1
0
mirror of https://github.com/TomHarte/CLK.git synced 2025-01-08 02:29:54 +00:00
CLK/Machines/Electron/Electron.cpp
2023-05-10 18:53:38 -05:00

801 lines
25 KiB
C++

//
// Electron.cpp
// Clock Signal
//
// Created by Thomas Harte on 03/01/2016.
// Copyright 2016 Thomas Harte. All rights reserved.
//
#include "Electron.hpp"
#include "../../Activity/Source.hpp"
#include "../MachineTypes.hpp"
#include "../../Configurable/Configurable.hpp"
#include "../../ClockReceiver/ClockReceiver.hpp"
#include "../../ClockReceiver/ForceInline.hpp"
#include "../../Configurable/StandardOptions.hpp"
#include "../../Outputs/Speaker/Implementation/LowpassSpeaker.hpp"
#include "../../Processors/6502/6502.hpp"
#include "../../Storage/MassStorage/SCSI/SCSI.hpp"
#include "../../Storage/MassStorage/SCSI/DirectAccessDevice.hpp"
#include "../../Storage/Tape/Tape.hpp"
#include "../Utility/Typer.hpp"
#include "../../Analyser/Static/Acorn/Target.hpp"
#include "../../ClockReceiver/JustInTime.hpp"
#include "Interrupts.hpp"
#include "Keyboard.hpp"
#include "Plus3.hpp"
#include "SoundGenerator.hpp"
#include "Tape.hpp"
#include "Video.hpp"
namespace Electron {
template <bool has_scsi_bus> class ConcreteMachine:
public Machine,
public MachineTypes::TimedMachine,
public MachineTypes::ScanProducer,
public MachineTypes::AudioProducer,
public MachineTypes::MediaTarget,
public MachineTypes::MappedKeyboardMachine,
public Configurable::Device,
public CPU::MOS6502::BusHandler,
public Tape::Delegate,
public Utility::TypeRecipient<CharacterMapper>,
public Activity::Source,
public SCSI::Bus::Observer,
public ClockingHint::Observer {
public:
ConcreteMachine(const Analyser::Static::Acorn::Target &target, const ROMMachine::ROMFetcher &rom_fetcher) :
m6502_(*this),
scsi_bus_(4'000'000),
hard_drive_(scsi_bus_, 0),
scsi_device_(scsi_bus_.add_device()),
video_(ram_),
sound_generator_(audio_queue_),
speaker_(sound_generator_) {
memset(key_states_, 0, sizeof(key_states_));
for(int c = 0; c < 16; c++)
memset(roms_[c], 0xff, 16384);
tape_.set_delegate(this);
set_clock_rate(2000000);
speaker_.set_input_rate(2000000 / SoundGenerator::clock_rate_divider);
speaker_.set_high_frequency_cutoff(6000);
::ROM::Request request = ::ROM::Request(::ROM::Name::AcornBASICII) && ::ROM::Request(::ROM::Name::AcornElectronMOS100);
if(target.has_pres_adfs) {
request = request && ::ROM::Request(::ROM::Name::PRESADFSSlot1) && ::ROM::Request(::ROM::Name::PRESADFSSlot2);
}
if(target.has_acorn_adfs) {
request = request && ::ROM::Request(::ROM::Name::AcornADFS);
}
if(target.has_dfs) {
request = request && ::ROM::Request(::ROM::Name::Acorn1770DFS);
}
if(target.has_ap6_rom) {
request = request && ::ROM::Request(::ROM::Name::PRESAdvancedPlus6);
}
auto roms = rom_fetcher(request);
if(!request.validate(roms)) {
throw ROMMachine::Error::MissingROMs;
}
set_rom(ROM::BASIC, roms.find(::ROM::Name::AcornBASICII)->second, false);
set_rom(ROM::OS, roms.find(::ROM::Name::AcornElectronMOS100)->second, false);
/*
ROM slot mapping applied:
* the keyboard and BASIC ROMs occupy slots 8, 9, 10 and 11;
* the DFS, if in use, occupies slot 1;
* the Pres ADFS, if in use, occupies slots 4 and 5;
* the Acorn ADFS, if in use, occupies slot 6;
* the AP6, if in use, occupies slot 15; and
* if sideways RAM was asked for, all otherwise unused slots are populated with sideways RAM.
