Remove spurious CRLFs

This commit is contained in:
Michael C. Martin 2012-05-29 18:23:28 -07:00
parent af50326e39
commit 57e663cf29
5 changed files with 1044 additions and 1044 deletions

View File

@ -1,451 +1,451 @@
<appendix id="ref-link">
<title>Ophis Command Reference</title>
<section>
<title>Command Modes</title>
<para>
These mostly follow the <emphasis>MOS Technology 6500
Microprocessor Family Programming Manual</emphasis>, except
for the Accumulator mode. Accumulator instructions are written
and interpreted identically to Implied mode instructions.
</para>
<itemizedlist>
<listitem><para><emphasis>Implied:</emphasis> <literal>RTS</literal></para></listitem>
<listitem><para><emphasis>Accumulator:</emphasis> <literal>LSR</literal></para></listitem>
<listitem><para><emphasis>Immediate:</emphasis> <literal>LDA #$06</literal></para></listitem>
<listitem><para><emphasis>Zero Page:</emphasis> <literal>LDA $7C</literal></para></listitem>
<listitem><para><emphasis>Zero Page, X:</emphasis> <literal>LDA $7C,X</literal></para></listitem>
<listitem><para><emphasis>Zero Page, Y:</emphasis> <literal>LDA $7C,Y</literal></para></listitem>
<listitem><para><emphasis>Absolute:</emphasis> <literal>LDA $D020</literal></para></listitem>
<listitem><para><emphasis>Absolute, X:</emphasis> <literal>LDA $D000,X</literal></para></listitem>
<listitem><para><emphasis>Absolute, Y:</emphasis> <literal>LDA $D000,Y</literal></para></listitem>
<listitem><para><emphasis>(Zero Page Indirect, X):</emphasis> <literal>LDA ($80, X)</literal></para></listitem>
<listitem><para><emphasis>(Zero Page Indirect), Y:</emphasis> <literal>LDA ($80), Y</literal></para></listitem>
<listitem><para><emphasis>(Absolute Indirect):</emphasis> <literal>JMP ($A000)</literal></para></listitem>
<listitem><para><emphasis>Relative:</emphasis> <literal>BNE loop</literal></para></listitem>
<listitem><para><emphasis>(Absolute Indirect, X):</emphasis> <literal>JMP ($A000, X)</literal> &mdash; Only available with 65C02 extensions</para></listitem>
<listitem><para><emphasis>(Zero Page Indirect):</emphasis> <literal>LDX ($80)</literal> &mdash; Only available with 65C02 extensions</para></listitem>
</itemizedlist>
</section>
<section>
<title>Basic arguments</title>
<para>
Most arguments are just a number or label. The formats for
these are below.
</para>
<section>
<title>Numeric types</title>
<itemizedlist>
<listitem><para><emphasis>Hex:</emphasis> <literal>$41</literal> (Prefixed with $)</para></listitem>
<listitem><para><emphasis>Decimal:</emphasis> <literal>65</literal> (No markings)</para></listitem>
<listitem><para><emphasis>Octal:</emphasis> <literal>0101</literal> (Prefixed with zero)</para></listitem>
<listitem><para><emphasis>Binary:</emphasis> <literal>%01000001</literal> (Prefixed with %)</para></listitem>
<listitem><para><emphasis>Character:</emphasis> <literal>'A</literal> (Prefixed with single quote)</para></listitem>
</itemizedlist>
</section>
<section>
<title>Label types</title>
<para>
Normal labels are simply referred to by name. Anonymous
labels may be referenced with strings of - or + signs (the
label <literal>-</literal> refers to the immediate
previous anonymous label, <literal>--</literal> the
one before that, etc., while <literal>+</literal>
refers to the next anonymous label), and the special
label <literal>^</literal> refers to the program
counter at the start of the current instruction or directive.
</para>
<para>
Normal labels are <emphasis>defined</emphasis> by
prefixing a line with the label name and then a colon
(e.g., <literal>label:</literal>). Anonymous labels
are defined by prefixing a line with an asterisk
(e.g., <literal>*</literal>).
</para>
<para>
Temporary labels are only reachable from inside the
innermost enclosing <literal>.scope</literal>
statement. They are identical to normal labels in every
way, except that they start with an underscore.
