1
0
mirror of https://github.com/TomHarte/CLK.git synced 2025-01-12 15:31:09 +00:00
CLK/Components/RP5C01/RP5C01.cpp

324 lines
8.1 KiB
C++
Raw Normal View History

2023-01-14 14:17:28 -05:00
//
// RP5C01.cpp
// Clock Signal
//
// Created by Thomas Harte on 14/01/2023.
// Copyright © 2023 Thomas Harte. All rights reserved.
//
#include "RP5C01.hpp"
2023-01-17 18:53:26 -05:00
#include "../../Numeric/NumericCoder.hpp"
2023-01-16 20:11:42 -05:00
#include <ctime>
2023-01-14 14:17:28 -05:00
using namespace Ricoh::RP5C01;
2023-01-16 20:11:42 -05:00
RP5C01::RP5C01(HalfCycles clock_rate) : clock_rate_(clock_rate) {
// Seed internal clock.
2023-01-16 20:29:32 -05:00
std::time_t now = std::time(NULL);
std::tm *time_date = std::localtime(&now);
2023-01-16 20:11:42 -05:00
seconds_ =
time_date->tm_sec +
time_date->tm_min * 60 +
time_date->tm_hour * 60 * 60;
day_of_the_week_ = time_date->tm_wday;
day_ = time_date->tm_mday;
month_ = time_date->tm_mon;
year_ = (time_date->tm_year + 20) % 100; // This is probably MSX specific; rethink if/when other machines use this chip.
2023-01-16 20:11:42 -05:00
leap_year_ = time_date->tm_year % 4;
}
2023-01-14 14:17:28 -05:00
void RP5C01::run_for(HalfCycles cycles) {
sub_seconds_ += cycles;
// Guess: this happens so rarely (i.e. once a second, ordinarily) that
// it's not worth worrying about the branch prediction consequences.
//
// ... and ditto all the conditionals below, which will be very rarely reached.
if(sub_seconds_ < clock_rate_) {
return;
}
const auto elapsed_seconds = int(sub_seconds_.as_integral() / clock_rate_.as_integral());
sub_seconds_ %= clock_rate_;
// Update time within day.
seconds_ += elapsed_seconds;
constexpr int day_length = 60 * 60 * 24;
if(seconds_ < day_length) {
return;
}
const int elapsed_days = seconds_ / day_length;
seconds_ %= day_length;
// Day of the week doesn't aggregate upwards.
day_of_the_week_ = (day_of_the_week_ + elapsed_days) % 7;
// Assumed for now: day and month run from 0.
// A leap year count of 0 implies a leap year.
// TODO: verify.
day_ += elapsed_days;
while(true) {
int month_length = 1;
switch(month_) {
2023-01-16 22:31:03 -05:00
default:
2023-01-14 14:17:28 -05:00
case 0: month_length = 31; break;
case 1: month_length = 28 + !leap_year_; break;
case 2: month_length = 31; break;
case 3: month_length = 30; break;
case 4: month_length = 31; break;
case 5: month_length = 30; break;
case 6: month_length = 31; break;
case 7: month_length = 31; break;
case 8: month_length = 30; break;
case 9: month_length = 31; break;
case 10: month_length = 30; break;
case 11: month_length = 31; break;
}
if(day_ < month_length) {
return;
}
day_ -= month_length;
++month_;
if(month_ == 12) {
month_ = 0;
2023-01-16 20:11:42 -05:00
year_ = (year_ + 1) % 100;
2023-01-14 14:17:28 -05:00
leap_year_ = (leap_year_ + 1) & 3;
}
}
}
2023-01-16 20:26:27 -05:00
namespace {
constexpr int Reg(int mode, int address) {
return address | mode << 4;
}
2023-01-17 21:12:00 -05:00
constexpr int PM = 1 << 4;
constexpr int twenty_four_to_twelve(int hours) {
switch(hours) {
default: return (hours % 12) + (hours > 12 ? PM : 0);
case 0: return 12;
case 12: return 12 | PM;
}
}
constexpr int twelve_to_twenty_four(int hours) {
hours = (hours & 0xf) + (hours & PM ? 12 : 0);
switch(hours) {
default: break;
case 24: return 12;
case 12: return 0;
}
return hours;
}
2023-01-17 21:18:56 -05:00
using SecondEncoder = Numeric::NumericCoder<
10, 6, // Seconds.
10, 6, // Minutes.
