1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-07-16 22:28:57 +00:00
CLK/Machines/Apple/Macintosh/Macintosh.cpp

271 lines
7.5 KiB
C++
Raw Normal View History

//
// Macintosh.cpp
// Clock Signal
//
// Created by Thomas Harte on 03/05/2019.
// Copyright © 2019 Thomas Harte. All rights reserved.
//
#include "Macintosh.hpp"
#include <array>
#include "Video.hpp"
#include "../../CRTMachine.hpp"
#include "../../../Processors/68000/68000.hpp"
#include "../../../Components/6522/6522.hpp"
#include "../../Utility/MemoryPacker.hpp"
namespace Apple {
namespace Macintosh {
class ConcreteMachine:
public Machine,
public CRTMachine::Machine,
public CPU::MC68000::BusHandler {
public:
ConcreteMachine(const ROMMachine::ROMFetcher &rom_fetcher) :
mc68000_(*this),
video_(ram_.data()),
via_(via_port_handler_),
via_port_handler_(*this) {
// Grab a copy of the ROM and convert it into big-endian data.
const auto roms = rom_fetcher("Macintosh", { "mac128k.rom" });
if(!roms[0]) {
throw ROMMachine::Error::MissingROMs;
}
roms[0]->resize(64*1024);
Memory::PackBigEndian16(*roms[0], rom_.data());
// The Mac runs at 7.8336mHz.
set_clock_rate(7833600.0);
}
void set_scan_target(Outputs::Display::ScanTarget *scan_target) override {
video_.set_scan_target(scan_target);
}
Outputs::Speaker::Speaker *get_speaker() override {
return nullptr;
}
void run_for(const Cycles cycles) override {
mc68000_.run_for(cycles);
}
using Microcycle = CPU::MC68000::Microcycle;
HalfCycles perform_bus_operation(const Microcycle &cycle, int is_supervisor) {
time_since_video_update_ += cycle.length;
// Assumption here: it's a divide by ten to derive the 6522 clock, i.e.
// it runs off the 68000's E clock.
via_clock_ += cycle.length;
via_.run_for(via_clock_.divide(HalfCycles(10)));
// SCC is a divide-by-two.
// A null cycle leaves nothing else to do.
if(cycle.operation) {
auto word_address = cycle.word_address();
// Hardware devices begin at 0x800000 and accesses to 'them' (i.e. at lest the 6522,
// and the other two are a guess) is via the synchronous bus.
mc68000_.set_is_peripheral_address(word_address >= 0x400000);
if(word_address >= 0x400000) {
if(cycle.data_select_active()) {
// printf("IO access to %06x: ", word_address << 1);
const int register_address = word_address >> 8;
switch(word_address & 0x7ff0ff) {
case 0x77f0ff:
// VIA accesses are via address 0xefe1fe + register*512,
// which at word precision is 0x77f0ff + register*256.
// printf("VIA");
if(cycle.operation & Microcycle::Read) {
cycle.value->halves.low = via_.get_register(register_address);
if(cycle.operation & Microcycle::SelectWord) cycle.value->halves.high = 0xff;
} else {
via_.set_register(register_address, cycle.value->halves.low);
}
break;
case 0x6ff0ff:
// IWM
// printf("IWM %d", register_address & 0xf);
break;
}
// printf("\n");
}
} else {
if(cycle.data_select_active()) {
uint16_t *memory_base = nullptr;
// When ROM overlay is enabled, the ROM begins at both $000000 and $400000,
// and RAM is available at $600000.
//
// Otherwise RAM is mapped at $000000 and ROM from $400000.
