1
0
mirror of https://github.com/TomHarte/CLK.git synced 2025-01-27 06:35:04 +00:00

Attempts to move forward in defining what the parts of an OPL are meant to do.

This commit is contained in:
Thomas Harte 2020-04-10 19:13:52 -04:00
parent a0d14f4030
commit 84b115f15f
2 changed files with 217 additions and 142 deletions

View File

@ -157,38 +157,37 @@ void OPLL::write_register(uint8_t address, uint8_t value) {
return;
}
// Locations 0x30 to 0x38: select an instrument in the top nibble, set a channel volume in the lower.
if(address >= 0x30 && address <= 0x38) {
const auto index = address - 0x30;
const auto instrument = value >> 4;
channels_[index].output_level = value & 0xf;
channels_[index].modulator = &operators_[instrument * 2];
return;
}
// Register 0xe is a cut-down version of the OPLL's register 0xbd.
if(address == 0xe) {
depth_rhythm_control_ = value & 0x3f;
return;
}
// Registers 0x10 to 0x18 set the bottom part of the channel frequency.
if(address >= 0x10 && address <= 0x18) {
const auto index = address - 0x10;
channels_[index].frequency = (channels_[index].frequency & ~0xff) | value;
return;
}
const auto index = address & 0xf;
if(index > 8) return;
// 0x20 to 0x28 set sustain on/off, key on/off, octave and a single extra bit of frequency.
// So they're a lot like OPLL registers 0xb0 to 0xb8, but not identical.
if(address >= 0x20 && address <= 0x28) {
const auto index = address - 0x20;
channels_[index].frequency = (channels_[index].frequency & 0xff) | (value & 1);
channels_[index].octave = (value >> 1) & 0x7;
channels_[index].key_on = value & 0x10;
channels_[index].hold_sustain_level = value & 0x20;
return;
switch(address & 0xf0) {
case 0x30:
// Select an instrument in the top nibble, set a channel volume in the lower.
channels_[index].output_level = value & 0xf;
channels_[index].modulator = &operators_[(value >> 4) * 2];
break;
case 0x10:
// Set the bottom part of the channel frequency.
channels_[index].frequency = (channels_[index].frequency & ~0xff) | value;
break;
case 0x20:
// Set sustain on/off, key on/off, octave and a single extra bit of frequency.
// So they're a lot like OPLL registers 0xb0 to 0xb8, but not identical.
channels_[index].frequency = (channels_[index].frequency & 0xff) | (value & 1);
channels_[index].octave = (value >> 1) & 0x7;
channels_[index].key_on = value & 0x10;
channels_[index].hold_sustain_level = value & 0x20;
break;
default: break;
}
});
}
@ -197,21 +196,22 @@ void OPLL::setup_fixed_instrument(int number, const uint8_t *data) {
auto modulator = &operators_[number * 2];
auto carrier = &operators_[number * 2 + 1];
modulator->set_am_vibrato_hold_sustain_ksr_multiple(data[0]);
carrier->set_am_vibrato_hold_sustain_ksr_multiple(data[1]);
modulator->set_scaling_output(data[2]);
// Set waveforms — only sine and halfsine are available.
carrier->waveform = Operator::Waveform((data[3] & 0x10) ? 1 : 0);
modulator->waveform = Operator::Waveform((data[3] & 0x08) ? 1 : 0);
carrier->set_waveform((data[3] >> 4) & 1);
modulator->set_waveform((data[3] >> 3) & 1);
// Set modulator amplitude and key-scale level.
modulator->scaling_level = data[2] >> 6;
modulator->output_level = data[2] & 0x3f;
// TODO: data[3] b0-b2: modulator feedback level
// TODO: data[3] b6, b7: carrier key-scale level
// set_opl2_register(0x20 + carrier, source[0]);
// set_opl2_register(0x20 + modulator, source[1]);
// set_opl2_register(0x40 + carrier, source[2]);
// set_opl2_register(0x60 + carrier, source[4]);
// set_opl2_register(0x60 + modulator, source[5]);
// set_opl2_register(0x80 + carrier, source[6]);
// set_opl2_register(0x80 + modulator, source[7]);
// Set ADSR parameters.
modulator->set_attack_decay(data[4]);
carrier->set_attack_decay(data[5]);
modulator->set_sustain_release(data[6]);
carrier->set_sustain_release(data[7]);
}
/*
@ -266,59 +266,28 @@ void OPL2::write_register(uint8_t address, uint8_t value) {
// Operator modifications.
