1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-25 16:31:42 +00:00

Converts Time::get into a template, introduces a via-a-double fallback for the timed event loop.

This commit is contained in:
Thomas Harte 2018-04-25 19:54:39 -04:00
parent b4f6dee954
commit 4c6dc597f4
11 changed files with 36 additions and 22 deletions

View File

@ -19,7 +19,7 @@ namespace {
}
DiskII::DiskII() :
drives_{{2045454, 300, 1}, {2045454, 300, 1}}
drives_{{2000000, 300, 1}, {2045454, 300, 1}}
{
}

View File

@ -66,7 +66,7 @@ void Controller::set_expected_bit_length(Time bit_length) {
// this conversion doesn't need to be exact because there's a lot of variation to be taken
// account of in rotation speed, air turbulence, etc, so a direct conversion will do
int clocks_per_bit = static_cast<int>(cycles_per_bit.get_unsigned_int());
int clocks_per_bit = cycles_per_bit.get<int>();
pll_.reset(new DigitalPhaseLockedLoop(clocks_per_bit, 3));
pll_->set_delegate(this);
}

View File

@ -117,7 +117,7 @@ void Drive::run_for(const Cycles cycles) {
int cycles_until_next_event = static_cast<int>(get_cycles_until_next_event());
int cycles_to_run_for = std::min(cycles_until_next_event, number_of_cycles);
if(!is_reading_ && cycles_until_bits_written_ > zero) {
int write_cycles_target = static_cast<int>(cycles_until_bits_written_.get_unsigned_int());
int write_cycles_target = cycles_until_bits_written_.get<int>();
if(cycles_until_bits_written_.length % cycles_until_bits_written_.clock_rate) write_cycles_target++;
cycles_to_run_for = std::min(cycles_to_run_for, write_cycles_target);
}
@ -168,7 +168,6 @@ void Drive::get_next_event(const Time &duration_already_passed) {
}
void Drive::process_next_event() {
// TODO: ready test here.
if(current_event_.type == Track::Event::IndexHole) {
// assert(get_time_into_track() == Time(1) || get_time_into_track() == Time(0));
if(ready_index_count_ < 2) ready_index_count_++;

View File

@ -106,7 +106,7 @@ Storage::Time PCMSegmentEventSource::seek_to(const Time &time_from_start) {
// bit_pointer_ always records _the next bit_ that might trigger an event,
// so should be one beyond the one reached by a seek.
Time relative_time = time_from_start - half_bit_length;
bit_pointer_ = 1 + (relative_time / segment_->length_of_a_bit).get_unsigned_int();
bit_pointer_ = 1 + (relative_time / segment_->length_of_a_bit).get<unsigned int>();
// map up to the correct amount of time
return half_bit_length + segment_->length_of_a_bit * static_cast<unsigned int>(bit_pointer_ - 1);

View File

@ -40,7 +40,7 @@ Storage::Disk::PCMSegment Storage::Disk::track_serialisation(Track &track, Time
Time extended_length = next_event.length * length_multiplier + time_error;
time_error.clock_rate = extended_length.clock_rate;
time_error.length = extended_length.length % extended_length.clock_rate;
pll.run_for(Cycles(static_cast<int>(extended_length.get_unsigned_int())));
pll.run_for(Cycles(extended_length.get<int>()));
pll.add_pulse();
// If the PLL is now sufficiently primed, restart, and start recording bits this time.

View File

@ -47,12 +47,8 @@ struct Time {
/*!
@returns the floating point conversion of this @c Time. This will often be less precise.
*/
inline float get_float() const {
return static_cast<float>(length) / static_cast<float>(clock_rate);
}
inline unsigned int get_unsigned_int() const {
return length / clock_rate;
template <typename T> T get() const {
return static_cast<T>(length) / static_cast<T>(clock_rate);
}
inline bool operator < (const Time &other) const {

View File

@ -75,7 +75,7 @@ Shifter::Shifter() :
}
void Shifter::process_pulse(const Storage::Tape::Tape::Pulse &pulse) {
pll_.run_for(Cycles(static_cast<int>(static_cast<float>(PLLClockRate) * pulse.length.get_float())));
pll_.run_for(Cycles(static_cast<int>(static_cast<float>(PLLClockRate) * pulse.length.get<float>())));
bool is_high = pulse.type == Storage::Tape::Tape::Pulse::High;
if(is_high != was_high_) {