</para>
</section>
<section>
<title>String types</title>
<para>
Strings are enclosed in double quotation marks. Backslashed
characters (including backslashes and double quotes) are
treated literally, so the string <literal>"The man said,
\"The \\ character is the backslash.\""</literal> produces
the ASCII sequence for <literal>The man said, "The \
character is the backslash."</literal>
</para>
<para>
Strings are generally only used as arguments to assembler
directives&mdash;usually for filenames
(e.g., <literal>.include</literal>) but also for string
data (in association with <literal>.byte</literal>).
</para>
<para>
It is legal, though unusual, to attempt to pass a string to
the other data statements. This will produces a series of
words/dwords where all bytes that aren't least-significant
are zero. Endianness and size will match what the directive
itself indicated.
</para>
</section>
</section>
<section>
<title>Compound Arguments</title>
<para>
Compound arguments may be built up from simple ones, using the
standard +, -, *, and / operators, which carry the usual
precedence. Also, the unary operators &gt; and &lt;, which
bind more tightly than anything else, provide the high and low
bytes of 16-bit values, respectively.
</para>
<para>
Use brackets [ ] instead of parentheses ( ) when grouping
arithmetic operations, as the parentheses are needed for the
indirect addressing modes.
</para>
<para>
Examples:
</para>
<itemizedlist>
<listitem><para><literal>$D000</literal> evaluates to $D000</para></listitem>
<listitem><para><literal>$D000+32</literal> evaluates to $D020</para></listitem>
<listitem><para><literal>$D000+$20</literal> also evaluates to $D020</para></listitem>
<listitem><para><literal>&lt;$D000+32</literal> evaluates to $20</para></listitem>
<listitem><para><literal>&gt;$D000+32</literal> evaluates to $F0</para></listitem>
<listitem><para><literal>&gt;[$D000+32]</literal> evaluates to $D0</para></listitem>
<listitem><para><literal>&gt;$D000-275</literal> evaluates to $CE</para></listitem>
</itemizedlist>
</section>
<section>
<title>Memory Model</title>
<para>
In order to properly compute the locations of labels and the
like, Ophis must keep track of where assembled code will
actually be sitting in memory, and it strives to do this in a
way that is independent both of the target file and of the
target machine.
</para>
<section>
<title>Basic PC tracking</title>
<para>
The primary technique Ophis uses is <emphasis>program counter
tracking</emphasis>. As it assembles the code, it keeps
track of a virtual program counter, and uses that to
determine where the labels should go.
</para>
<para>
In the absence of an <literal>.org</literal> directive, it
assumes a starting PC of zero. <literal>.org</literal>
is a simple directive, setting the PC to the value
that <literal>.org</literal> specifies. In the simplest
case, one <literal>.org</literal> directive appears at the
beginning of the code and sets the location for the rest of
the code, which is one contiguous block.
</para>
</section>
<section>
<title>Basic Segmentation simulation</title>
<para>
However, this isn't always practical. Often one wishes to
have a region of memory reserved for data without actually
mapping that memory to the file. On some systems (typically
cartridge-based systems where ROM and RAM are seperate, and
the target file only specifies the ROM image) this is
mandatory. In order to access these variables symbolically,
it's necessary to put the values into the label lookup
table.
</para>
<para>
It is possible, but inconvenient, to do this
with <literal>.alias</literal>, assigning a specific
memory location to each variable. This requires careful
coordination through your code, and makes creating reusable
libraries all but impossible.
</para>
<para>
A better approach is to reserve a section at the beginning
or end of your program, put an <literal>.org</literal>
directive in, then use the <literal>.space</literal>
directive to divide up the data area. This is still a bit
inconvenient, though, because all variables must be
assigned all at once. What we'd really like is to keep
multiple PC counters, one for data and one for code.
</para>
<para>
The <literal>.text</literal>
and <literal>.data</literal> directives do this. Each
has its own PC that starts at zero, and you can switch
between the two at any point without corrupting the other's
counter. In this way each function can have
a <literal>.data</literal> section (filled
with <literal>.space</literal> commands) and
a <literal>.text</literal> section (that contains the
actual code). This lets our library routines be almost
completely self-contained - we can have one source file
that could be <literal>.included</literal> by multiple
projects without getting in anything's way.
</para>
<para>
However, any given program may have its own ideas about
where data and code go, and it's good to ensure with
a <literal>.checkpc</literal> at the end of your code
that you haven't accidentally overwritten code with data or
vice versa. If your <literal>.data</literal>
segment <emphasis>did</emphasis> start at zero, it's
probably wise to make sure you aren't smashing the stack,
too (which is sitting in the region from $0100 to
$01FF).