//
// The 18 operators are spreat out across 22 addresses; each group of
// six is framed within an eight-byte area thusly:
constexpr int operator_by_address[] = {
0, 1, 2, 3, 4, 5, -1, -1,
6, 7, 8, 9, 10, 11, -1, -1,
12, 13, 14, 15, 16, 17, -1, -1
};
if((address >= 0x20 && address < 0xa0) || address >= 0xe0) {
// The 18 operators are spreat out across 22 addresses; each group of
// six is framed within an eight-byte area thusly:
constexpr int operator_by_address[] = {
0, 1, 2, 3, 4, 5, -1, -1,
6, 7, 8, 9, 10, 11, -1, -1,
12, 13, 14, 15, 16, 17, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
};
if(address >= 0x20 && address <= 0x35) {
const auto index = operator_by_address[address - 0x20];
const auto index = operator_by_address[address & 0x1f];
if(index == -1) return;
operators_[index].apply_amplitude_modulation = value & 0x80;
operators_[index].apply_vibrato = value & 0x40;
operators_[index].hold_sustain_level = value & 0x20;
operators_[index].keyboard_scaling_rate = value & 0x10;
operators_[index].frequency_multiple = value & 0xf;
return;
}
switch(address & 0xe0) {
case 0x20: operators_[index].set_am_vibrato_hold_sustain_ksr_multiple(value); break;
case 0x40: operators_[index].set_scaling_output(value); break;
case 0x60: operators_[index].set_attack_decay(value); break;
case 0x80: operators_[index].set_sustain_release(value); break;
case 0xe0: operators_[index].set_waveform(value); break;
if(address >= 0x40 && address <= 0x55) {
const auto index = operator_by_address[address - 0x40];
if(index == -1) return;
operators_[index].scaling_level = value >> 6;
operators_[index].output_level = value & 0x3f;
return;
}
if(address >= 0x60 && address <= 0x75) {
const auto index = operator_by_address[address - 0x60];
if(index == -1) return;
operators_[index].attack_rate = value >> 5;
operators_[index].decay_rate = value & 0xf;
return;
}
if(address >= 0x80 && address <= 0x95) {
const auto index = operator_by_address[address - 0x80];
if(index == -1) return;
operators_[index].sustain_level = value >> 5;
operators_[index].release_rate = value & 0xf;
return;
}
if(address >= 0xe0 && address <= 0xf5) {
const auto index = operator_by_address[address - 0xe0];
if(index == -1) return;
operators_[index].waveform = Operator::Waveform(value & 3);
return;
default: break;
}
}
@ -326,21 +295,25 @@ void OPL2::write_register(uint8_t address, uint8_t value) {
// Channel modifications.
//
if(address >= 0xa0 && address <= 0xa8) {
channels_[address - 0xa0].frequency = (channels_[address - 0xa0].frequency & ~0xff) | value;
return;
}
if(address >= 0xa0 && address <= 0xd0) {
const auto index = address & 0xf;
if(index > 8) return;
if(address >= 0xb0 && address <= 0xb8) {
channels_[address - 0xb0].frequency = (channels_[address - 0xb0].frequency & 0xff) | ((value & 3) << 8);
channels_[address - 0xb0].octave = (value >> 2) & 0x7;
channels_[address - 0xb0].key_on = value & 0x20;;
return;
}
switch(address & 0xf0) {
case 0xa0:
channels_[index].frequency = (channels_[index].frequency & ~0xff) | value;
break;
case 0xb0:
channels_[index].frequency = (channels_[index].frequency & 0xff) | ((value & 3) << 8);
channels_[index].octave = (value >> 2) & 0x7;
channels_[index].key_on = value & 0x20;;
break;
case 0xc0:
channels_[index].feedback_strength = (value >> 1) & 0x7;
channels_[index].use_fm_synthesis = value & 1;
break;
}
if(address >= 0xc0 && address <= 0xc8) {
channels_[address - 0xc0].feedback_strength = (value >> 1) & 0x7;
channels_[address - 0xc0].use_fm_synthesis = value & 1;
return;
}

View File

@ -18,68 +18,170 @@ namespace Yamaha {
namespace OPL {
struct Operator {
/// If true then an amplitude modulation of "3.7Hz" is applied,
/// with a depth "determined by the AM-DEPTH of the BD register"?