View File

@ -279,7 +279,7 @@ void Parser::process_pulse(const Storage::Tape::Tape::Pulse &pulse)
wave_period_ = 0.0f;
}
wave_period_ += pulse.length.get_float();
wave_period_ += pulse.length.get<float>();
previous_was_high_ = is_high;
}

View File

@ -62,7 +62,7 @@ void Parser::process_pulse(const Storage::Tape::Tape::Pulse &pulse)
cycle_length_ = 0.0f;
}
wave_was_high_ = wave_is_high;
cycle_length_ += pulse.length.get_float();
cycle_length_ += pulse.length.get<float>();
}
void Parser::inspect_waves(const std::vector<WaveType> &waves)

View File

@ -31,7 +31,7 @@ void Parser::process_pulse(const Storage::Tape::Tape::Pulse &pulse) {
void Parser::post_pulse() {
const float expected_pulse_length = 300.0f / 1000000.0f;
const float expected_gap_length = 1300.0f / 1000000.0f;
float pulse_time = pulse_time_.get_float();
float pulse_time = pulse_time_.get<float>();
if(pulse_time > expected_gap_length * 1.25f) {
push_wave(WaveType::LongGap);

View File

@ -64,7 +64,9 @@ void TimedEventLoop::jump_to_next_event() {
}
void TimedEventLoop::set_next_event_time_interval(Time interval) {
// Calculate [interval]*[input clock rate] + [subcycles until this event].
// Calculate [interval]*[input clock rate] + [subcycles until this event]
// = interval.numerator * input clock / interval.denominator + subcycles.numerator / subcycles.denominator
// = (interval.numerator * input clock * subcycles.denominator + subcycles.numerator * interval.denominator) / (interval.denominator * subcycles.denominator)
int64_t denominator = static_cast<int64_t>(interval.clock_rate) * static_cast<int64_t>(subcycles_until_event_.clock_rate);
int64_t numerator =
static_cast<int64_t>(subcycles_until_event_.clock_rate) * static_cast<int64_t>(input_clock_rate_) * static_cast<int64_t>(interval.length) +
@ -72,7 +74,7 @@ void TimedEventLoop::set_next_event_time_interval(Time interval) {
// Simplify if necessary: try just simplifying the interval and recalculating; if that doesn't
// work then try simplifying the whole thing.
if(numerator < 0 || denominator < 0 || denominator > std::numeric_limits<unsigned int>::max()) {
if(numerator < 0 || denominator < 0 || denominator > std::numeric_limits<int>::max()) {
interval.simplify();
denominator = static_cast<int64_t>(interval.clock_rate) * static_cast<int64_t>(subcycles_until_event_.clock_rate);
numerator =
@ -80,19 +82,36 @@ void TimedEventLoop::set_next_event_time_interval(Time interval) {
static_cast<int64_t>(interval.clock_rate) * static_cast<int64_t>(subcycles_until_event_.length);
}
if(numerator < 0 || denominator < 0 || denominator > std::numeric_limits<unsigned int>::max()) {
if(numerator < 0 || denominator < 0 || denominator > std::numeric_limits<int>::max()) {
int64_t common_divisor = NumberTheory::greatest_common_divisor(numerator % denominator, denominator);
denominator /= common_divisor;
numerator /= common_divisor;
}
// TODO: if that doesn't work then reduce precision.
// If even that doesn't work then reduce precision.
if(numerator < 0 || denominator < 0 || denominator > std::numeric_limits<int>::max()) {
const double double_interval = interval.get<double>();
const double double_subcycles_remaining = subcycles_until_event_.get<double>();
const double output = double_interval * static_cast<double>(input_clock_rate_) + double_subcycles_remaining;
if(output < 1.0) {
denominator = std::numeric_limits<int>::max();
numerator = static_cast<int>(denominator * output);
} else {
numerator = std::numeric_limits<int>::max();
denominator = static_cast<int>(numerator / output);
}
}
// So this event will fire in the integral number of cycles from now, putting us at the remainder
// number of subcycles
const int addition = static_cast<int>(numerator / denominator);
assert(cycles_until_event_ == 0);
cycles_until_event_ += static_cast<int>(numerator / denominator);
assert(cycles_until_event_ >= 0);
assert(addition >= 0);
if(addition < 0) {
assert(false);
}
cycles_until_event_ += addition;
subcycles_until_event_.length = static_cast<unsigned int>(numerator % denominator);
subcycles_until_event_.clock_rate = static_cast<unsigned int>(denominator);
subcycles_until_event_.simplify();