1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-23 03:32:32 +00:00
CLK/OSBindings/Mac/Clock SignalTests/ARMDecoderTests.mm
2024-03-09 15:18:35 -05:00

440 lines
10 KiB
Plaintext

//
// ARMDecoderTests.m
// Clock Signal
//
// Created by Thomas Harte on 16/02/2024.
// Copyright 2024 Thomas Harte. All rights reserved.
//
#import <XCTest/XCTest.h>
#include "../../../InstructionSets/ARM/Executor.hpp"
#include "CSROMFetcher.hpp"
#include "NSData+dataWithContentsOfGZippedFile.h"
#include <sstream>
using namespace InstructionSet::ARM;
namespace {
struct Memory {
std::vector<uint8_t> rom;
template <typename IntT>
bool write(uint32_t address, IntT source, Mode mode, bool trans) {
(void)mode;
(void)trans;
printf("W of %08x to %08x [%lu]\n", source, address, sizeof(IntT));
if(has_moved_rom_ && address < ram_.size()) {
*reinterpret_cast<IntT *>(&ram_[address]) = source;
}
return true;
}
template <typename IntT>
bool read(uint32_t address, IntT &source, Mode mode, bool trans) {
(void)mode;
(void)trans;
if(address >= 0x3800000) {
has_moved_rom_ = true;
source = *reinterpret_cast<const IntT *>(&rom[address - 0x3800000]);
} else if(!has_moved_rom_) {
// TODO: this is true only very transiently.
source = *reinterpret_cast<const IntT *>(&rom[address]);
} else if(address < ram_.size()) {
source = *reinterpret_cast<const IntT *>(&ram_[address]);
} else {
source = 0;
printf("Unknown read from %08x [%lu]\n", address, sizeof(IntT));
}
return true;
}
private:
bool has_moved_rom_ = false;
std::array<uint8_t, 4*1024*1024> ram_{};
};
struct MemoryLedger {
template <typename IntT>
bool write(uint32_t address, IntT source, Mode, bool) {
if(write_pointer == writes.size() || writes[write_pointer].size != sizeof(IntT) || writes[write_pointer].address != address || writes[write_pointer].value != source) {
throw 0;
}
++write_pointer;
return true;
}
template <typename IntT>
bool read(uint32_t address, IntT &source, Mode, bool) {
if(read_pointer == reads.size() || reads[read_pointer].size != sizeof(IntT) || reads[read_pointer].address != address) {
throw 0;
}
source = reads[read_pointer].value;
++read_pointer;
return true;
}
struct Access {
size_t size;
uint32_t address;
uint32_t value;
};
template <typename IntT>
void add_access(bool is_read, uint32_t address, IntT value) {
auto &read = is_read ? reads.emplace_back() : writes.emplace_back();
read.address = address;
read.value = value;
read.size = sizeof(IntT);
}
std::vector<Access> reads;
std::vector<Access> writes;
size_t read_pointer = 0;
size_t write_pointer = 0;
};
}
@interface ARMDecoderTests : XCTestCase
@end
@implementation ARMDecoderTests
- (void)testBarrelShifterLogicalLeft {
uint32_t value;
uint32_t carry;
// Test a shift by 1 into carry.
value = 0x8000'0000;
shift<ShiftType::LogicalLeft, true>(value, 1, carry);
XCTAssertEqual(value, 0);
XCTAssertNotEqual(carry, 0);
// Test a shift by 18 into carry.
value = 0x0000'4001;
shift<ShiftType::LogicalLeft, true>(value, 18, carry);
XCTAssertEqual(value, 0x4'0000);
XCTAssertNotEqual(carry, 0);
// Test a shift by 17, not generating carry.
value = 0x0000'4001;
shift<ShiftType::LogicalLeft, true>(value, 17, carry);
XCTAssertEqual(value, 0x8002'0000);
XCTAssertEqual(carry, 0);
}
- (void)testBarrelShifterLogicalRight {
uint32_t value;
uint32_t carry;
// Test successive shifts by 4; one generating carry and one not.
value = 0x12345678;
shift<ShiftType::LogicalRight, true>(value, 4, carry);
XCTAssertEqual(value, 0x1234567);
XCTAssertNotEqual(carry, 0);
shift<ShiftType::LogicalRight, true>(value, 4, carry);
XCTAssertEqual(value, 0x123456);
XCTAssertEqual(carry, 0);
// Test shift by 1.
