2018-04-21 21:21:57 -07:00
|
|
|
//
|
|
|
|
// NIB.cpp
|
|
|
|
// Clock Signal
|
|
|
|
//
|
|
|
|
// Created by Thomas Harte on 21/04/2018.
|
2018-05-13 15:19:52 -04:00
|
|
|
// Copyright 2018 Thomas Harte. All rights reserved.
|
2018-04-21 21:21:57 -07:00
|
|
|
//
|
|
|
|
|
|
|
|
#include "NIB.hpp"
|
|
|
|
|
2018-04-26 22:49:07 -04:00
|
|
|
#include "../../Track/PCMTrack.hpp"
|
2018-05-25 18:30:55 -04:00
|
|
|
#include "../../Track/TrackSerialiser.hpp"
|
2018-05-03 22:40:45 -04:00
|
|
|
#include "../../Encodings/AppleGCR/Encoder.hpp"
|
2018-04-26 22:49:07 -04:00
|
|
|
|
2020-03-24 21:34:33 -04:00
|
|
|
#include "../../Encodings/AppleGCR/Encoder.hpp"
|
|
|
|
#include "../../Encodings/AppleGCR/SegmentParser.hpp"
|
|
|
|
|
2018-04-26 22:49:07 -04:00
|
|
|
#include <vector>
|
|
|
|
|
2018-04-21 21:21:57 -07:00
|
|
|
using namespace Storage::Disk;
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
2018-04-26 22:49:07 -04:00
|
|
|
const long track_length = 6656;
|
2018-04-21 21:21:57 -07:00
|
|
|
const std::size_t number_of_tracks = 35;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
NIB::NIB(const std::string &file_name) :
|
|
|
|
file_(file_name) {
|
|
|
|
// A NIB should be 35 tracks, each 6656 bytes long.
|
|
|
|
if(file_.stats().st_size != track_length*number_of_tracks) {
|
2018-04-27 23:18:45 -04:00
|
|
|
throw Error::InvalidFormat;
|
2018-04-21 21:21:57 -07:00
|
|
|
}
|
|
|
|
|
2018-05-25 18:40:15 -04:00
|
|
|
// A real NIB should have every single top bit set. Yes, 1/8th of the
|
|
|
|
// file size is a complete waste. But it provides a hook for validation.
|
|
|
|
while(true) {
|
|
|
|
uint8_t next = file_.get8();
|
|
|
|
if(file_.eof()) break;
|
|
|
|
if(!(next & 0x80)) throw Error::InvalidFormat;
|
|
|
|
}
|
2018-04-21 21:21:57 -07:00
|
|
|
}
|
|
|
|
|
2018-05-06 23:17:36 -04:00
|
|
|
HeadPosition NIB::get_maximum_head_position() {
|
|
|
|
return HeadPosition(number_of_tracks);
|
2018-04-21 21:21:57 -07:00
|
|
|
}
|
|
|
|
|
2018-05-25 18:30:55 -04:00
|
|
|
bool NIB::get_is_read_only() {
|
|
|
|
return file_.get_is_known_read_only();
|
|
|
|
}
|
|
|
|
|
|
|
|
long NIB::file_offset(Track::Address address) {
|
2020-03-24 21:34:33 -04:00
|
|
|
return long(address.position.as_int()) * track_length;
|
2018-05-25 18:30:55 -04:00
|
|
|
}
|
|
|
|
|
2018-04-23 20:01:12 -07:00
|
|
|
std::shared_ptr<::Storage::Disk::Track> NIB::get_track_at_position(::Storage::Disk::Track::Address address) {
|
|
|
|
// NIBs contain data for even-numbered tracks underneath a single head only.
|
2018-04-26 22:49:07 -04:00
|
|
|
if(address.head) return nullptr;
|
|
|
|
|
2018-05-25 18:30:55 -04:00
|
|
|
long offset = file_offset(address);
|
|
|
|
std::vector<uint8_t> track_data;
|
|
|
|
{
|
2020-06-15 00:24:10 -04:00
|
|
|
std::lock_guard lock_guard(file_.get_file_access_mutex());
|
2018-05-25 18:30:55 -04:00
|
|
|
file_.seek(offset, SEEK_SET);
|
|
|
|
track_data = file_.read(track_length);
|
|
|
|
}
|
2018-04-21 21:21:57 -07:00
|
|
|
|
2018-04-26 22:49:07 -04:00
|
|
|
// NIB files leave sync bytes implicit and make no guarantees
|
2019-11-05 23:20:20 -05:00
|
|
|
// about overall track positioning. My current best-guess attempt
|
|
|
|
// is to seek sector prologues then work backwards, inserting sync
|
|
|
|
// bits into [at most 5] preceding FFs. This is intended to put the
|
|
|
|
// Disk II into synchronisation just before each sector.
