1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-07-17 13:29:02 +00:00
CLK/Components/OPL2/OPL2.cpp

333 lines
9.6 KiB
C++
Raw Normal View History

//
// OPL2.cpp
// Clock Signal
//
// Created by Thomas Harte on 02/04/2020.
// Copyright © 2020 Thomas Harte. all rights reserved.
//
#include "OPL2.hpp"
#include <cmath>
namespace {
/*
Credit for the fixed register lists goes to Nuke.YKT; I found them at:
https://siliconpr0n.org/archive/doku.php?id=vendor:yamaha:opl2#ym2413_instrument_rom
The arrays below begin with channel 1, each line is a single channel and the
format per channel is, from first byte to eighth:
Bytes 1 and 2:
Registers 1 and 2, i.e. modulator and carrier
amplitude modulation select, vibrato select, etc.
Byte 3:
b7, b6: modulator key scale level
b5...b0: modulator total level (inverted)
Byte 4:
b7: carrier key scale level
b3...b0: feedback level and waveform selects as per register 4
Bytes 5, 6:
Registers 4 and 5, i.e. decay and attack rate, modulator and carrier.
Bytes 7, 8:
Registers 6 and 7, i.e. decay-sustain level and release rate, modulator and carrier.
*/
constexpr uint8_t opll_patch_set[] = {
0x71, 0x61, 0x1e, 0x17, 0xd0, 0x78, 0x00, 0x17,
0x13, 0x41, 0x1a, 0x0d, 0xd8, 0xf7, 0x23, 0x13,
0x13, 0x01, 0x99, 0x00, 0xf2, 0xc4, 0x11, 0x23,
0x31, 0x61, 0x0e, 0x07, 0xa8, 0x64, 0x70, 0x27,
0x32, 0x21, 0x1e, 0x06, 0xe0, 0x76, 0x00, 0x28,
0x31, 0x22, 0x16, 0x05, 0xe0, 0x71, 0x00, 0x18,
0x21, 0x61, 0x1d, 0x07, 0x82, 0x81, 0x10, 0x07,
0x23, 0x21, 0x2d, 0x14, 0xa2, 0x72, 0x00, 0x07,
0x61, 0x61, 0x1b, 0x06, 0x64, 0x65, 0x10, 0x17,
0x41, 0x61, 0x0b, 0x18, 0x85, 0xf7, 0x71, 0x07,
0x13, 0x01, 0x83, 0x11, 0xfa, 0xe4, 0x10, 0x04,
0x17, 0xc1, 0x24, 0x07, 0xf8, 0xf8, 0x22, 0x12,
0x61, 0x50, 0x0c, 0x05, 0xc2, 0xf5, 0x20, 0x42,
0x01, 0x01, 0x55, 0x03, 0xc9, 0x95, 0x03, 0x02,
0x61, 0x41, 0x89, 0x03, 0xf1, 0xe4, 0x40, 0x13,
};
constexpr uint8_t vrc7_patch_set[] = {
0x03, 0x21, 0x05, 0x06, 0xe8, 0x81, 0x42, 0x27,
0x13, 0x41, 0x14, 0x0d, 0xd8, 0xf6, 0x23, 0x12,
0x11, 0x11, 0x08, 0x08, 0xfa, 0xb2, 0x20, 0x12,
0x31, 0x61, 0x0c, 0x07, 0xa8, 0x64, 0x61, 0x27,
0x32, 0x21, 0x1e, 0x06, 0xe1, 0x76, 0x01, 0x28,
0x02, 0x01, 0x06, 0x00, 0xa3, 0xe2, 0xf4, 0xf4,
0x21, 0x61, 0x1d, 0x07, 0x82, 0x81, 0x11, 0x07,
0x23, 0x21, 0x22, 0x17, 0xa2, 0x72, 0x01, 0x17,
0x35, 0x11, 0x25, 0x00, 0x40, 0x73, 0x72, 0x01,
0xb5, 0x01, 0x0f, 0x0f, 0xa8, 0xa5, 0x51, 0x02,
0x17, 0xc1, 0x24, 0x07, 0xf8, 0xf8, 0x22, 0x12,
0x71, 0x23, 0x11, 0x06, 0x65, 0x74, 0x18, 0x16,
0x01, 0x02, 0xd3, 0x05, 0xc9, 0x95, 0x03, 0x02,
0x61, 0x63, 0x0c, 0x00, 0x94, 0xc0, 0x33, 0xf6,
0x21, 0x72, 0x0d, 0x00, 0xc1, 0xd5, 0x56, 0x06,
};
constexpr uint8_t percussion_patch_set[] = {
0x01, 0x01, 0x18, 0x0f, 0xdf, 0xf8, 0x6a, 0x6d,
0x01, 0x01, 0x00, 0x00, 0xc8, 0xd8, 0xa7, 0x48,
0x05, 0x01, 0x00, 0x00, 0xf8, 0xaa, 0x59, 0x55,
};
}
using namespace Yamaha::OPL;
template <typename Child>
OPLBase<Child>::OPLBase(Concurrency::DeferringAsyncTaskQueue &task_queue) : task_queue_(task_queue) {
// Populate the exponential and log-sine tables; formulas here taken from Matthew Gambrell
// and Olli Niemitalo's decapping and reverse-engineering of the OPL2.