//
// Writes to the RAM area, at least, seem to go to RAM regardless of the ROM
// overlay setting, so for now I'm gambling below that writes just always go to RAM.
if(
!(cycle.operation & Microcycle::Read) ||
(
(ROM_is_overlay_ && word_address >= 0x600000) ||
(!ROM_is_overlay_ && !(word_address & 0x200000))
)
) {
memory_base = ram_.data();
word_address %= ram_.size();
} else {
memory_base = rom_.data();
word_address %= rom_.size();
}
switch(cycle.operation & (Microcycle::SelectWord | Microcycle::SelectByte | Microcycle::Read | Microcycle::InterruptAcknowledge)) {
default: break;
case Microcycle::SelectWord | Microcycle::Read:
cycle.value->full = memory_base[word_address];
break;
case Microcycle::SelectByte | Microcycle::Read:
cycle.value->halves.low = uint8_t(memory_base[word_address] >> cycle.byte_shift());
break;
case Microcycle::SelectWord:
memory_base[word_address] = cycle.value->full;
printf("%04x -> %06x\n", cycle.value->full, word_address << 1);
break;
case Microcycle::SelectByte:
memory_base[word_address] = uint16_t(
(cycle.value->halves.low << cycle.byte_shift()) |
(memory_base[word_address] & (0xffff ^ cycle.byte_mask()))
);
break;
}
} else {
// TODO: add delay if this is a RAM access and video blocks it momentarily.
// "Each [video] fetch took two cycles out of eight"
}
}
}
2019-05-04 03:55:28 +00:00
/*
Normal memory map:
000000: RAM
400000: ROM
9FFFF8+: SCC read operations
BFFFF8+: SCC write operations
DFE1FF+: IWM
EFE1FE+: VIA
*/
return HalfCycles(0);
}
void flush() {
video_.run_for(time_since_video_update_.flush());
}
void set_rom_is_overlay(bool rom_is_overlay) {
ROM_is_overlay_ = rom_is_overlay;
}
private:
class VIAPortHandler: public MOS::MOS6522::PortHandler {
public:
VIAPortHandler(ConcreteMachine &machine) : machine_(machine) {}
using Port = MOS::MOS6522::Port;
using Line = MOS::MOS6522::Line;
void set_port_output(Port port, uint8_t value, uint8_t direction_mask) {
/*
Peripheral lines: keyboard data, interrupt configuration.
(See p176 [/215])
*/
switch(port) {
case Port::A:
/*
Port A:
b7: [input] SCC wait/request (/W/REQA and /W/REQB wired together for a logical OR)
b6: 0 = alternate screen buffer, 1 = main screen buffer
b5: floppy disk SEL state control (upper/lower head "among other things")
b4: 1 = use ROM overlay memory map, 0 = use ordinary memory map
b3: 0 = use alternate sound buffer, 1 = use ordinary sound buffer
b2b0: audio output volume
*/
printf(" w A: %02x", value);
machine_.set_rom_is_overlay(!!(value & 0x10));
break;
case Port::B:
/*
Port B:
b7: 0 = sound enabled, 1 = sound disabled
b6: [input] 0 = video beam in visible portion of line, 1 = outside
b5: [input] mouse y2
b4: [input] mouse x2
b3: [input] 0 = mouse button down, 1 = up
b2: 0 = real-time clock enabled, 1 = disabled
b1: clock's data-clock line
b0: clock's serial data line
*/
printf(" w B: %02x", value);
break;
}
}
uint8_t get_port_input(Port port) {
switch(port) {
case Port::A:
printf(" r A");
break;
case Port::B:
printf(" r B");
break;
}
return 0xff;
}
void set_control_line_output(Port port, Line line, bool value) {
printf(" l %c%d: %c", port ? 'B' : 'A', int(line), value ? 't' : 'f');
}
private:
ConcreteMachine &machine_;
};
std::array<uint16_t, 32*1024> rom_;
std::array<uint16_t, 64*1024> ram_;
CPU::MC68000::Processor<ConcreteMachine, true> mc68000_;
Video video_;
MOS::MOS6522::MOS6522<VIAPortHandler> via_;
VIAPortHandler via_port_handler_;
HalfCycles via_clock_;
HalfCycles time_since_video_update_;
bool ROM_is_overlay_ = true;
};
}
}
using namespace Apple::Macintosh;
Machine *Machine::Macintosh(const Analyser::Static::Target *target, const ROMMachine::ROMFetcher &rom_fetcher) {
return new ConcreteMachine(rom_fetcher);
}
Machine::~Machine() {}