*/
if(target.has_dfs || target.has_acorn_adfs || target.has_pres_adfs) {
plus3_ = std::make_unique<Plus3>();
if(target.has_dfs) {
set_rom(ROM::Slot0, roms.find(::ROM::Name::Acorn1770DFS)->second, true);
}
if(target.has_pres_adfs) {
set_rom(ROM::Slot4, roms.find(::ROM::Name::PRESADFSSlot1)->second, true);
set_rom(ROM::Slot5, roms.find(::ROM::Name::PRESADFSSlot2)->second, true);
}
if(target.has_acorn_adfs) {
set_rom(ROM::Slot6, roms.find(::ROM::Name::AcornADFS)->second, true);
}
}
if(target.has_ap6_rom) {
set_rom(ROM::Slot15, roms.find(::ROM::Name::PRESAdvancedPlus6)->second, true);
}
if(target.has_sideways_ram) {
for(int c = 0; c < 16; c++) {
if(rom_inserted_[c]) continue;
if(c >= int(ROM::Keyboard) && c < int(ROM::BASIC)+1) continue;
set_sideways_ram(ROM(c));
}
}
insert_media(target.media);
if(!target.loading_command.empty()) {
type_string(target.loading_command);
}
if(target.should_shift_restart) {
shift_restart_counter_ = 1000000;
}
if(has_scsi_bus) {
scsi_bus_.add_observer(this);
scsi_bus_.set_clocking_hint_observer(this);
}
}
~ConcreteMachine() {
audio_queue_.flush();
}
void set_key_state(uint16_t key, bool isPressed) final {
switch(key) {
default:
if(isPressed)
key_states_[key >> 4] |= key&0xf;
else
key_states_[key >> 4] &= ~(key&0xf);
break;
case KeyBreak:
m6502_.set_reset_line(isPressed);
break;
#define FuncShiftedKey(source, dest) \
case source: \
set_key_state(KeyFunc, isPressed); \
set_key_state(dest, isPressed); \
break;
FuncShiftedKey(KeyF1, Key1);
FuncShiftedKey(KeyF2, Key2);
FuncShiftedKey(KeyF3, Key3);
FuncShiftedKey(KeyF4, Key4);
FuncShiftedKey(KeyF5, Key5);
FuncShiftedKey(KeyF6, Key6);
FuncShiftedKey(KeyF7, Key7);
FuncShiftedKey(KeyF8, Key8);
FuncShiftedKey(KeyF9, Key9);
FuncShiftedKey(KeyF0, Key0);
#undef FuncShiftedKey
}
}
void clear_all_keys() final {
memset(key_states_, 0, sizeof(key_states_));
if(is_holding_shift_) set_key_state(KeyShift, true);
}
bool insert_media(const Analyser::Static::Media &media) final {
if(!media.tapes.empty()) {
tape_.set_tape(media.tapes.front());
}
set_use_fast_tape_hack();
if(!media.disks.empty() && plus3_) {
plus3_->set_disk(media.disks.front(), 0);
}
ROM slot = ROM::Slot12;
for(std::shared_ptr<Storage::Cartridge::Cartridge> cartridge : media.cartridges) {
const ROM first_slot_tried = slot;
while(rom_inserted_[int(slot)]) {
slot = ROM((int(slot) + 1) & 15);
if(slot == first_slot_tried) return false;
}
set_rom(slot, cartridge->get_segments().front().data, false);
}
// TODO: allow this only at machine startup?