value = 0x8003001;
shift<ShiftType::LogicalRight, true>(value, 1, carry);
XCTAssertEqual(value, 0x4001800);
XCTAssertNotEqual(carry, 0);
// Test a shift by greater than 32.
value = 0xffff'ffff;
shift<ShiftType::LogicalRight, true>(value, 33, carry);
XCTAssertEqual(value, 0);
XCTAssertEqual(carry, 0);
// Test shifts by 32: result is always 0, carry is whatever was in bit 31.
value = 0xffff'ffff;
shift<ShiftType::LogicalRight, true>(value, 32, carry);
XCTAssertEqual(value, 0);
XCTAssertNotEqual(carry, 0);
value = 0x7fff'ffff;
shift<ShiftType::LogicalRight, true>(value, 32, carry);
XCTAssertEqual(value, 0);
XCTAssertEqual(carry, 0);
// Test that a logical right shift by 0 is the same as a shift by 32.
value = 0xffff'ffff;
shift<ShiftType::LogicalRight, true>(value, 0, carry);
XCTAssertEqual(value, 0);
XCTAssertNotEqual(carry, 0);
}
- (void)testBarrelShifterArithmeticRight {
uint32_t value;
uint32_t carry;
// Test a short negative shift.
value = 0x8000'0030;
shift<ShiftType::ArithmeticRight, true>(value, 1, carry);
XCTAssertEqual(value, 0xc000'0018);
XCTAssertEqual(carry, 0);
// Test a medium negative shift without carry.
value = 0xffff'0000;
shift<ShiftType::ArithmeticRight, true>(value, 11, carry);
XCTAssertEqual(value, 0xffff'ffe0);
XCTAssertEqual(carry, 0);
// Test a medium negative shift with carry.
value = 0xffc0'0000;
shift<ShiftType::ArithmeticRight, true>(value, 23, carry);
XCTAssertEqual(value, 0xffff'ffff);
XCTAssertNotEqual(carry, 0);
// Test a long negative shift.
value = 0x8000'0000;
shift<ShiftType::ArithmeticRight, true>(value, 32, carry);
XCTAssertEqual(value, 0xffff'ffff);
XCTAssertNotEqual(carry, 0);
// Test a positive shift.
value = 0x0123'0031;
shift<ShiftType::ArithmeticRight, true>(value, 3, carry);
XCTAssertEqual(value, 0x24'6006);
XCTAssertEqual(carry, 0);
}
- (void)testBarrelShifterRotateRight {
uint32_t value;
uint32_t carry;
// Test a short rotate by one hex digit.
value = 0xabcd'1234;
shift<ShiftType::RotateRight, true>(value, 4, carry);
XCTAssertEqual(value, 0x4abc'd123);
XCTAssertEqual(carry, 0);
// Test a longer rotate, with carry.
value = 0xa5f9'6342;
shift<ShiftType::RotateRight, true>(value, 17, carry);
XCTAssertEqual(value, 0xb1a1'52fc);
XCTAssertNotEqual(carry, 0);
// Test a rotate by 32 without carry.
value = 0x385f'7dce;
shift<ShiftType::RotateRight, true>(value, 32, carry);
XCTAssertEqual(value, 0x385f'7dce);
XCTAssertEqual(carry, 0);
// Test a rotate by 32 with carry.
value = 0xfecd'ba12;
shift<ShiftType::RotateRight, true>(value, 32, carry);
XCTAssertEqual(value, 0xfecd'ba12);
XCTAssertNotEqual(carry, 0);
// Test a rotate through carry, carry not set.
value = 0x123f'abcf;
carry = 0;
shift<ShiftType::RotateRight, true>(value, 0, carry);
XCTAssertEqual(value, 0x091f'd5e7);
XCTAssertNotEqual(carry, 0);
// Test a rotate through carry, carry set.
value = 0x123f'abce;
carry = 1;
shift<ShiftType::RotateRight, true>(value, 0, carry);
XCTAssertEqual(value, 0x891f'd5e7);
XCTAssertEqual(carry, 0);
}
- (void)testRegisterModes {
Registers r;
// Set all user mode registers to their indices.
r.set_mode(Mode::User);
for(int c = 0; c < 15; c++) {
r[c] = c;
}
// Set FIQ registers.
r.set_mode(Mode::FIQ);
for(int c = 8; c < 15; c++) {
r[c] = c | 0x100;
}
// Set IRQ registers.