24 // Hours
>;
using TwoDigitEncoder = Numeric::NumericCoder<10, 10>;
2023-01-16 20:26:27 -05:00
}
2023-01-14 14:17:28 -05:00
/// Performs a write of @c value to @c address.
void RP5C01::write(int address, uint8_t value) {
2023-01-14 14:52:07 -05:00
address &= 0xf;
2023-01-16 20:26:27 -05:00
value &= 0xf;
2023-01-14 14:52:07 -05:00
2023-01-16 20:26:27 -05:00
// Handle potential RAM accesses.
if(address < 0xd && mode_ >= 2) {
address += mode_ == 3 ? 13 : 0;
ram_[size_t(address)] = value & 0xf;
2023-01-14 14:17:28 -05:00
return;
}
2023-01-14 14:52:07 -05:00
2023-01-16 20:26:27 -05:00
switch(Reg(mode_, address)) {
default: break;
// Seconds.
2023-01-17 18:53:26 -05:00
case Reg(0, 0x00): SecondEncoder::encode<0>(seconds_, value); break;
case Reg(0, 0x01): SecondEncoder::encode<1>(seconds_, value); break;
// Minutes.
case Reg(0, 0x02): SecondEncoder::encode<2>(seconds_, value); break;
case Reg(0, 0x03): SecondEncoder::encode<3>(seconds_, value); break;
// Hours.
2023-01-17 21:12:00 -05:00
case Reg(0, 0x04):
case Reg(0, 0x05): {
int hours = SecondEncoder::decode<4>(seconds_);
if(!twentyfour_hour_clock_) {
hours = twenty_four_to_twelve(hours);
}
if(address == 0x4) {
2023-01-17 21:18:56 -05:00
TwoDigitEncoder::encode<0>(hours, value);
2023-01-17 21:12:00 -05:00
} else {
2023-01-17 21:18:56 -05:00
TwoDigitEncoder::encode<1>(hours, value & 3);
2023-01-17 21:12:00 -05:00
}
if(!twentyfour_hour_clock_) {
hours = twelve_to_twenty_four(hours);
}
SecondEncoder::encode<4>(seconds_, hours);
} break;
2023-01-16 20:26:27 -05:00
2023-01-16 22:31:03 -05:00
// Day of the week.
case Reg(0, 0x06): day_of_the_week_ = value % 7; break;
2023-01-16 20:26:27 -05:00
2023-01-16 22:31:03 -05:00
// Day.
case Reg(0, 0x07): TwoDigitEncoder::encode<0>(day_, value); break;
case Reg(0, 0x08): TwoDigitEncoder::encode<1>(day_, value & 3); break;
2023-01-16 20:26:27 -05:00
2023-01-16 22:31:03 -05:00
// Month.
case Reg(0, 0x09): TwoDigitEncoder::encode<0>(month_, (value - 1)); break;
case Reg(0, 0x0a): TwoDigitEncoder::encode<1>(month_, (value - 1) & 1); break;
2023-01-16 20:26:27 -05:00
2023-01-16 22:31:03 -05:00
// Year.
case Reg(0, 0x0b): TwoDigitEncoder::encode<0>(year_, value); break;
case Reg(0, 0x0c): TwoDigitEncoder::encode<1>(year_, value); break;
2023-01-16 20:26:27 -05:00
// TODO: alarm minutes.
case Reg(1, 0x02):
case Reg(1, 0x03): break;
// TODO: alarm hours.
case Reg(1, 0x04):
case Reg(1, 0x05): break;
// TODO: alarm day-of-the-week.
case Reg(1, 0x06): break;
// TODO: alarm day.
case Reg(1, 0x07):
case Reg(1, 0x08): break;
2023-01-16 22:31:03 -05:00
// 24/12-hour clock.
2023-01-16 22:25:20 -05:00
case Reg(1, 0x0a):
twentyfour_hour_clock_ = value & 1;
break;
2023-01-16 20:26:27 -05:00
2023-01-16 22:31:03 -05:00
// Lead-year counter.
case Reg(1, 0x0b):
leap_year_ = value & 3;
break;
2023-01-16 20:26:27 -05:00
//
// Registers DF don't depend on the mode.