if(!media.mass_storage_devices.empty()) {
hard_drive_->set_storage(media.mass_storage_devices.front());
}
return !media.empty();
}
forceinline Cycles perform_bus_operation(CPU::MOS6502::BusOperation operation, uint16_t address, uint8_t *value) {
unsigned int cycles = 1;
if(address < 0x8000) {
if(isReadOperation(operation)) {
*value = ram_[address];
} else {
if(address >= video_access_range_.low_address && address <= video_access_range_.high_address) {
video_.flush();
}
ram_[address] = *value;
}
// For the entire frame, RAM is accessible only on odd cycles; in modes below 4
// it's also accessible only outside of the pixel regions.
cycles += video_.last_valid()->get_cycles_until_next_ram_availability(video_.time_since_flush().template as<int>() + 1);
} else {
switch(address & 0xff0f) {
case 0xfe00:
if(isReadOperation(operation)) {
*value = interrupt_status_;
interrupt_status_ &= ~PowerOnReset;
} else {
interrupt_control_ = (*value) & ~1;
evaluate_interrupts();
}
break;
case 0xfe07:
if(!isReadOperation(operation)) {
// update speaker mode
bool new_speaker_is_enabled = (*value & 6) == 2;
if(new_speaker_is_enabled != speaker_is_enabled_) {
update_audio();
sound_generator_.set_is_enabled(new_speaker_is_enabled);
speaker_is_enabled_ = new_speaker_is_enabled;
}
tape_.set_is_enabled((*value & 6) != 6);
tape_.set_is_in_input_mode((*value & 6) == 0);
tape_.set_is_running((*value & 0x40) ? true : false);
caps_led_state_ = !!(*value & 0x80);
if(activity_observer_)
activity_observer_->set_led_status(caps_led, caps_led_state_);
}
[[fallthrough]]; // fe07 contains the display mode.
case 0xfe02: case 0xfe03:
case 0xfe08: case 0xfe09: case 0xfe0a: case 0xfe0b:
case 0xfe0c: case 0xfe0d: case 0xfe0e: case 0xfe0f:
if(!isReadOperation(operation)) {
video_->write(address, *value);
video_access_range_ = video_.last_valid()->get_memory_access_range();
}
break;
case 0xfe04:
if(isReadOperation(operation)) {
*value = tape_.get_data_register();
tape_.clear_interrupts(Interrupt::ReceiveDataFull);
} else {
tape_.set_data_register(*value);
tape_.clear_interrupts(Interrupt::TransmitDataEmpty);
}
break;
case 0xfe05:
if(!isReadOperation(operation)) {
const uint8_t interruptDisable = (*value)&0xf0;
if( interruptDisable ) {
if( interruptDisable&0x10 ) interrupt_status_ &= ~Interrupt::DisplayEnd;
if( interruptDisable&0x20 ) interrupt_status_ &= ~Interrupt::RealTimeClock;
if( interruptDisable&0x40 ) interrupt_status_ &= ~Interrupt::HighToneDetect;
evaluate_interrupts();
// TODO: NMI
}
// latch the paged ROM in case external hardware is being emulated
active_rom_ = *value & 0xf;
// apply the ULA's test
if(*value & 0x08) {
if(*value & 0x04) {
keyboard_is_active_ = false;
basic_is_active_ = false;
} else {
keyboard_is_active_ = !(*value & 0x02);
basic_is_active_ = !keyboard_is_active_;
}
}
}
break;
case 0xfe06:
if(!isReadOperation(operation)) {
update_audio();
sound_generator_.set_divider(*value);
tape_.set_counter(*value);
}
break;
