1
0
mirror of https://github.com/TomHarte/CLK.git synced 2026-01-26 21:16:19 +00:00
Files
CLK/Machines/Acorn/Electron/Video.cpp
2025-10-11 15:07:09 -04:00

320 lines
9.1 KiB
C++

//
// Video.cpp
// Clock Signal
//
// Created by Thomas Harte on 10/12/2016.
// Copyright 2016 Thomas Harte. All rights reserved.
//
#include "Video.hpp"
#include <cstring>
using namespace Electron;
// MARK: - Lifecycle
VideoOutput::VideoOutput(const uint8_t *memory) :
ram_(memory),
crt_(h_total,
1,
Outputs::Display::Type::PAL50,
Outputs::Display::InputDataType::Red1Green1Blue1) {
// Default construction values leave this out of text mode, and text
// mode uses a subregion of pixel modes.
crt_.set_fixed_framing([&] {
run_for(Cycles(10'000));
});
}
void VideoOutput::set_scan_target(Outputs::Display::ScanTarget *const scan_target) {
crt_.set_scan_target(scan_target);
}
Outputs::Display::ScanStatus VideoOutput::get_scaled_scan_status() const {
return crt_.get_scaled_scan_status();
}
void VideoOutput::set_display_type(const Outputs::Display::DisplayType display_type) {
crt_.set_display_type(display_type);
}
Outputs::Display::DisplayType VideoOutput::get_display_type() const {
return crt_.get_display_type();
}
// The below is my attempt at transcription of the equivalent VHDL code in moogway82's
// JamSoftElectronULA — https://github.com/moogway82/JamSoftElectronULA — which is itself
// derived from hoglet67's https://github.com/hoglet67/ElectronFpga and that author's
// reverse-engineering of the Electron ULA. It should therefore be as accurate to the
// original hardware as my comprehension of VHDL and adaptation into sequential code allows.
uint8_t VideoOutput::perform(const int h_count, const int v_count) {
uint8_t interrupts{};
// In this, the sequential world of C++, all tests below should assume that the position
// named by (h_count, v_count) is the one that was active **prior to this cycle**.
//
// So this cycle spans the period from (h_count, v_count) to (h_count, v_count)+1.
// Update syncs.
if(!field_) {
if(!h_count && v_count == vsync_start) {
vsync_int_ = true;
} else if(h_count == h_half && v_count == vsync_end) {
vsync_int_ = false;
}
} else {
if(h_count == h_half && v_count == vsync_start) {
vsync_int_ = true;
} else if(!h_count && v_count == vsync_end + 1) {
vsync_int_ = false;
}
}
if(h_count == hsync_start) {
hsync_int_ = true;
} else if(h_count == hsync_end) {
hsync_int_ = false;
}
// Update character row on the trailing edge of hsync.
if(h_count == hsync_end) {
if(is_v_end()) {
char_row_ = 0;
} else {
char_row_ = last_line() ? 0 : char_row_ + 1;
}
}
// Disable the top bit of the char_row counter outside of text mode.
if(!mode_text_) {
char_row_ &= 7;
}
// Latch video address at frame start.
if(h_count == h_reset_addr && is_v_end()) {
row_addr_ = byte_addr_ = screen_base_;
}
// Copy byte_addr back into row_addr if a new character row has begun.
if(hsync_int_) {
if(last_line()) {
row_addr_ = byte_addr_;
} else {
byte_addr_ = row_addr_;
}
}
// Determine current output item.
OutputStage stage;
int screen_pitch = screen_pitch_;
if(vsync_int_ || hsync_int_) {
stage = OutputStage::Sync;
} else if(in_blank()) {
if(h_count >= hburst_start && h_count < hburst_end) {
stage = OutputStage::ColourBurst;
} else {
stage = OutputStage::Blank;
}
} else {
stage = OutputStage::Pixels;
screen_pitch = (mode_40_ ? 320 : 640) / static_cast<int>(mode_bpp_);
}
if(stage != output_ || screen_pitch != screen_pitch_) {
switch(output_) {
case OutputStage::Sync: crt_.output_sync(output_length_); break;
case OutputStage::Blank: crt_.output_blank(output_length_); break;
case OutputStage::ColourBurst: crt_.output_default_colour_burst(output_length_); break;
case OutputStage::Pixels:
if(current_output_target_) {
crt_.output_data(
output_length_,
static_cast<size_t>(current_output_target_ - initial_output_target_)
);
} else {
crt_.output_data(output_length_);
}
break;
}
output_length_ = 0;
output_ = stage;
screen_pitch_ = screen_pitch;
if(stage == OutputStage::Pixels) {
initial_output_target_ = current_output_target_ = crt_.begin_data(static_cast<size_t>(screen_pitch_));
}
}
output_length_ += 8;
if(output_ == OutputStage::Pixels && (!mode_40_ || h_count & 8) && current_output_target_) {
const uint8_t data = ram_[byte_addr_ | char_row_];
switch(mode_bpp_) {
case Bpp::One:
// Maps 1bpp to 4bpp as:
//
// 0 -> 0000
// 1 -> 1000
current_output_target_[0] = mapped_palette_[(data >> 4) & 8];
current_output_target_[1] = mapped_palette_[(data >> 3) & 8];
current_output_target_[2] = mapped_palette_[(data >> 2) & 8];
current_output_target_[3] = mapped_palette_[(data >> 1) & 8];
current_output_target_[4] = mapped_palette_[(data >> 0) & 8];
current_output_target_[5] = mapped_palette_[(data << 1) & 8];
current_output_target_[6] = mapped_palette_[(data << 2) & 8];
current_output_target_[7] = mapped_palette_[(data << 3) & 8];
current_output_target_ += 8;
break;
case Bpp::Two:
// Maps 2bpp to 4bpp as:
//
// 00 -> 0000
// 01 -> 1000
// 10 -> 0010
// 11 -> 1010
current_output_target_[0] = mapped_palette_[((data >> 4) & 8) | ((data >> 2) & 2)];
current_output_target_[1] = mapped_palette_[((data >> 3) & 8) | ((data >> 1) & 2)];
current_output_target_[2] = mapped_palette_[((data >> 2) & 8) | ((data >> 0) & 2)];
current_output_target_[3] = mapped_palette_[((data >> 1) & 8) | ((data << 1) & 2)];
current_output_target_ += 4;
break;
case Bpp::Four:
current_output_target_[0] =
mapped_palette_[((data >> 4) & 8) | ((data >> 3) & 4) | ((data >> 2) & 2) | ((data >> 1) & 1)];
current_output_target_[1] =
mapped_palette_[((data >> 3) & 8) | ((data >> 2) & 4) | ((data >> 1) & 2) | ((data >> 0) & 1)];
current_output_target_ += 2;
break;
}
}
// Increment the byte address across the line.