|
2018-04-26 22:49:07 -04:00
|
|
|
std::size_t start_index = 0;
|
|
|
|
std::set<size_t> sync_starts;
|
|
|
|
|
|
|
|
// Establish where syncs start by finding instances of 0xd5 0xaa and then regressing
|
|
|
|
// from each along all preceding FFs.
|
|
|
|
for(size_t index = 0; index < track_data.size(); ++index) {
|
2018-07-03 21:38:04 -04:00
|
|
|
// This is a D5 AA...
|
2018-04-26 22:49:07 -04:00
|
|
|
if(track_data[index] == 0xd5 && track_data[(index+1)%track_data.size()] == 0xaa) {
|
2018-07-03 20:01:07 -04:00
|
|
|
// ... count backwards to find out where the preceding FFs started.
|
2018-04-26 22:49:07 -04:00
|
|
|
size_t start = index - 1;
|
2018-04-27 19:53:35 -04:00
|
|
|
size_t length = 0;
|
2018-06-06 21:52:26 -04:00
|
|
|
while(track_data[start] == 0xff && length < 5) {
|
2018-04-26 22:49:07 -04:00
|
|
|
start = (start + track_data.size() - 1) % track_data.size();
|
2018-04-27 19:53:35 -04:00
|
|
|
++length;
|
|
|
|
}
|
|
|
|
|
2020-03-25 21:22:30 -04:00
|
|
|
// Record a sync position only if there were at least five FFs, and
|
|
|
|
// sync only in the final five. One of the many crazy fictions of NIBs
|
|
|
|
// is the fixed track length in bytes, which is quite long. So the aim
|
|
|
|
// is to be as conservative as possible with sync placement.
|
2018-06-06 21:52:26 -04:00
|
|
|
if(length == 5) {
|
2018-04-27 19:53:35 -04:00
|
|
|
sync_starts.insert((start + 1) % track_data.size());
|
2018-07-03 20:01:07 -04:00
|
|
|
|
|
|
|
// If the apparent start of this sync area is 'after' the start, then
|
|
|
|
// this sync period overlaps position zero. So this track will start
|
|
|
|
// in a sync block.
|
2018-04-27 19:53:35 -04:00
|
|
|
if(start > index)
|
|
|
|
start_index = start;
|
|
|
|
}
|
2018-04-26 22:49:07 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-07-01 12:05:41 -04:00
|
|
|
PCMSegment segment;
|
2018-07-03 20:01:07 -04:00
|
|
|
|
|
|
|
// If the track started in a sync block, write sync first.
|
2018-05-01 20:31:42 -04:00
|
|
|
if(start_index) {
|
2020-03-24 21:34:33 -04:00
|
|
|
segment += Encodings::AppleGCR::six_and_two_sync(int(start_index));
|
2018-05-01 20:31:42 -04:00
|
|
|
}
|
2018-04-26 22:49:07 -04:00
|
|
|
|
|
|
|
std::size_t index = start_index;
|
2018-07-03 20:01:07 -04:00
|
|
|
for(const auto location: sync_starts) {
|
|
|
|
// Write data from index to sync_start.
|
2020-03-24 21:34:33 -04:00
|
|
|
if(location > index) {
|
|
|
|
// This is the usual case; the only occasion on which it won't be true is
|
|
|
|
// when the initial sync was detected to carry over the index hole,
|
|
|
|
// in which case there's nothing to copy.
|
|
|
|
std::vector<uint8_t> data_segment(
|
2022-04-27 19:16:37 -04:00
|
|
|
track_data.begin() + ptrdiff_t(index),
|
|
|
|
track_data.begin() + ptrdiff_t(location));
|
2020-03-24 21:34:33 -04:00
|
|
|
segment += PCMSegment(data_segment);
|
|
|
|
}
|
|
|
|
|
2018-07-03 20:01:07 -04:00
|
|
|
// Add a sync from sync_start to end of 0xffs, if there are
|
|
|
|
// any before the end of data.