case 0xfc04: case 0xfc05: case 0xfc06: case 0xfc07:
if(plus3_ && (address&0x00f0) == 0x00c0) {
if(is_holding_shift_ && address == 0xfcc4) {
is_holding_shift_ = false;
set_key_state(KeyShift, false);
}
if(isReadOperation(operation))
*value = plus3_->read(address);
else
plus3_->write(address, *value);
}
break;
case 0xfc00:
if(plus3_ && (address&0x00f0) == 0x00c0) {
if(!isReadOperation(operation)) {
plus3_->set_control_register(*value);
} else *value = 1;
}
if(has_scsi_bus && (address&0x00f0) == 0x0040) {
scsi_acknowledge_ = true;
if(!isReadOperation(operation)) {
scsi_data_ = *value;
push_scsi_output();
} else {
*value = SCSI::data_lines(scsi_bus_.get_state());
push_scsi_output();
}
}
break;
case 0xfc03:
if(has_scsi_bus && (address&0x00f0) == 0x0040) {
scsi_interrupt_state_ = false;
scsi_interrupt_mask_ = *value & 1;
evaluate_interrupts();
}
break;
case 0xfc01:
if(has_scsi_bus && (address&0x00f0) == 0x0040 && isReadOperation(operation)) {
// Status byte is:
//
// b7: SCSI C/D
// b6: SCSI I/O
// b5: SCSI REQ
// b4: interrupt flag
// b3: 0
// b2: 0
// b1: SCSI BSY
// b0: SCSI MSG
const auto state = scsi_bus_.get_state();
*value =
(state & SCSI::Line::Control ? 0x80 : 0x00) |
(state & SCSI::Line::Input ? 0x40 : 0x00) |
(state & SCSI::Line::Request ? 0x20 : 0x00) |
((scsi_interrupt_state_ && scsi_interrupt_mask_) ? 0x10 : 0x00) |
(state & SCSI::Line::Busy ? 0x02 : 0x00) |
(state & SCSI::Line::Message ? 0x01 : 0x00);
// Empirical guess: this is also the trigger to affect busy/request/acknowledge
// signalling. Maybe?
if(scsi_select_ && scsi_bus_.get_state() & SCSI::Line::Busy) {
scsi_select_ = false;
push_scsi_output();
}
}
break;
case 0xfc02:
if(has_scsi_bus && (address&0x00f0) == 0x0040) {
scsi_select_ = true;
push_scsi_output();
}
break;
// SCSI locations:
//
// fc40: data, read and write
// fc41: status read
// fc42: select write
// fc43: interrupt latch
//
//
// Interrupt latch is:
//
// b0: enable or disable IRQ on REQ
// (and, possibly, writing to the latch acknowledges?)
default:
if(address >= 0xc000) {
if(isReadOperation(operation)) {
if(
use_fast_tape_hack_ &&
(operation == CPU::MOS6502::BusOperation::ReadOpcode) &&
(
(address == 0xf4e5) || (address == 0xf4e6) || // double NOPs at 0xf4e5, 0xf6de, 0xf6fa and 0xfa51
(address == 0xf6de) || (address == 0xf6df) || // act to disable the normal branch into tape-handling
(address == 0xf6fa) || (address == 0xf6fb) || // code, forcing the OS along the serially-accessed ROM
(address == 0xfa51) || (address == 0xfa52) || // pathway.
(address == 0xf0a8) // 0xf0a8 is from where a service call would normally be
// dispatched; we can check whether it would be call 14
// (i.e. read byte) and, if so, whether the OS was about to
// issue a read byte call to a ROM despite the tape
// FS being selected. If so then this is a get byte that
// we should service synthetically. Put the byte into Y
// and set A to zero to report that action was taken, then
// allow the PC read to return an RTS.
