1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-12-27 16:31:31 +00:00
CLK/Machines/Acorn/Archimedes/Video.hpp
2024-03-23 21:38:35 -04:00

340 lines
10 KiB
C++

//
// Video.hpp
// Clock Signal
//
// Created by Thomas Harte on 20/03/2024.
// Copyright © 2024 Thomas Harte. All rights reserved.
//
#pragma once
#include "../../../Outputs/Log.hpp"
#include "../../../Outputs/CRT/CRT.hpp"
#include <array>
#include <cstdint>
#include <cstring>
namespace Archimedes {
template <typename InterruptObserverT, typename ClockRateObserverT, typename SoundT>
struct Video {
Video(InterruptObserverT &interrupt_observer, ClockRateObserverT &clock_rate_observer, SoundT &sound, const uint8_t *ram) :
interrupt_observer_(interrupt_observer),
clock_rate_observer_(clock_rate_observer),
sound_(sound),
ram_(ram),
crt_(Outputs::Display::InputDataType::Red4Green4Blue4) {
set_clock_divider(3);
}
void write(uint32_t value) {
const auto target = (value >> 24) & 0xfc;
const auto timing_value = [](uint32_t value) -> uint32_t {
return (value >> 14) & 0x3ff;
};
const auto colour = [](uint32_t value) -> uint16_t {
uint8_t packed[2];
packed[0] = value & 0xf;
packed[1] = (value & 0xf0) | ((value & 0xf00) >> 8);
uint16_t result;
memcpy(&result, packed, 2);
return result;
};
switch(target) {
case 0x00: case 0x04: case 0x08: case 0x0c:
case 0x10: case 0x14: case 0x18: case 0x1c:
case 0x20: case 0x24: case 0x28: case 0x2c:
case 0x30: case 0x34: case 0x38: case 0x3c:
colours_[target >> 2] = colour(value);
break;
case 0x40: border_colour_ = colour(value); break;
case 0x44: case 0x48: case 0x4c:
logger.error().append("TODO: Cursor colour %d to %03x", (target - 0x44) >> 2, value & 0x1fff);
break;
case 0x80: horizontal_timing_.period = timing_value(value); break;
case 0x84: horizontal_timing_.sync_width = timing_value(value); break;
case 0x88: horizontal_timing_.border_start = timing_value(value); break;
case 0x8c: horizontal_timing_.display_start = timing_value(value); break;
case 0x90: horizontal_timing_.display_end = timing_value(value); break;
case 0x94: horizontal_timing_.border_end = timing_value(value); break;
case 0x98: horizontal_timing_.cursor_end = timing_value(value); break;
case 0x9c:
logger.error().append("TODO: Video horizontal interlace: %d", (value >> 14) & 0x3ff);
break;
case 0xa0: vertical_timing_.period = timing_value(value); break;
case 0xa4: vertical_timing_.sync_width = timing_value(value); break;
case 0xa8: vertical_timing_.border_start = timing_value(value); break;
case 0xac: vertical_timing_.display_start = timing_value(value); break;
case 0xb0: vertical_timing_.display_end = timing_value(value); break;
case 0xb4: vertical_timing_.border_end = timing_value(value); break;
case 0xb8: vertical_timing_.cursor_start = timing_value(value); break;
case 0xbc: vertical_timing_.cursor_end = timing_value(value); break;
case 0xe0:
logger.error().append("TODO: video control: %08x", value);
// Set pixel rate. This is the value that a 24Mhz clock should be divided
// by to get half the pixel rate.
switch(value & 0b11) {
case 0b00: set_clock_divider(6); break; // i.e. pixel clock = 8Mhz.
case 0b01: set_clock_divider(4); break; // 12Mhz.
case 0b10: set_clock_divider(3); break; // 16Mhz.
case 0b11: set_clock_divider(2); break; // 24Mhz.
}
break;
//
// Sound parameters.
//
case 0x60: case 0x64: case 0x68: case 0x6c:
case 0x70: case 0x74: case 0x78: case 0x7c: {
const uint8_t channel = ((value >> 26) + 7) & 7;
sound_.set_stereo_image(channel, value & 7);
} break;
case 0xc0:
sound_.set_frequency(value & 0x7f);
break;
default:
logger.error().append("TODO: unrecognised VIDC write of %08x", value);
break;
}
}
void tick() {
// Pick new horizontal state, possibly rolling over into the vertical.
horizontal_state_.increment_position(horizontal_timing_);
if(horizontal_state_.position == horizontal_timing_.period) {
horizontal_state_.position = 0;
vertical_state_.increment_position(vertical_timing_);
if(vertical_state_.position == vertical_timing_.period) {
vertical_state_.position = 0;
address_ = frame_start_;
entered_sync_ = true;
interrupt_observer_.update_interrupts();
}
}
// Accumulate total phase.
++time_in_phase_;
// Grab some more pixels if appropriate.
const auto flush_pixels = [&]() {
const auto duration = static_cast<int>(time_in_phase_);
crt_.output_data(duration, static_cast<size_t>(time_in_phase_));
time_in_phase_ = 0;
pixels_ = nullptr;
};
if(phase_ == Phase::Display) {
if(pixels_ && time_in_phase_ == PixelBufferSize) {
flush_pixels();
}
if(!pixels_) {
if(time_in_phase_) {
flush_pixels();
}
pixels_ = reinterpret_cast<uint16_t *>(crt_.begin_data(PixelBufferSize));
}
if(pixels_) {
// Each tick in here is two ticks of the pixel clock, so:
//
// 8bpp mode: output two bytes;
// 4bpp mode: output one byte;
// 2bpp mode: output one byte every second tick;
// 1bpp mode: output one byte every fourth tick.
