1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-07-17 13:29:02 +00:00
CLK/Components/OPL2/Implementation/Operator.cpp

185 lines
6.6 KiB
C++

//
// Operator.cpp
// Clock Signal
//
// Created by Thomas Harte on 15/04/2020.
// Copyright © 2020 Thomas Harte. All rights reserved.
//
#include "Operator.hpp"
#include <algorithm>
using namespace Yamaha::OPL;
void Operator::set_attack_decay(uint8_t value) {
attack_rate_ = (value & 0xf0) >> 2;
decay_rate_ = (value & 0x0f) << 2;
}
void Operator::set_sustain_release(uint8_t value) {
sustain_level_ = (value & 0xf0) >> 4;
release_rate_ = (value & 0x0f) << 2;
}
void Operator::set_scaling_output(uint8_t value) {
level_key_scaling_ = value >> 6;
attenuation_ = value & 0x3f;
}
void Operator::set_waveform(uint8_t value) {
waveform_ = Operator::Waveform(value & 3);
}
void Operator::set_am_vibrato_hold_sustain_ksr_multiple(uint8_t value) {
apply_amplitude_modulation_ = value & 0x80;
apply_vibrato_ = value & 0x40;
use_sustain_level_ = value & 0x20;
key_scaling_rate_ = value & 0x10;
frequency_multiple_ = value & 0xf;
}
bool Operator::is_audible(OperatorState &state, OperatorOverrides *overrides) {
if(state.adsr_phase_ == OperatorState::ADSRPhase::Release) {
if(overrides) {
if(overrides->attenuation == 0xf) return false;
} else {
if(attenuation_ == 0x3f) return false;
}
}
return state.adsr_attenuation_ != 511;
}
void Operator::update(OperatorState &state, bool key_on, int channel_period, int channel_octave, OperatorOverrides *overrides) {
// Per the documentation:
//
// Delta phase = ( [desired freq] * 2^19 / [input clock / 72] ) / 2 ^ (b - 1)
//
// After experimentation, I think this gives rate calculation as formulated below.
// This encodes the MUL -> multiple table given on page 12,
// multiplied by two.
constexpr int multipliers[] = {
1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 20, 24, 24, 30, 30
};
// Update the raw phase.
// TODO: if this is the real formula (i.e. a downward shift for channel_octave), this is a highly
// suboptimal way to do this. Could just keep one accumulator and shift that downward for the result.
const int octave_divider = 2048 >> channel_octave;
state.divider_ %= octave_divider;
state.divider_ += channel_period;
state.raw_phase_ += multipliers[frequency_multiple_] * (state.divider_ / octave_divider);
// TODO: this last step introduces aliasing, but is a quick way to verify whether the multiplier should
// be applied also to the octave.
// Hence calculate phase (TODO: by also taking account of vibrato).
constexpr int waveforms[4][4] = {
{1023, 1023, 1023, 1023}, // Sine: don't mask in any quadrant.
{511, 511, 0, 0}, // Half sine: keep the first half in tact, lock to 0 in the second half.
{511, 511, 511, 511}, // AbsSine: endlessly repeat the first half of the sine wave.
{255, 0, 255, 0}, // PulseSine: act as if the first quadrant is in the first and third; lock the other two to 0.
};
state.phase = state.raw_phase_ & waveforms[int(waveform_)][(state.raw_phase_ >> 8) & 3];
// Key-on logic: any time it is false, be in the release state.
// On the leading edge of it becoming true, enter the attack state.
if(!key_on) {
state.adsr_phase_ = OperatorState::ADSRPhase::Release;
state.time_in_phase_ = 0;
} else if(!state.last_key_on_) {
state.adsr_phase_ = OperatorState::ADSRPhase::Attack;
state.time_in_phase_ = 0;
}
state.last_key_on_ = key_on;
// Adjust the ADSR attenuation appropriately;
// cf. http://forums.submarine.org.uk/phpBB/viewtopic.php?f=9&t=16 (primarily) for the source of the maths below.
// "An attack rate value of 52 (AR = 13) has 32 samples in the attack phase, an attack rate value of 48 (AR = 12)
// has 64 samples in the attack phase, but pairs of samples show the same envelope attenuation. I am however struggling to find a plausible algorithm to match the experimental results.
const auto current_phase = state.adsr_phase_;
switch(current_phase) {
case OperatorState::ADSRPhase::Attack: {
const int attack_rate = attack_rate_; // TODO: key scaling rate. Which I do not yet understand.
// Rules:
//
// An attack rate of '13' has 32 samples in the attack phase; a rate of '12' has the same 32 steps, but spread out over 64 samples, etc.
// An attack rate of '14' uses a divide by four instead of two.
// 15 is instantaneous.
if(attack_rate >= 56) {
state.adsr_attenuation_ = state.adsr_attenuation_ - (state.adsr_attenuation_ >> 2) - 1;
} else {
const int sample_length = 1 << (14 - (attack_rate >> 2)); // TODO: don't throw away KSR bits.
if(!(state.time_in_phase_ & (sample_length - 1))) {
state.adsr_attenuation_ = state.adsr_attenuation_ - (state.adsr_attenuation_ >> 3) - 1;
}
}
// Two possible terminating conditions: (i) the attack rate is 15; (ii) full volume has been reached.
if(attack_rate > 60 || state.adsr_attenuation_ <= 0) {
state.adsr_attenuation_ = 0;
state.adsr_phase_ = OperatorState::ADSRPhase::Decay;
}
} break;
case OperatorState::ADSRPhase::Release:
case OperatorState::ADSRPhase::Decay:
{
// Rules:
//
// (relative to a 511 scale)
//
// A rate of 0 is no decay at all.
// A rate of 1 means increase 4 per cycle.
// A rate of 2 means increase 2 per cycle.
// A rate of 3 means increase 1 per cycle.
// A rate of 4 means increase 1 every other cycle.
// (etc)
const int decrease_rate = (state.adsr_phase_ == OperatorState::ADSRPhase::Decay) ? decay_rate_ : release_rate_; // TODO: again, key scaling rate.
if(decrease_rate) {
// TODO: don't throw away KSR bits.
switch(decrease_rate >> 2) {
case 1: state.adsr_attenuation_ += 4; break;
case 2: state.adsr_attenuation_ += 2; break;
default: {
const int sample_length = 1 << ((decrease_rate >> 2) - 4);
if(!(state.time_in_phase_ & (sample_length - 1))) {
++state.adsr_attenuation_;
}
} break;
}
}
// Clamp to the proper range.
state.adsr_attenuation_ = std::min(state.adsr_attenuation_, 511);
// Check for the decay exit condition.
if(state.adsr_phase_ == OperatorState::ADSRPhase::Decay && state.adsr_attenuation_ >= (sustain_level_ << 5)) {
state.adsr_attenuation_ = sustain_level_ << 5;
state.adsr_phase_ = ((overrides && overrides->use_sustain_level) || use_sustain_level_) ? OperatorState::ADSRPhase::Sustain : OperatorState::ADSRPhase::Release;
}
} break;
case OperatorState::ADSRPhase::Sustain:
// Nothing to do.
break;
}
if(state.adsr_phase_ == current_phase) {
++state.time_in_phase_;
} else {
state.time_in_phase_ = 0;
}
// Combine the ADSR attenuation and overall channel attenuation, clamping to the permitted range.
if(overrides) {
state.attenuation = state.adsr_attenuation_ + (overrides->attenuation << 4);
} else {
state.attenuation = state.adsr_attenuation_ + (attenuation_ << 2);
}
}