for(int c = 0; c < 256; ++c) {
exponential_[c] = int(round((pow(2.0, double(c) / 256.0) - 1.0) * 1024.0));
const double sine = sin((double(c) + 0.5) * M_PI/512.0);
log_sin_[c] = int(
round(
-log(sine) / log(2.0) * 256.0
)
);
}
}
template <typename Child>
void OPLBase<Child>::write(uint16_t address, uint8_t value) {
if(address & 1) {
static_cast<Child *>(this)->write_register(selected_register_, value);
} else {
selected_register_ = value;
}
}
template class Yamaha::OPL::OPLBase<Yamaha::OPL::OPLL>;
template class Yamaha::OPL::OPLBase<Yamaha::OPL::OPL2>;
OPLL::OPLL(Concurrency::DeferringAsyncTaskQueue &task_queue, bool is_vrc7): OPLBase(task_queue) {
// Install fixed instruments.
const uint8_t *patch_set = is_vrc7 ? vrc7_patch_set : opll_patch_set;
for(int c = 0; c < 15; ++c) {
setup_fixed_instrument(c+1, patch_set);
patch_set += 8;
}
2020-04-11 02:05:22 +00:00
// Install rhythm patches.
for(int c = 0; c < 3; ++c) {
setup_fixed_instrument(c+16, &percussion_patch_set[c * 8]);
}
}
bool OPLL::is_zero_level() {
return true;
}
void OPLL::get_samples(std::size_t number_of_samples, std::int16_t *target) {
}
void OPLL::set_sample_volume_range(std::int16_t range) {
}
uint8_t OPLL::read(uint16_t address) {
// I've seen mention of an undocumented two-bit status register. I don't yet know what is in it.
return 0xff;
}
void OPLL::write_register(uint8_t address, uint8_t value) {
// The OPLL doesn't have timers or other non-audio functions, so all writes
// go to the audio queue.
task_queue_.defer([this, address, value] {
// The first 8 locations are used to define the custom instrument, and have
// exactly the same format as the patch set arrays at the head of this file.
if(address < 8) {
custom_instrument_[address] = value;
// Update whatever that did to the instrument.
setup_fixed_instrument(0, custom_instrument_);
return;
}
// Register 0xe is a cut-down version of the OPLL's register 0xbd.
if(address == 0xe) {
depth_rhythm_control_ = value & 0x3f;
return;
}
const auto index = address & 0xf;
if(index > 8) return;
switch(address & 0xf0) {
case 0x30:
// Select an instrument in the top nibble, set a channel volume in the lower.
2020-04-11 02:05:22 +00:00
channels_[index].overrides.output_level = value & 0xf;
channels_[index].modulator = &operators_[(value >> 4) * 2];
break;
2020-04-11 02:05:22 +00:00
case 0x10: channels_[index].set_frequency_low(value); break;
case 0x20:
// Set sustain on/off, key on/off, octave and a single extra bit of frequency.
// So they're a lot like OPLL registers 0xb0 to 0xb8, but not identical.