|
2018-04-26 22:49:07 -04:00
|
|
|
index = location;
|
|
|
|
while(index < track_length && track_data[index] == 0xff)
|
|
|
|
++index;
|
2018-07-03 20:01:07 -04:00
|
|
|
|
|
|
|
if(index - location)
|
2020-03-24 21:34:33 -04:00
|
|
|
segment += Encodings::AppleGCR::six_and_two_sync(int(index - location));
|
2018-07-03 20:01:07 -04:00
|
|
|
}
|
|
|
|
|
2020-03-24 21:34:33 -04:00
|
|
|
// If there's still data remaining on the track, write it out. If a sync ran over
|
|
|
|
// the notional index hole, the loop above will already have completed the track
|
|
|
|
// with sync, so no need to deal with that case here.
|
2018-07-03 20:01:07 -04:00
|
|
|
if(index < track_length) {
|
|
|
|
std::vector<uint8_t> data_segment(
|
2022-04-27 19:16:37 -04:00
|
|
|
track_data.begin() + ptrdiff_t(index),
|
2018-07-03 20:01:07 -04:00
|
|
|
track_data.end());
|
|
|
|
segment += PCMSegment(data_segment);
|
2018-04-26 22:49:07 -04:00
|
|
|
}
|
2018-04-21 21:21:57 -07:00
|
|
|
|
2018-05-01 20:31:42 -04:00
|
|
|
return std::make_shared<PCMTrack>(segment);
|
2018-04-21 21:21:57 -07:00
|
|
|
}
|
2018-05-25 18:30:55 -04:00
|
|
|
|
|
|
|
void NIB::set_tracks(const std::map<Track::Address, std::shared_ptr<Track>> &tracks) {
|
|
|
|
std::map<Track::Address, std::vector<uint8_t>> tracks_by_address;
|
|
|
|
|
|
|
|
// Convert to a map from address to a vector of data that contains the NIB representation
|
|
|
|
// of the track.
|
|
|
|
for(const auto &pair: tracks) {
|
|
|
|
// Grab the track bit stream.
|
|
|
|
auto segment = Storage::Disk::track_serialisation(*pair.second, Storage::Time(1, 50000));
|
|
|
|
|
|
|
|
// Process to eliminate all sync bits.
|
|
|
|
std::vector<uint8_t> track;
|
|
|
|
track.reserve(track_length);
|
|
|
|
uint8_t shifter = 0;
|
2018-07-03 20:10:22 -04:00
|
|
|
int bit_count = 0;
|
|
|
|
size_t sync_location = 0, location = 0;
|
2018-07-01 12:05:41 -04:00
|
|
|
for(const auto bit: segment.data) {
|
2020-03-24 21:34:33 -04:00
|
|
|
shifter = uint8_t((shifter << 1) | (bit ? 1 : 0));
|
2018-07-03 20:10:22 -04:00
|
|
|
++bit_count;
|
|
|
|
++location;
|
2018-05-25 18:30:55 -04:00
|
|
|
if(shifter & 0x80) {
|
|
|
|
track.push_back(shifter);
|
2018-07-03 20:10:22 -04:00
|
|
|
if(bit_count == 10) {
|
|
|
|
sync_location = location;
|
|
|
|
}
|
2018-05-25 18:30:55 -04:00
|
|
|
shifter = 0;
|
2018-07-03 20:10:22 -04:00
|
|
|
bit_count = 0;
|
2018-05-25 18:30:55 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-07-03 20:10:22 -04:00
|
|
|
// Trim or pad out to track_length.
|
2018-05-25 18:30:55 -04:00
|
|
|
if(track.size() > track_length) {
|
|
|
|
track.resize(track_length);
|
|
|
|
} else {
|
|
|
|
while(track.size() < track_length) {
|
2020-03-24 21:34:33 -04:00
|
|
|
std::vector<uint8_t> extra_data(size_t(track_length) - track.size(), 0xff);
|
2022-04-27 19:16:37 -04:00
|
|
|
track.insert(track.begin() + ptrdiff_t(sync_location), extra_data.begin(), extra_data.end());
|
2018-05-25 18:30:55 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
tracks_by_address[pair.first] = std::move(track);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Lock the file and spool out.
|
2020-06-15 00:24:10 -04:00
|
|
|
std::lock_guard lock_guard(file_.get_file_access_mutex());
|
2018-05-25 18:30:55 -04:00
|
|
|
for(const auto &track: tracks_by_address) {
|
2018-09-09 20:33:56 -04:00
|
|
|
file_.seek(file_offset(track.first), SEEK_SET);
|
|
|
|
file_.write(track.second);
|
2018-05-25 18:30:55 -04:00
|
|
|
}
|
|
|
|
}
|