1
0
mirror of https://github.com/TomHarte/CLK.git synced 2025-01-15 05:31:30 +00:00
2022-04-27 19:16:37 -04:00

198 lines
6.0 KiB
C++

//
// NIB.cpp
// Clock Signal
//
// Created by Thomas Harte on 21/04/2018.
// Copyright 2018 Thomas Harte. All rights reserved.
//
#include "NIB.hpp"
#include "../../Track/PCMTrack.hpp"
#include "../../Track/TrackSerialiser.hpp"
#include "../../Encodings/AppleGCR/Encoder.hpp"
#include "../../Encodings/AppleGCR/Encoder.hpp"
#include "../../Encodings/AppleGCR/SegmentParser.hpp"
#include <vector>
using namespace Storage::Disk;
namespace {
const long track_length = 6656;
const std::size_t number_of_tracks = 35;
}
NIB::NIB(const std::string &file_name) :
file_(file_name) {
// A NIB should be 35 tracks, each 6656 bytes long.
if(file_.stats().st_size != track_length*number_of_tracks) {
throw Error::InvalidFormat;
}
// A real NIB should have every single top bit set. Yes, 1/8th of the
// file size is a complete waste. But it provides a hook for validation.
while(true) {
uint8_t next = file_.get8();
if(file_.eof()) break;
if(!(next & 0x80)) throw Error::InvalidFormat;
}
}
HeadPosition NIB::get_maximum_head_position() {
return HeadPosition(number_of_tracks);
}
bool NIB::get_is_read_only() {
return file_.get_is_known_read_only();
}
long NIB::file_offset(Track::Address address) {
return long(address.position.as_int()) * track_length;
}
std::shared_ptr<::Storage::Disk::Track> NIB::get_track_at_position(::Storage::Disk::Track::Address address) {
// NIBs contain data for even-numbered tracks underneath a single head only.
if(address.head) return nullptr;
long offset = file_offset(address);
std::vector<uint8_t> track_data;
{
std::lock_guard lock_guard(file_.get_file_access_mutex());
file_.seek(offset, SEEK_SET);
track_data = file_.read(track_length);
}
// NIB files leave sync bytes implicit and make no guarantees
// about overall track positioning. My current best-guess attempt
// is to seek sector prologues then work backwards, inserting sync
// bits into [at most 5] preceding FFs. This is intended to put the
// Disk II into synchronisation just before each sector.
std::size_t start_index = 0;
std::set<size_t> sync_starts;
// Establish where syncs start by finding instances of 0xd5 0xaa and then regressing
// from each along all preceding FFs.
for(size_t index = 0; index < track_data.size(); ++index) {
// This is a D5 AA...
if(track_data[index] == 0xd5 && track_data[(index+1)%track_data.size()] == 0xaa) {
// ... count backwards to find out where the preceding FFs started.
size_t start = index - 1;
size_t length = 0;
while(track_data[start] == 0xff && length < 5) {
start = (start + track_data.size() - 1) % track_data.size();
++length;
}
// Record a sync position only if there were at least five FFs, and
// sync only in the final five. One of the many crazy fictions of NIBs
// is the fixed track length in bytes, which is quite long. So the aim
// is to be as conservative as possible with sync placement.
if(length == 5) {
sync_starts.insert((start + 1) % track_data.size());
// If the apparent start of this sync area is 'after' the start, then
// this sync period overlaps position zero. So this track will start
// in a sync block.
if(start > index)
start_index = start;
}
}
}
PCMSegment segment;
// If the track started in a sync block, write sync first.
if(start_index) {
segment += Encodings::AppleGCR::six_and_two_sync(int(start_index));
}
std::size_t index = start_index;
for(const auto location: sync_starts) {
// Write data from index to sync_start.
if(location > index) {
// This is the usual case; the only occasion on which it won't be true is
// when the initial sync was detected to carry over the index hole,
// in which case there's nothing to copy.
std::vector<uint8_t> data_segment(
track_data.begin() + ptrdiff_t(index),
track_data.begin() + ptrdiff_t(location));
segment += PCMSegment(data_segment);
}
// Add a sync from sync_start to end of 0xffs, if there are
// any before the end of data.
index = location;
while(index < track_length && track_data[index] == 0xff)
++index;
if(index - location)
segment += Encodings::AppleGCR::six_and_two_sync(int(index - location));
}
// If there's still data remaining on the track, write it out. If a sync ran over
// the notional index hole, the loop above will already have completed the track
// with sync, so no need to deal with that case here.
if(index < track_length) {
std::vector<uint8_t> data_segment(
track_data.begin() + ptrdiff_t(index),
track_data.end());
segment += PCMSegment(data_segment);
}
return std::make_shared<PCMTrack>(segment);
}
void NIB::set_tracks(const std::map<Track::Address, std::shared_ptr<Track>> &tracks) {
std::map<Track::Address, std::vector<uint8_t>> tracks_by_address;
// Convert to a map from address to a vector of data that contains the NIB representation
// of the track.
for(const auto &pair: tracks) {
// Grab the track bit stream.
auto segment = Storage::Disk::track_serialisation(*pair.second, Storage::Time(1, 50000));
// Process to eliminate all sync bits.
std::vector<uint8_t> track;
track.reserve(track_length);
uint8_t shifter = 0;
int bit_count = 0;
size_t sync_location = 0, location = 0;
for(const auto bit: segment.data) {
shifter = uint8_t((shifter << 1) | (bit ? 1 : 0));
++bit_count;
++location;
if(shifter & 0x80) {
track.push_back(shifter);
if(bit_count == 10) {
sync_location = location;
}
shifter = 0;
bit_count = 0;
}
}
// Trim or pad out to track_length.
if(track.size() > track_length) {
track.resize(track_length);
} else {
while(track.size() < track_length) {
std::vector<uint8_t> extra_data(size_t(track_length) - track.size(), 0xff);
track.insert(track.begin() + ptrdiff_t(sync_location), extra_data.begin(), extra_data.end());
}
}
tracks_by_address[pair.first] = std::move(track);
}
// Lock the file and spool out.
std::lock_guard lock_guard(file_.get_file_access_mutex());
for(const auto &track: tracks_by_address) {
file_.seek(file_offset(track.first), SEEK_SET);
file_.write(track.second);
}
}