// TODO: don't assume 4bpp.
const uint8_t next = ram_[address_];
++address_;
if(address_ == buffer_end_) address_ = buffer_start_;
pixels_[0] = colours_[next & 0xf];
pixels_[1] = colours_[next >> 4];
pixels_ += 2;
} else {
// TODO: don't assume 4bpp here either.
++address_;
if(address_ == buffer_end_) address_ = buffer_start_;
}
}
// Determine current output phase.
Phase new_phase;
switch(vertical_state_.phase()) {
case Phase::Sync: new_phase = Phase::Sync; break;
case Phase::Blank: new_phase = Phase::Blank; break;
case Phase::Border:
new_phase = horizontal_state_.phase() == Phase::Display ? Phase::Border : horizontal_state_.phase();
break;
case Phase::Display:
new_phase = horizontal_state_.phase();
break;
}
// Possibly output something.
if(new_phase != phase_) {
if(time_in_phase_) {
const auto duration = static_cast<int>(time_in_phase_);
switch(phase_) {
case Phase::Sync: crt_.output_sync(duration); break;
case Phase::Blank: crt_.output_blank(duration); break;
case Phase::Display: flush_pixels(); break;
case Phase::Border: crt_.output_level<uint16_t>(duration, border_colour_); break;
}
time_in_phase_ = 0;
}
phase_ = new_phase;
}
}
/// @returns @c true if a vertical retrace interrupt has been signalled since the last call to @c interrupt(); @c false otherwise.
bool interrupt() {
// Guess: edge triggered?
const bool interrupt = entered_sync_;
entered_sync_ = false;
return interrupt;
}
void set_frame_start(uint32_t address) { frame_start_ = address; }
void set_buffer_start(uint32_t address) { buffer_start_ = address; }
void set_buffer_end(uint32_t address) { buffer_end_ = address; }
void set_cursor_start(uint32_t address) { cursor_start_ = address; }
Outputs::CRT::CRT &crt() { return crt_; }
const Outputs::CRT::CRT &crt() const { return crt_; }
int clock_divider() const {
return static_cast<int>(clock_divider_);
}
private:
Log::Logger<Log::Source::ARMIOC> logger;
InterruptObserverT &interrupt_observer_;
ClockRateObserverT &clock_rate_observer_;
SoundT &sound_;
// In the current version of this code, video DMA occurrs costlessly,
// being deferred to the component itself.
const uint8_t *ram_ = nullptr;
Outputs::CRT::CRT crt_;
// Horizontal and vertical timing.
struct Timing {
uint32_t period = 0;
uint32_t sync_width = 0;
uint32_t border_start = 0;
uint32_t border_end = 0;
uint32_t display_start = 0;
uint32_t display_end = 0;
uint32_t cursor_start = 0;
uint32_t cursor_end = 0;
};
Timing horizontal_timing_, vertical_timing_;
// Current video state.
enum class Phase {
Sync, Blank, Border, Display,
};
struct State {
uint32_t position = 0;
void increment_position(const Timing &timing) {
++position;
if(position == 1024) position = 0;
if(position == timing.period) {
sync_active = timing.sync_width;
display_started = !timing.display_start;
display_ended = !timing.display_end;
border_started = !timing.border_start;
border_ended = !timing.border_end;
} else {
sync_active &= position != timing.sync_width;
display_started |= position == timing.display_start;
display_ended |= position == timing.display_end;
border_started |= position == timing.border_start;
border_ended |= position == timing.border_end;
}
}
bool sync_active = true;
bool border_started = false;
bool border_ended = false;
bool display_started = false;
bool display_ended = false;
Phase phase() const {
if(sync_active) return Phase::Sync;
if(display_started && !display_ended) return Phase::Display;
if(border_started && !border_ended) return Phase::Border;
return Phase::Blank;
}
};
State horizontal_state_, vertical_state_;
Phase phase_ = Phase::Sync;
uint32_t time_in_phase_ = 0;
uint16_t *pixels_ = nullptr;
static constexpr size_t PixelBufferSize = 320;
// Programmer-set addresses.
uint32_t buffer_start_ = 0;
uint32_t buffer_end_ = 0;
uint32_t frame_start_ = 0;
uint32_t cursor_start_ = 0;
// Ephemeral address state.
uint32_t address_ = 0;
// Colour palette, converted to internal format.
uint16_t border_colour_;
std::array<uint16_t, 16> colours_{};
// An interrupt flag; more closely related to the interface by which
// my implementation of the IOC picks up an interrupt request than
// to hardware.
bool entered_sync_ = false;
// The divider that would need to be applied to a 24Mhz clock to
// get half the current pixel clock; counting is in units of half
// the pixel clock because that's the fidelity at which the programmer
// places horizontal events — display start, end, sync period, etc.
uint32_t clock_divider_ = 0;
void set_clock_divider(uint32_t divider) {
if(divider == clock_divider_) {
return;
}
clock_divider_ = divider;
const auto cycles_per_line = static_cast<int>(24'000'000 / (divider * 312 * 50));
crt_.set_new_timing(
cycles_per_line,
312, /* Height of display. */
Outputs::CRT::PAL::ColourSpace,
Outputs::CRT::PAL::ColourCycleNumerator,
Outputs::CRT::PAL::ColourCycleDenominator,
Outputs::CRT::PAL::VerticalSyncLength,
Outputs::CRT::PAL::AlternatesPhase);
clock_rate_observer_.update_clock_rates();
}
};
}