2020-04-11 02:05:22 +00:00
channels_[index].set_9bit_frequency_octave_key_on(value);
channels_[index].overrides.hold_sustain_level = value & 0x20;
break;
default: break;
}
});
}
void OPLL::setup_fixed_instrument(int number, const uint8_t *data) {
auto modulator = &operators_[number * 2];
auto carrier = &operators_[number * 2 + 1];
modulator->set_am_vibrato_hold_sustain_ksr_multiple(data[0]);
carrier->set_am_vibrato_hold_sustain_ksr_multiple(data[1]);
modulator->set_scaling_output(data[2]);
// Set waveforms — only sine and halfsine are available.
carrier->set_waveform((data[3] >> 4) & 1);
modulator->set_waveform((data[3] >> 3) & 1);
// TODO: data[3] b0-b2: modulator feedback level
// TODO: data[3] b6, b7: carrier key-scale level
// Set ADSR parameters.
modulator->set_attack_decay(data[4]);
carrier->set_attack_decay(data[5]);
modulator->set_sustain_release(data[6]);
carrier->set_sustain_release(data[7]);
}
/*
template <Personality personality>
void OPL2<personality>::get_samples(std::size_t number_of_samples, std::int16_t *target) {
// TODO.
// out = exp(logsin(phase2 + exp(logsin(phase1) + gain1)) + gain2)
// Melodic channels are:
//
// Channel Operator 1 Operator 2
// 0 0 3
// 1 1 4
// 2 2 5
// 3 6 9
// 4 7 10
// 5 8 11
// 6 12 15
// 7 13 16
// 8 14 17
//
// In percussion mode, only channels 05 are use as melodic, with 6, 7 and 8 being
// replaced by:
//
// Bass drum, using operators 12 and 15;
// Snare, using operator 16;
// Tom tom, using operator 14,
// Cymbal, using operator 17; and
// Symbol, using operator 13.
}
*/
void OPL2::write_register(uint8_t address, uint8_t value) {
// Deal with timer changes synchronously.
switch(address) {
case 0x02: timers_[0] = value; return;
case 0x03: timers_[1] = value; return;
case 0x04: timer_control_ = value; return;
// TODO from register 4:
// b7 = IRQ reset;
// b6/b5 = timer 1/2 mask (irq enabling flags, I think?)
// b4/b3 = timer 2/1 start (seemingly the opposite order to b6/b5?)
default: break;
}
// Enqueue any changes that affect audio output.
task_queue_.enqueue([this, address, value] {
2020-04-11 02:05:22 +00:00
//
// Modal modifications.
//
switch(address) {
case 0x01: waveform_enable_ = value & 0x20; break;
case 0x08:
// b7: "composite sine wave mode on/off"?
csm_keyboard_split_ = value;
// b6: "Controls the split point of the keyboard. When 0, the keyboard split is the
// second bit from the bit 8 of the F-Number. When 1, the MSB of the F-Number is used."
break;
case 0xbd: depth_rhythm_control_ = value; break;
default: break;
}
//
// Operator modifications.
//
if((address >= 0x20 && address < 0xa0) || address >= 0xe0) {
// The 18 operators are spreat out across 22 addresses; each group of
// six is framed within an eight-byte area thusly:
constexpr int operator_by_address[] = {
0, 1, 2, 3, 4, 5, -1, -1,
6, 7, 8, 9, 10, 11, -1, -1,
12, 13, 14, 15, 16, 17, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
};
const auto index = operator_by_address[address & 0x1f];
if(index == -1) return;
switch(address & 0xe0) {
case 0x20: operators_[index].set_am_vibrato_hold_sustain_ksr_multiple(value); break;
case 0x40: operators_[index].set_scaling_output(value); break;
case 0x60: operators_[index].set_attack_decay(value); break;
case 0x80: operators_[index].set_sustain_release(value); break;
case 0xe0: operators_[index].set_waveform(value); break;
default: break;
}
}
//
// Channel modifications.
//
2020-04-11 02:05:22 +00:00
const auto index = address & 0xf;
if(index > 8) return;
2020-04-11 02:05:22 +00:00
switch(address & 0xf0) {
case 0xa0: channels_[index].set_frequency_low(value); break;
case 0xb0: channels_[index].set_10bit_frequency_octave_key_on(value); break;
case 0xc0: channels_[index].set_feedback_mode(value); break;
default: break;
}
});
}
uint8_t OPL2::read(uint16_t address) {
// TODO. There's a status register where:
// b7 = IRQ status (set if interrupt request ongoing)
// b6 = timer 1 flag (set if timer 1 expired)
// b5 = timer 2 flag
return 0xff;
}