sbits64) zSig2 < 0 );
if ( ! roundNearestEven ) {
if ( roundingMode == float_round_to_zero ) {
increment = 0;
}
else {
if ( zSign ) {
increment = ( roundingMode == float_round_down ) && zSig2;
}
else {
increment = ( roundingMode == float_round_up ) && zSig2;
}
}
}
if ( 0x7FFD <= (bits32) zExp ) {
if ( ( 0x7FFD < zExp )
|| ( ( zExp == 0x7FFD )
&& eq128(
LIT64( 0x0001FFFFFFFFFFFF ),
LIT64( 0xFFFFFFFFFFFFFFFF ),
zSig0,
zSig1
)
&& increment
)
) {
float_raise( float_flag_overflow | float_flag_inexact );
if ( ( roundingMode == float_round_to_zero )
|| ( zSign && ( roundingMode == float_round_up ) )
|| ( ! zSign && ( roundingMode == float_round_down ) )
) {
return
packFloat128(
zSign,
0x7FFE,
LIT64( 0x0000FFFFFFFFFFFF ),
LIT64( 0xFFFFFFFFFFFFFFFF )
);
}
return packFloat128( zSign, 0x7FFF, 0, 0 );
}
if ( zExp < 0 ) {
isTiny =
( float_detect_tininess == float_tininess_before_rounding )
|| ( zExp < -1 )
|| ! increment
|| lt128(
zSig0,
zSig1,
LIT64( 0x0001FFFFFFFFFFFF ),
LIT64( 0xFFFFFFFFFFFFFFFF )
);
shift128ExtraRightJamming(
zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 );
zExp = 0;
if ( isTiny && zSig2 ) float_raise( float_flag_underflow );
if ( roundNearestEven ) {
increment = ( (sbits64) zSig2 < 0 );
}
else {
if ( zSign ) {
increment = ( roundingMode == float_round_down ) && zSig2;
}
else {
increment = ( roundingMode == float_round_up ) && zSig2;
}
}
}
}
if ( zSig2 ) float_exception_flags |= float_flag_inexact;
if ( increment ) {
add128( zSig0, zSig1, 0, 1, &zSig0, &zSig1 );
zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven );
}
else {
if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0;
}
return packFloat128( zSign, zExp, zSig0, zSig1 );
}
/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand formed by the concatenation of `zSig0' and `zSig1', and
| returns the proper quadruple-precision floating-point value corresponding
| to the abstract input. This routine is just like `roundAndPackFloat128'
| except that the input significand has fewer bits and does not have to be
| normalized. In all cases, `zExp' must be 1 less than the ``true'' floating-
| point exponent.
*----------------------------------------------------------------------------*/
static inline float128
normalizeRoundAndPackFloat128(
flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 )
{
int8 shiftCount;
bits64 zSig2;
if ( zSig0 == 0 ) {
zSig0 = zSig1;
zSig1 = 0;
zExp -= 64;
}
shiftCount = countLeadingZeros64( zSig0 ) - 15;
if ( 0 <= shiftCount ) {
zSig2 = 0;
shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
}
else {
shift128ExtraRightJamming(
zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 );
}
zExp -= shiftCount;
return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 );
}
#endif

View File

@ -79,6 +79,7 @@ HW_SRC = {
'src/HW/M68K/m68kdasm.c',
'src/HW/M68K/m68khooks.c',
'src/HW/M68K/m68kops.c',
'src/HW/M68K/m68kgdb.c',
'src/HW/M68K/softfloat/softfloat.c',
],
'MOUSE': [

View File

@ -106,7 +106,7 @@ GLOBALFUNC bool ROM_Init(void)
/* do_put_mem_word(862 + ROM, 0x4E71); */ /* shorten set memory */
Sony_Install();
//Sony_Install();
//ScreenHack_Install(); in above fcn temporarily
#ifdef ln2mtb

View File

@ -472,6 +472,11 @@ LOCALPROC m68k_go_nCycles_1(uint32_t n)
{
uint32_t n2;
uint32_t StopiCount = NextiCount + n;
if (m68k_on_breakpoint && !m68k_need_singlestep) {
return;
}
do {
ICT_DoCurrentTasks();
n2 = ICT_DoGetNext(n);
@ -479,12 +484,19 @@ LOCALPROC m68k_go_nCycles_1(uint32_t n)
m68k_execute(n2 / 64); // TODO: verify scaler here
n = StopiCount - NextiCount;
} while (n != 0);
if (m68k_on_breakpoint && m68k_need_singlestep) {
m68k_need_singlestep = false;
}
}
LOCALVAR uint32_t ExtraSubTicksToDo = 0;
LOCALPROC DoEmulateOneTick(void)
{
// GDB stub query
//gdbstub_reconnect();
// AutoSlow
uint32_t NewQuietTime = QuietTime + 1;
uint32_t NewQuietSubTicks = QuietSubTicks + kNumSubTicks;