2021-04-11 12:53:18 +02:00

139 lines
3.1 KiB
NASM

; Generate ECC Reed-Solomon ECC generator polygon for given degree
processor 6502
BASE_ADR = $f800
DEGREE = 28
POLY = $11d ; GF(2^8) is based on 9 bit polynomial
; x^8 + x^4 + x^3 + x^2 + 1 = 0x11d
;===============================================================================
; Z P - V A R I A B L E S
;===============================================================================
SEG.U variables
ORG $80
tmpVars ds 4
ALIGN 16
result ds DEGREE
;===============================================================================
; R O M - C O D E
;===============================================================================
SEG Bank0
ORG BASE_ADR
;---------------------------------------------------------------
Start SUBROUTINE
;---------------------------------------------------------------
cld ; Clear BCD math bit.
lda #0
tax
dex
txs
.clearLoop:
tsx
pha
bne .clearLoop
RS_DIVISOR
.wait
jmp .wait
; Computes a Reed-Solomon ECC generator polynomial for degree 16, storing in result[0 : 16-1].
; This is now implemented as a lookup table (Generator)
; g(x)=(x+1)(x+?)(x+?^2)(x+?^3)...(x+?^15)
; = x^16+3Bx^15+0Dx^14+68x^13+BDx^12+44x^11+d1x^10+1e^x9+08x^8
; +A3x^7+41x^6+29x^5+E5x^4+62x^3+32x^2+24x+3B
MAC RS_DIVISOR
.root = tmpVars+2
.i = tmpVars+3
; memset(result, 0, 16);
ldx #DEGREE-2
ldy #0
.loopClear
sty result,x
dex
bpl .loopClear
; result[16 - 1] = 1; // Start off with the monomial x^0
iny
sty result + DEGREE - 1
; uint8_t root = 1;
sty .root
; for (int i = 0; i < 16; i++) {
lda #DEGREE-1 ; just loop 16 times
sta .i
.loopI
; // Multiply the current product by (x - r^i)
; for (int j = 0; j < 16; j++) {
ldx #0
.loopJ
; result[j] = reedSolomonMultiply(result[j], root);
lda result,x
ldy .root
; RS_MULT
jsr RSMult
; if (j != 16 - 1)
cpx #DEGREE - 1
bcs .skipEor
; result[j] ^= result[j + 1];
eor result+1,x
.skipEor
sta result,x
inx
cpx #DEGREE
bcc .loopJ
; root = reedSolomonMultiply(root, 0x02);
lda .root
ldy #$02
; RS_MULT
jsr RSMult
sta .root
dec .i
bpl .loopI
ENDM
; Returns the product of the two given field elements modulo GF(2^8/0x11D).
; All inputs are valid.
RSMult SUBROUTINE
; Russian peasant multiplication (x * y)
; Input: A = x, Y = y
; Result: A
.x = tmpVars
.y = tmpVars+1
sta .x
sty .y
; uint8_t z = 0;
lda #0
; for (int i = 7; i >= 0; i--) {
ldy #7
.loopI
; z = (uint8_t)((z << 1) ^ ((z >> 7) * 0x11D));
asl
bcc .skipEorPoly
eor #<POLY
.skipEorPoly
; z ^= ((y >> i) & 1) * x;
asl .y
bcc .skipEorX
eor .x
.skipEorX
dey
bpl .loopI
rts
.byte "JTZ"
org BASE_ADR + $7fc
.word Start
.word Start