)
) {
const auto service_call = uint8_t(m6502_.value_of(CPU::MOS6502::Register::X));
if(address == 0xf0a8) {
if(!ram_[0x247] && service_call == 14) {
tape_.set_delegate(nullptr);
int cycles_left_while_plausibly_in_data = 50;
tape_.clear_interrupts(Interrupt::ReceiveDataFull);
while(!tape_.get_tape()->is_at_end()) {
tape_.run_for_input_pulse();
--cycles_left_while_plausibly_in_data;
if(!cycles_left_while_plausibly_in_data) fast_load_is_in_data_ = false;
if( (tape_.get_interrupt_status() & Interrupt::ReceiveDataFull) &&
(fast_load_is_in_data_ || tape_.get_data_register() == 0x2a)
) break;
}
tape_.set_delegate(this);
tape_.clear_interrupts(Interrupt::ReceiveDataFull);
interrupt_status_ |= tape_.get_interrupt_status();
fast_load_is_in_data_ = true;
m6502_.set_value_of(CPU::MOS6502::Register::A, 0);
m6502_.set_value_of(CPU::MOS6502::Register::Y, tape_.get_data_register());
*value = 0x60; // 0x60 is RTS
}
else *value = os_[address & 16383];
}
else *value = 0xea;
} else {
*value = os_[address & 16383];
}
}
} else {
if(isReadOperation(operation)) {
*value = roms_[active_rom_][address & 16383];
if(keyboard_is_active_) {
*value &= 0xf0;
for(int address_line = 0; address_line < 14; address_line++) {
if(!(address&(1 << address_line))) *value |= key_states_[address_line];
}
}
if(basic_is_active_) {
*value &= roms_[int(ROM::BASIC)][address & 16383];
}
} else if(rom_write_masks_[active_rom_]) {
roms_[active_rom_][address & 16383] = *value;
}
}
break;
}
}
if(video_ += Cycles(int(cycles))) {
signal_interrupt(video_.last_valid()->get_interrupts());
}
cycles_since_audio_update_ += Cycles(int(cycles));
if(cycles_since_audio_update_ > Cycles(16384)) update_audio();
tape_.run_for(Cycles(int(cycles)));
if(typer_) typer_->run_for(Cycles(int(cycles)));
if(plus3_) plus3_->run_for(Cycles(4*int(cycles)));
if(shift_restart_counter_) {
shift_restart_counter_ -= cycles;
if(shift_restart_counter_ <= 0) {
shift_restart_counter_ = 0;
m6502_.set_power_on(true);
set_key_state(KeyShift, true);
is_holding_shift_ = true;
}
}
if constexpr (has_scsi_bus) {
if(scsi_is_clocked_) {
scsi_bus_.run_for(Cycles(int(cycles)));
}
}
return Cycles(int(cycles));
}
void flush_output(int outputs) final {
if(outputs & Output::Video) {
video_.flush();
}
if(outputs & Output::Audio) {
update_audio();
audio_queue_.perform();
}
}
void set_scan_target(Outputs::Display::ScanTarget *scan_target) final {
video_.last_valid()->set_scan_target(scan_target);
}
Outputs::Display::ScanStatus get_scaled_scan_status() const final {
return video_.last_valid()->get_scaled_scan_status();
}
void set_display_type(Outputs::Display::DisplayType display_type) final {
video_.last_valid()->set_display_type(display_type);
}
Outputs::Display::DisplayType get_display_type() const final {
return video_.last_valid()->get_display_type();
}
Outputs::Speaker::Speaker *get_speaker() final {
return &speaker_;
}
void run_for(const Cycles cycles) final {
m6502_.run_for(cycles);
}
void scsi_bus_did_change(SCSI::Bus *, SCSI::BusState new_state, double) final {
// Release acknowledge when request is released.
if(scsi_acknowledge_ && !(new_state & SCSI::Line::Request)) {
scsi_acknowledge_ = false;
push_scsi_output();
}
// Output occurs only while SCSI::Line::Input is inactive; therefore a change
// in that line affects what's on the bus.
if(((new_state^previous_bus_state_)&SCSI::Line::Input)) {
push_scsi_output();
}
scsi_interrupt_state_ |= (new_state^previous_bus_state_)&new_state & SCSI::Line::Request;
previous_bus_state_ = new_state;
evaluate_interrupts();
}
void set_component_prefers_clocking(ClockingHint::Source *, ClockingHint::Preference preference) final {
scsi_is_clocked_ = preference != ClockingHint::Preference::None;
}
void tape_did_change_interrupt_status(Tape *) final {
interrupt_status_ = (interrupt_status_ & ~(Interrupt::TransmitDataEmpty | Interrupt::ReceiveDataFull | Interrupt::HighToneDetect)) | tape_.get_interrupt_status();
evaluate_interrupts();
}
HalfCycles get_typer_delay(const std::string &text) const final {
if(!m6502_.get_is_resetting()) {
return Cycles(0);
}
// Add a longer delay for a command at reset that involves pressing a modifier;
// empirically this seems to be a requirement, in order to avoid a collision with
// the system's built-in modifier-at-startup test (e.g. to perform shift+break).