//
case Reg(0, 0xd): case Reg(1, 0xd): case Reg(2, 0xd): case Reg(3, 0xd):
timer_enabled_ = value & 0x8;
alarm_enabled_ = value & 0x4;
mode_ = value & 0x3;
break;
case Reg(0, 0xe): case Reg(1, 0xe): case Reg(2, 0xe): case Reg(3, 0xe):
// Test register; unclear what is supposed to happen.
break;
case Reg(0, 0xf): case Reg(1, 0xf): case Reg(2, 0xf): case Reg(3, 0xf):
one_hz_on_ = !(value & 0x8);
sixteen_hz_on_ = !(value & 0x4);
// TODO: b0 = alarm reset; b1 = timer reset.
break;
2023-01-14 14:58:12 -05:00
}
2023-01-14 14:52:07 -05:00
}
uint8_t RP5C01::read(int address) {
address &= 0xf;
2023-01-16 22:25:20 -05:00
if(address < 0xd && mode_ >= 2) {
address += mode_ == 3 ? 13 : 0;
return 0xf0 | ram_[size_t(address)];
}
int value = 0xf;
switch(Reg(mode_, address)) {
// Second.
2023-01-17 21:18:56 -05:00
case Reg(0, 0x00): value = SecondEncoder::decode<0>(seconds_); break;
case Reg(0, 0x01): value = SecondEncoder::decode<1>(seconds_); break;
2023-01-16 22:25:20 -05:00
// Minute.
2023-01-17 21:18:56 -05:00
case Reg(0, 0x02): value = SecondEncoder::decode<2>(seconds_); break;
case Reg(0, 0x03): value = SecondEncoder::decode<3>(seconds_); break;
2023-01-16 22:25:20 -05:00
// Hour.
case Reg(0, 0x04):
2023-01-17 21:18:56 -05:00
case Reg(0, 0x05): {
int hours = SecondEncoder::decode<4>(seconds_);
if(!twentyfour_hour_clock_) {
hours = twenty_four_to_twelve(hours);
2023-01-16 22:25:20 -05:00
}
2023-01-17 21:18:56 -05:00
if(address == 0x4) {
value = TwoDigitEncoder::decode<0>(hours);
2023-01-16 22:25:20 -05:00
} else {
2023-01-17 21:18:56 -05:00
value = TwoDigitEncoder::decode<1>(hours);
2023-01-16 22:25:20 -05:00
}
2023-01-17 21:18:56 -05:00
} break;
2023-01-16 22:25:20 -05:00
// Day-of-the-week.
case Reg(0, 0x06): value = day_of_the_week_; break;
// Day.
2023-01-17 21:18:56 -05:00
case Reg(0, 0x07): value = TwoDigitEncoder::decode<0>(day_); break;
case Reg(0, 0x08): value = TwoDigitEncoder::decode<1>(day_); break;
2023-01-16 22:25:20 -05:00
// Month.
case Reg(0, 0x09): value = TwoDigitEncoder::decode<0>(month_ + 1); break;
case Reg(0, 0x0a): value = TwoDigitEncoder::decode<1>(month_ + 1); break;
2023-01-16 22:25:20 -05:00
// Year.
2023-01-17 21:18:56 -05:00
case Reg(0, 0x0b): value = TwoDigitEncoder::decode<0>(year_); break;
case Reg(0, 0x0c): value = TwoDigitEncoder::decode<1>(year_); break;
2023-01-16 22:25:20 -05:00
// TODO: alarm minutes.
case Reg(1, 0x02):
case Reg(1, 0x03): break;
// TODO: alarm hours.
case Reg(1, 0x04):
case Reg(1, 0x05): break;
// TODO: alarm day-of-the-week.
case Reg(1, 0x06): break;
// TODO: alarm day.
case Reg(1, 0x07):
case Reg(1, 0x08): break;
// 12/24-hour clock.
case Reg(1, 0x0a): value = twentyfour_hour_clock_; break;
// Leap year.
case Reg(1, 0x0b): value = leap_year_; break;
//
// Registers DF don't depend on the mode.
//
case Reg(0, 0xd): case Reg(1, 0xd): case Reg(2, 0xd): case Reg(3, 0xd):
value =
(timer_enabled_ ? 0x8 : 0x0) |
(alarm_enabled_ ? 0x4 : 0x0) |
mode_;
break;
case Reg(0, 0xe): case Reg(1, 0xe): case Reg(2, 0xe): case Reg(3, 0xe):
// Test register; unclear what is supposed to happen.
break;
case Reg(0, 0xf): case Reg(1, 0xf): case Reg(2, 0xf): case Reg(3, 0xf):
value =
(one_hz_on_ ? 0x0 : 0x8) |
(sixteen_hz_on_ ? 0x0 : 0x4);
break;
2023-01-14 14:58:12 -05:00
}
2023-01-16 22:25:20 -05:00
return uint8_t(0xf0 | value);
2023-01-14 14:17:28 -05:00
}