bool apply_amplitude_modulation = false;
/*!
Models an operator.
/// If true then a vibrato of '6.4 Hz' is applied, with a depth
/// "determined by VOB_DEPTH of the BD register"?
bool apply_vibrato = false;
In Yamaha FM terms, an operator is a combination of a few things:
/// Selects between an ADSR envelope that holds at the sustain level
/// for as long as this key is on, releasing afterwards, and one that
/// simply switches straight to the release rate once the sustain
/// level is hit, getting back to 0 regardless of an ongoing key-on.
bool hold_sustain_level = false;
* an oscillator, producing one of a handful of sine-derived waveforms;
* an ADSR output level envelope; and
* a bunch of potential adjustments to those two things:
* optional tremolo and/or vibrato (the rates of which are global);
* the option to skip 'sustain' in ADSR and go straight to release (since no sustain period is supplied,
it otherwise runs for as long as the programmer leaves a channel enabled);
* an attenuation for the output level; and
* a factor by which to speed up the ADSR envelope as a function of frequency.
/// Provides a potential faster step through the ADSR envelope. Cf. p12.
bool keyboard_scaling_rate = false;
Oscillator frequency isn't set directly, it's a multiple of the owning channel, in which
frequency is set as a combination of f-num and octave.
*/
class Operator {
public:
/// Sets this operator's attack rate as the top nibble of @c value, its decay rate as the bottom nibble.
void set_attack_decay(uint8_t value) {
attack_rate = value >> 4;
decay_rate = value & 0xf;
}
/// Indexes a lookup table to determine what multiple of the channel's frequency
/// this operator is advancing at.
int frequency_multiple = 0;
/// Sets this operator's sustain level as the top nibble of @c value, its release rate as the bottom nibble.
void set_sustain_release(uint8_t value) {
sustain_level = value >> 4;
release_rate = value & 0xf;
}
/// Sets the current output level of this modulator, as an attenuation.
int output_level = 0;
/// Sets this operator's key scale level as the top two bits of @c value, its total output level as the low six bits.
void set_scaling_output(uint8_t value) {
scaling_level = value >> 6;
output_level = value & 0x3f;
}
/// Selects attenuation that is applied as a function of interval. Cf. p14.
int scaling_level = 0;
/// Sets this operator's waveform using the low two bits of @c value.
void set_waveform(uint8_t value) {
waveform = Operator::Waveform(value & 3);
}
/// Sets the ADSR rates.
int attack_rate = 0;
int decay_rate = 0;
int sustain_level = 0;
int release_rate = 0;
/// From the top nibble of @c value sets the AM, vibrato, hold/sustain level and keyboard sampling rate flags;
/// uses the bottom nibble to set the frequency multiplier.
void set_am_vibrato_hold_sustain_ksr_multiple(uint8_t value) {
apply_amplitude_modulation = value & 0x80;
apply_vibrato = value & 0x40;
hold_sustain_level = value & 0x20;
keyboard_scaling_rate = value & 0x10;
frequency_multiple = value & 0xf;
}
/// Selects the generated waveform.
enum class Waveform {
Sine, HalfSine, AbsSine, PulseSine
} waveform = Waveform::Sine;
void update(int channel_frequency, int channel_octave) {
// Per the documentation:
// F-Num = Music Frequency * 2^(20-Block) / 49716
//
// Given that a 256-entry table is used to store a quarter of a sine wave,
// making 1024 steps per complete wave, add what I've called frequency
// to an accumulator and move on whenever that exceeds 2^(10 - octave).
//
// ... subject to each operator having a frequency multiple.