CharacterMapper test_mapper;
const uint16_t *const sequence = test_mapper.sequence_for_character(text[0]);
return is_modifier(Key(sequence[0])) ? Cycles(1'000'000) : Cycles(750'000);
}
HalfCycles get_typer_frequency() const final {
return Cycles(60'000);
}
void type_string(const std::string &string) final {
Utility::TypeRecipient<CharacterMapper>::add_typer(string);
}
bool can_type(char c) const final {
return Utility::TypeRecipient<CharacterMapper>::can_type(c);
}
KeyboardMapper *get_keyboard_mapper() final {
return &keyboard_mapper_;
}
// MARK: - Configuration options.
std::unique_ptr<Reflection::Struct> get_options() final {
auto options = std::make_unique<Options>(Configurable::OptionsType::UserFriendly);
options->output = get_video_signal_configurable();
options->quickload = allow_fast_tape_hack_;
return options;
}
void set_options(const std::unique_ptr<Reflection::Struct> &str) final {
const auto options = dynamic_cast<Options *>(str.get());
set_video_signal_configurable(options->output);
allow_fast_tape_hack_ = options->quickload;
set_use_fast_tape_hack();
}
// MARK: - Activity Source
void set_activity_observer(Activity::Observer *observer) final {
activity_observer_ = observer;
if(activity_observer_) {
activity_observer_->register_led(caps_led, Activity::Observer::LEDPresentation::Persistent);
activity_observer_->set_led_status(caps_led, caps_led_state_);
}
if(plus3_) {
plus3_->set_activity_observer(observer);
}
if(has_scsi_bus) {
scsi_bus_.set_activity_observer(observer);
}
}
private:
enum class ROM {
Slot0 = 0,
Slot1, Slot2, Slot3,
Slot4, Slot5, Slot6, Slot7,
Keyboard = 8, Slot9,
BASIC = 10, Slot11,
Slot12, Slot13, Slot14, Slot15,
OS, DFS,
ADFS1, ADFS2
};
/*!
Sets the contents of @c slot to @c data. If @c is_writeable is @c true then writing to the slot
is enabled: it acts as if it were sideways RAM. Otherwise the slot is modelled as containing ROM.
*/
void set_rom(ROM slot, const std::vector<uint8_t> &data, bool is_writeable) {
uint8_t *target = nullptr;
switch(slot) {
case ROM::DFS: dfs_ = data; return;
case ROM::ADFS1: adfs1_ = data; return;
case ROM::ADFS2: adfs2_ = data; return;
case ROM::OS: target = os_; break;
default:
target = roms_[int(slot)];
rom_write_masks_[int(slot)] = is_writeable;
break;
}
// Copy in, with mirroring.
std::size_t rom_ptr = 0;
while(rom_ptr < 16384) {
std::size_t size_to_copy = std::min(16384 - rom_ptr, data.size());
std::memcpy(&target[rom_ptr], data.data(), size_to_copy);
rom_ptr += size_to_copy;
}
if(int(slot) < 16) {
rom_inserted_[int(slot)] = true;
}
}
/*!
Enables @c slot as sideways RAM; ensures that it does not currently contain a valid ROM signature.