// (slghtly pained logic here because the input clock is at the pixel rate, not the byte rate)
if(h_count < h_active) {
if(
(!mode_40_ && !(h_count & 0x7)) ||
(mode_40_ && ((h_count & 0xf) == 0x8))
) {
byte_addr_ += 8;
if(!(byte_addr_ & 0b0111'1000'0000'0000)) {
byte_addr_ = mode_base_ | (byte_addr_ & 0x0000'0111'1111'1111);
}
}
}
// Test for interrupts.
if(v_count == v_rtc && ((!field_ && !h_count) || (field_ && h_count == h_half))) {
interrupts |= static_cast<uint8_t>(Interrupt::RealTimeClock);
}
if(h_count == hsync_start && ((v_count == v_disp_gph && !mode_text_) or (v_count == v_disp_txt && mode_text_))) {
interrupts |= static_cast<uint8_t>(Interrupt::DisplayEnd);
}
return interrupts;
}
uint8_t VideoOutput::run_for(const Cycles cycles) {
uint8_t interrupts{};
int number_of_cycles = cycles.as<int>();
while(number_of_cycles--) {
interrupts |= perform(h_count_, v_count_);
// Horizontal and vertical counter updates.
h_count_ += 8;
if(h_count_ == h_total) {
h_count_ = 0;
if(is_v_end()) {
v_count_ = 0;
field_ = !field_;
} else {
++v_count_;
}
}
}
return interrupts;
}
std::pair<Cycles, uint8_t> VideoOutput::run_until_ram_slot() {
if(mode_40_) {
return run_until_io_slot();
}
Cycles duration{};
uint8_t interrupts{};
// If currently in the back half of a cycle,
// advance to the start of the next 1Mhz window.
if(h_count_ & 8) {
duration += Cycles(1);
interrupts |= run_for(Cycles(1));
}
// If now in blank, just finish out the half window.
// Otherwise let the pixel run end.
if(!in_blank()) {
const auto additional = Cycles(1 + ((h_active - h_count_) >> 3));
duration += additional;
interrupts |= run_for(additional);
} else {
duration += Cycles(1);
interrupts |= run_for(Cycles(1));
}
return std::make_pair(duration, interrupts);
}
std::pair<Cycles, uint8_t> VideoOutput::run_until_io_slot() {
// Two cycles minimum are required; ensure also that the next access
// ends at the midpoint of a 1Mhz window. In each window the CPU
// access conceptually comes first.
const auto duration = 3 - ((h_count_ >> 3) & 1);
return std::make_pair(duration, run_for(duration));
}
// MARK: - Register hub
void VideoOutput::write(const int address, const uint8_t value) {
switch(address & 0b1111) {
case 0x02:
screen_base_ =
(screen_base_ & 0b0111'1110'0000'0000) |
((value << 1) & 0b0000'0001'1100'0000);
break;
case 0x03:
screen_base_ =
((value << 9) & 0b0111'1110'0000'0000) |
(screen_base_ & 0b0000'0001'1100'0000);
break;
case 0x07: {
const uint8_t mode = (value >> 3) & 7;
mode_40_ = mode >= 4;
mode_text_ = mode == 3 || mode == 6;
switch(mode) {
case 0:
case 1:
case 2: mode_base_ = 0x3000; break;
case 3: mode_base_ = 0x4000; break;
case 6: mode_base_ = 0x6000; break;
default: mode_base_ = 0x5800; break;
}
switch(mode) {
default: mode_bpp_ = Bpp::One; break;
case 1:
case 5: mode_bpp_ = Bpp::Two; break;
case 2: mode_bpp_ = Bpp::Four; break;
}
} break;
case 0x08: case 0x09: set_palette_group<0xfe08, 0b0000>(address, value); break;
case 0x0a: case 0x0b: set_palette_group<0xfe0a, 0b0100>(address, value); break;
case 0x0c: case 0x0d: set_palette_group<0xfe0c, 0b0101>(address, value); break;
case 0x0e: case 0x0f: set_palette_group<0xfe0e, 0b0001>(address, value); break;
}
}