1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-12-26 09:29:45 +00:00

Edges further towards a functioning keyboard.

This commit is contained in:
Thomas Harte 2019-05-08 13:58:52 -04:00
parent 8278809383
commit b5ef88902b
3 changed files with 197 additions and 2 deletions

View File

@ -15,10 +15,36 @@ namespace Macintosh {
class Keyboard {
public:
void set_input(bool data) {
printf("");
}
bool get_clock() {
return false;
}
bool get_data() {
return false;
}
/*!
The keyboard expects ~10 µs-frequency ticks, i.e. a clock rate of just around 100 kHz.
*/
void run_for(HalfCycles cycle) {
// TODO: something.
}
};
/*
"When sending data to the computer, the keyboard transmits eight cycles of 330 µS each (160 µS low, 170 µS high)
on the normally high Keyboard Clock line. It places a data bit on the data line 40 µS before the falling edge of each
clock cycle and maintains it for 330 µS. The VIA in the compu(er latches the data bit into its Shift register on the
rising edge of the Keyboard Clock signal."
"When the computer is sending data to the keyboard, the keyboard transmits eight cycles of 400 µS each (180 µS low,
220 µS high) on the Keyboard Clock line. On the falling edge of each keyboard clock cycle, the Macintosh Plus places
a data bit on the data line and holds it there for 400 µS. The keyboard reads the data bit 80 µS after the rising edge
of the Keyboard Clock signal."
*/
}
}

View File

@ -78,6 +78,16 @@ class ConcreteMachine:
via_clock_ += cycle.length;
via_.run_for(via_clock_.divide(HalfCycles(10)));
// The keyboard also has a clock, albeit a very slow one.
// Its clock and data lines are connected to the VIA.
keyboard_clock_ += cycle.length;
auto keyboard_ticks = keyboard_clock_.divide(HalfCycles(CLOCK_RATE / 100000));
if(keyboard_ticks > HalfCycles(0)) {
keyboard_.run_for(keyboard_ticks);
via_.set_control_line_input(MOS::MOS6522::Port::B, MOS::MOS6522::Line::Two, keyboard_.get_data());
via_.set_control_line_input(MOS::MOS6522::Port::B, MOS::MOS6522::Line::One, keyboard_.get_clock());
}
// TODO: SCC is a divide-by-two.
// Consider updating the real-time clock.
@ -307,9 +317,10 @@ class ConcreteMachine:
Apple::IWM iwm_;
HalfCycles via_clock_;
HalfCycles real_time_clock_;
HalfCycles keyboard_clock_;
HalfCycles time_since_video_update_;
HalfCycles time_since_iwm_update_;
HalfCycles real_time_clock_;
bool ROM_is_overlay_ = true;
};

View File

@ -0,0 +1,158 @@
//
// RealTimeClock.hpp
// Clock Signal
//
// Created by Thomas Harte on 07/05/2019.
// Copyright © 2019 Thomas Harte. All rights reserved.
//
#ifndef RealTimeClock_hpp
#define RealTimeClock_hpp
namespace Apple {
namespace Macintosh {
/*!
Models the storage component of Apple's real-time clock.
Since tracking of time is pushed to this class, it is assumed
that whomever is translating real time into emulated time
will notify the VIA of a potential interrupt.
*/
class RealTimeClock {
public:
/*!
Advances the clock by 1 second.
The caller should also notify the VIA.
*/
void update() {
for(int c = 0; c < 4; ++c) {
++seconds_[c];
if(seconds_[c]) break;
}
}
/*!
Sets the current clock and data inputs to the clock.
*/
void set_input(bool clock, bool data) {
/*
Documented commands:
z0000001 Seconds register 0 (lowest order byte)
z0000101 Seconds register 1
z0001001 Seconds register 2
z0001101 Seconds register 3
00110001 Test register (write only)
00110101 Write-protect register (write only)
z010aa01 RAM addresses 0x10 - 0x13
z1aaaa01 RAM addresses 0x00 0x0f
z = 1 => a read; z = 0 => a write.
The top bit of the write-protect register enables (0) or disables (1)
writes to other locations.
All the documentation says about the test register is to set the top
two bits to 0 for normal operation. Abnormal operation is undefined.
The data line is valid when the clock transitions to level 0.
*/
if(clock && !previous_clock_) {
// Shift into the command_ register, no matter what.
command_ = uint16_t((command_ << 1) | (data ? 1 : 0));
result_ <<= 1;
// Increment phase.
++phase_;
// When phase hits 8, inspect the command.
// If it's a read, prepare a result.
if(phase_ == 8) {
if(command_ & 0x80) {
// A read.
const auto address = (command_ >> 2) & 0x1f;
// Begin pessimistically.
result_ = 0xff;
if(address < 4) {
result_ = seconds_[address];
} else if(address >= 0x10) {
result_ = data_[address & 0xf];
} else if(address >= 0x8 && address < 0xb) {
result_ = data_[0x10 + (address & 0x3)];
}
}
}
// If phase hits 16 and this was a read command,
// just stop. If it was a write command, do the
// actual write.
if(phase_ == 16) {
if(!(command_ & 0x8000)) {
// A write.
const auto address = (command_ >> 10) & 0x1f;
const uint8_t value = uint8_t(command_ & 0xff);
// First test: is this to the write-protect register?
if(address == 0xd) {
write_protect_ = value;
}
// No other writing is permitted if the write protect
// register won't allow it.
if(!(write_protect_ & 0x80)) {
if(address < 4) {
seconds_[address] = value;
} else if(address >= 0x10) {
data_[address & 0xf] = value;
} else if(address >= 0x8 && address < 0xb) {
data_[0x10 + (address & 0x3)] = value;
}
}
}
// A phase of 16 always ends the command, so reset here.
abort();
}
}
previous_clock_ = clock;
}
/*!
Reads the current data output level from the clock.
*/
bool get_data() {
return !!(result_ & 0x80);
}
/*!
Announces that a serial command has been aborted.
*/
void abort() {
result_ = 0;
phase_ = 0;
command_ = 0;
}
private:
uint8_t data_[0x14];
uint8_t seconds_[4];
uint8_t write_protect_;
int phase_ = 0;
uint16_t command_;
uint8_t result_ = 0;
bool previous_clock_ = false;
};
}
}
#endif /* RealTimeClock_hpp */