*/
void set_sideways_ram(ROM slot) {
std::memset(roms_[int(slot)], 0xff, 16*1024);
if(int(slot) < 16) {
rom_inserted_[int(slot)] = true;
rom_write_masks_[int(slot)] = true;
}
}
// MARK: - Work deferral updates.
inline void update_audio() {
speaker_.run_for(audio_queue_, cycles_since_audio_update_.divide(Cycles(SoundGenerator::clock_rate_divider)));
}
inline void signal_interrupt(Interrupt interrupt) {
interrupt_status_ |= interrupt;
evaluate_interrupts();
}
inline void clear_interrupt(Interrupt interrupt) {
interrupt_status_ &= ~interrupt;
evaluate_interrupts();
}
inline void evaluate_interrupts() {
if(interrupt_status_ & interrupt_control_) {
interrupt_status_ |= 1;
} else {
interrupt_status_ &= ~1;
}
if constexpr (has_scsi_bus) {
m6502_.set_irq_line((scsi_interrupt_state_ && scsi_interrupt_mask_) | (interrupt_status_ & 1));
} else {
m6502_.set_irq_line(interrupt_status_ & 1);
}
}
CPU::MOS6502::Processor<CPU::MOS6502::Personality::P6502, ConcreteMachine, false> m6502_;
// Things that directly constitute the memory map.
uint8_t roms_[16][16384];
bool rom_inserted_[16] = {false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false};
bool rom_write_masks_[16] = {false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false};
uint8_t os_[16384], ram_[32768];
std::vector<uint8_t> dfs_, adfs1_, adfs2_;
// Paging
int active_rom_ = int(ROM::Slot0);
bool keyboard_is_active_ = false;
bool basic_is_active_ = false;
// Interrupt and keyboard state
uint8_t interrupt_status_ = Interrupt::PowerOnReset | Interrupt::TransmitDataEmpty | 0x80;
uint8_t interrupt_control_ = 0;
uint8_t key_states_[14];
Electron::KeyboardMapper keyboard_mapper_;
// Counters related to simultaneous subsystems
Cycles cycles_since_audio_update_ = 0;
VideoOutput::Range video_access_range_ = {0, 0xffff};
// Tape
Tape tape_;
bool use_fast_tape_hack_ = false;
bool allow_fast_tape_hack_ = false;
void set_use_fast_tape_hack() {
use_fast_tape_hack_ = allow_fast_tape_hack_ && tape_.has_tape();
}
bool fast_load_is_in_data_ = false;
// Disk
std::unique_ptr<Plus3> plus3_;
bool is_holding_shift_ = false;
int shift_restart_counter_ = 0;
// Hard drive.
SCSI::Bus scsi_bus_;
SCSI::Target::Target<SCSI::DirectAccessDevice> hard_drive_;
SCSI::BusState previous_bus_state_ = SCSI::DefaultBusState;
const size_t scsi_device_ = 0;
uint8_t scsi_data_ = 0;
bool scsi_select_ = false;
bool scsi_acknowledge_ = false;
bool scsi_is_clocked_ = false;
bool scsi_interrupt_state_ = false;
bool scsi_interrupt_mask_ = false;
void push_scsi_output() {
scsi_bus_.set_device_output(scsi_device_,
(scsi_bus_.get_state()&SCSI::Line::Input ? 0 : scsi_data_) |
(scsi_select_ ? SCSI::Line::SelectTarget : 0) |
(scsi_acknowledge_ ? SCSI::Line::Acknowledge : 0)
);
}
// Outputs
JustInTimeActor<VideoOutput, Cycles> video_;
Concurrency::AsyncTaskQueue<false> audio_queue_;
SoundGenerator sound_generator_;
Outputs::Speaker::PullLowpass<SoundGenerator> speaker_;
bool speaker_is_enabled_ = false;
// MARK: - Caps Lock status and the activity observer.
const std::string caps_led = "CAPS";
bool caps_led_state_ = false;
Activity::Observer *activity_observer_ = nullptr;
};
}
using namespace Electron;
Machine *Machine::Electron(const Analyser::Static::Target *target, const ROMMachine::ROMFetcher &rom_fetcher) {
using Target = Analyser::Static::Acorn::Target;
const Target *const acorn_target = dynamic_cast<const Target *>(target);
if(acorn_target->media.mass_storage_devices.empty()) {
return new Electron::ConcreteMachine<false>(*acorn_target, rom_fetcher);
} else {
return new Electron::ConcreteMachine<true>(*acorn_target, rom_fetcher);
}
}
Machine::~Machine() {}