//
// Or: 2^19?
// This encodes the MUL -> multiple table given on page 12,
// multiplied by two.
constexpr int multipliers[] = {
1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 20, 24, 24, 30, 30
};
// Update the raw phase.
const int octave_divider = (10 - channel_octave) << 9;
divider_ += multipliers[frequency_multiple] * channel_frequency;
raw_phase_ += divider_ / octave_divider;
divider_ %= octave_divider;
// Hence calculate phase (TODO: by also taking account of vibrato).
constexpr int waveforms[4][4] = {
{1023, 1023, 1023, 1023}, // Sine: don't mask in any quadrant.
{511, 511, 0, 0}, // Half sine: keep the first half in tact, lock to 0 in the second half.
{511, 511, 511, 511}, // AbsSine: endlessly repeat the first half of the sine wave.
{255, 0, 255, 0}, // PulseSine: act as if the first quadrant is in the first and third; lock the other two to 0.
};
phase = raw_phase_ & waveforms[int(waveform)][(raw_phase_ >> 8) & 3];
// TODO: calculate output volume properly; apply: ADSR and amplitude modulation (tremolo, I assume?)
volume = output_level;
}
// Outputs.
int phase = 0; // Will be in the range [0, 1023], mapping into a 1024-unit sine curve.
int volume = 0;
private:
/// If true then an amplitude modulation of "3.7Hz" is applied,
/// with a depth "determined by the AM-DEPTH of the BD register"?
bool apply_amplitude_modulation = false;
/// If true then a vibrato of '6.4 Hz' is applied, with a depth
/// "determined by VOB_DEPTH of the BD register"?
bool apply_vibrato = false;
/// Selects between an ADSR envelope that holds at the sustain level
/// for as long as this key is on, releasing afterwards, and one that
/// simply switches straight to the release rate once the sustain
/// level is hit, getting back to 0 regardless of an ongoing key-on.
bool hold_sustain_level = false;
/// Provides a potential faster step through the ADSR envelope. Cf. p12.
bool keyboard_scaling_rate = false;
/// Indexes a lookup table to determine what multiple of the channel's frequency
/// this operator is advancing at.
int frequency_multiple = 0;
/// Sets the current output level of this modulator, as an attenuation.
int output_level = 0;
/// Selects attenuation that is applied as a function of interval. Cf. p14.
int scaling_level = 0;
/// Sets the ADSR rates.
int attack_rate = 0;
int decay_rate = 0;
int sustain_level = 0;
int release_rate = 0;
/// Selects the generated waveform.
enum class Waveform {
Sine, HalfSine, AbsSine, PulseSine
} waveform = Waveform::Sine;
// Ephemeral state.
int raw_phase_ = 0;
int divider_ = 0;
};
/*!
Models an L-type two-operator channel.
Assuming FM synthesis is enabled, the channel modulates the output of the carrier with that of the modulator.
*/
struct Channel {
/// 'F-Num' in the spec; this plus the current octave determines channel frequency.
int frequency = 0;
/// Linked with the frequency, determines the channel frequency.
int octave = 0;
/// Sets sets this channel on or off, as an input to the ADSR envelope,
bool key_on = false;
/// Sets the degree of feedback applied to the modulator.
int feedback_strength = 0;
/// Selects between FM synthesis, using the modulator to modulate the carrier, or simple mixing of the two
/// underlying operators as completely disjoint entities.
bool use_fm_synthesis = true;
// This should be called at a rate of around 49,716 Hz.
void update() {
// Per the documentation:
// F-Num = Music Frequency * 2^(20-Block) / 49716
//
// Given that a 256-entry table is used to store a quarter of a sine wave,
// making 1024 steps per complete wave, add what I've called frequency
// to an accumulator and move on whenever that exceeds 2^(10 - octave).
//
// TODO: but, how does that apply to the two operator multipliers?
//
// Or: 2^19?
void update(Operator *carrier, Operator *modulator) {
modulator->update(frequency, octave);
carrier->update(frequency, octave);
}
// Stateful information.
};
template <typename Child> class OPLBase: public ::Outputs::Speaker::SampleSource {