r.set_mode(Mode::IRQ);
for(int c = 13; c < 15; c++) {
r[c] = c | 0x200;
}
// Set supervisor registers.
r.set_mode(Mode::FIQ);
r.set_mode(Mode::User);
r.set_mode(Mode::Supervisor);
for(int c = 13; c < 15; c++) {
r[c] = c | 0x300;
}
// Check all results.
r.set_mode(Mode::User);
r.set_mode(Mode::FIQ);
for(int c = 0; c < 8; c++) {
XCTAssertEqual(r[c], c);
}
for(int c = 8; c < 15; c++) {
XCTAssertEqual(r[c], c | 0x100);
}
r.set_mode(Mode::FIQ);
r.set_mode(Mode::IRQ);
r.set_mode(Mode::User);
r.set_mode(Mode::FIQ);
r.set_mode(Mode::Supervisor);
for(int c = 0; c < 13; c++) {
XCTAssertEqual(r[c], c);
}
for(int c = 13; c < 15; c++) {
XCTAssertEqual(r[c], c | 0x300);
}
r.set_mode(Mode::FIQ);
r.set_mode(Mode::User);
for(int c = 0; c < 15; c++) {
XCTAssertEqual(r[c], c);
}
r.set_mode(Mode::Supervisor);
r.set_mode(Mode::IRQ);
for(int c = 0; c < 13; c++) {
XCTAssertEqual(r[c], c);
}
for(int c = 13; c < 15; c++) {
XCTAssertEqual(r[c], c | 0x200);
}
}
- (void)testMessy {
NSData *const tests =
[NSData dataWithContentsOfGZippedFile:
[[NSBundle bundleForClass:[self class]]
pathForResource:@"test"
ofType:@"txt.gz"
inDirectory:@"Messy ARM"]
];
const std::string text((char *)tests.bytes);
std::istringstream input(text);
input >> std::hex;
using Exec = Executor<Model::ARMv2, MemoryLedger>;
std::unique_ptr<Exec> test;
uint32_t instruction = 0;
while(!input.eof()) {
std::string label;
input >> label;
if(label == "**") {
input >> instruction;
test = std::make_unique<Exec>();
continue;
}
if(label == "Before:" || label == "After:") {
// Read register state.
uint32_t regs[16];
for(int c = 0; c < 16; c++) {
input >> regs[c];
}
auto &registers = test->registers();
if(label == "Before:") {
// This is the start of a new test.
registers.set_pc(regs[15] - 8);
registers.set_status(regs[15]);
for(uint32_t c = 0; c < 15; c++) {
registers[c] = regs[c];
}
} else {
// Execute test and compare.
execute<Model::ARMv2>(instruction, *test);
for(uint32_t c = 0; c < 15; c++) {
XCTAssertEqual(
regs[c],
registers[c],
@"R%d doesn't match during instruction %08x", c, instruction);
}
}
continue;
}
// TODO: supply information below to ledger, and then use and test it.
uint32_t address;
uint32_t value;
input >> address >> value;
if(label == "r.b") {
// Capture a byte read for provision.
test->bus.add_access<uint8_t>(true, address, value);
continue;
}
if(label == "r.w") {
// Capture a word read for provision.
test->bus.add_access<uint32_t>(true, address, value);
continue;
}
if(label == "w.b") {
// Capture a byte write for comparison.
test->bus.add_access<uint8_t>(false, address, value);
continue;
}
if(label == "w.w") {
// Capture a word write for comparison.
test->bus.add_access<uint32_t>(false, address, value);
continue;
}
}
XCTAssertNotNil(tests);
}
// TODO: turn the below into a trace-driven test case.
- (void)testROM319 {
constexpr ROM::Name rom_name = ROM::Name::AcornRISCOS319;
ROM::Request request(rom_name);
const auto roms = CSROMFetcher()(request);
auto executor = std::make_unique<Executor<Model::ARMv2, Memory>>();
executor->bus.rom = roms.find(rom_name)->second;
for(int c = 0; c < 1000; c++) {
uint32_t instruction;
executor->bus.read(executor->pc(), instruction, executor->registers().mode(), false);
if(instruction == 0xe33ff343) {
printf("");
}
printf("%08x: %08x [", executor->pc(), instruction);
for(int c = 0; c < 15; c++) {
printf("r%d:%08x ", c, executor->registers()[c]);
}
printf("psr:%08x]\n", executor->registers().status());
execute<Model::ARMv2>(instruction, *executor);
}
}
@end