</para>
<para>
If you write code with no segment-defining statements in
it, the default segment
is <literal>text</literal>.
</para>
<para>
The <literal>data</literal> segment is designed only
for organizing labels. As such, errors will be flagged if
you attempt to actually output information into
a <literal>data</literal> segment.
</para>
</section>
<section>
<title>General Segmentation Simulation</title>
<para>
One text and data segment each is usually sufficient, but
for the cases where it is not, Ophis allows for user-defined
segments. Putting a label
after <literal>.text</literal>
or <literal>.data</literal> produces a new segment with
the specified name.
</para>
<para>
Say, for example, that we have access to the RAM at the low
end of the address space, but want to reserve the zero page
for truly critical variables, and use the rest of RAM for
everything else. Let's also assume that this is a 6510
chip, and locations $00 and $01 are reserved for the I/O
port. We could start our program off with:
</para>
<programlisting>
.data
.org $200
.data zp
.org $2
.text
.org $800
</programlisting>
<para>
And, to be safe, we would probably want to end our code
with checks to make sure we aren't overwriting anything:
</para>
<programlisting>
.data
.checkpc $800
.data zp
.checkpc $100
</programlisting>
</section>
</section>
<section>
<title>Macros</title>
<para>
Assembly language is a powerful tool&mdash;however, there are
many tasks that need to be done repeatedly, and with
mind-numbing minor modifications. Ophis includes a facility
for <emphasis>macros</emphasis> to allow this. Ophis macros
are very similar in form to function calls in higher level
languages.
</para>
<section>
<title>Defining Macros</title>
<para>
Macros are defined with the <literal>.macro</literal>
and <literal>.macend</literal> commands. Here's a
simple one that will clear the screen on a Commodore
64:
</para>
<programlisting>
.macro clr'screen
lda #147
jsr $FFD2
.macend
</programlisting>
</section>
<section>
<title>Invoking Macros</title>
<para>
To invoke a macro, either use
the <literal>.invoke</literal> command or backquote the
name of the routine. The previous macro may be expanded
out in either of two ways, at any point in the
source:
</para>
<programlisting>.invoke clr'screen</programlisting>
<para>or</para>
<programlisting>`clr'screen</programlisting>
<para>will work equally well.</para>
</section>
<section>
<title>Passing Arguments to Macros</title>
<para>
Macros may take arguments. The arguments to a macro are
all of the <quote>word</quote> type, though byte values may
be passed and used as bytes as well. The first argument in
an invocation is bound to the label
<literal>_1</literal>, the second
to <literal>_2</literal>, and so on. Here's a macro
for storing a 16-bit value into a word pointer:
</para>
<programlisting>
.macro store16 ; `store16 dest, src
lda #&lt;_2
sta _1
lda #&gt;_2
sta _1+1
.macend
</programlisting>
<para>
Macro arguments behave, for the most part, as if they were
defined by <literal>.alias</literal>
commands <emphasis>in the calling context</emphasis>.
(They differ in that they will not produce duplicate-label
errors if those names already exist in the calling scope,
and in that they disappear after the call is
completed.)
</para>
</section>
<section>
<title>Features and Restrictions of the Ophis Macro Model</title>
<para>
Unlike most macro systems (which do textual replacement),
Ophis macros evaluate their arguments and bind them into the
symbol table as temporary labels. This produces some
benefits, but it also puts some restrictions on what kinds of
macros may be defined.
</para>
<para>
The primary benefit of this <quote>expand-via-binding</quote>
discipline is that there are no surprises in the semantics.
The expression <literal>_1+1</literal> in the macro above
will always evaluate to one more than the value that was
passed as the first argument, even if that first argument is
some immensely complex expression that an
expand-via-substitution method may accidentally
mangle.
</para>
<para>
The primary disadvantage of the expand-via-binding
discipline is that only fixed numbers of words and bytes
may be passed. A substitution-based system could define a
macro including the line <literal>LDA _1</literal> and
accept as arguments both <literal>$C000</literal>
(which would put the value of memory location $C000 into
the accumulator) and <literal>#$40</literal> (which
would put the immediate value $40 into the accumulator).
If you <emphasis>really</emphasis> need this kind of
behavior, a run a C preprocessor over your Ophis source,
and use <literal>#define</literal> to your heart's
content.
</para>
</section>
</section>
<section>
<title>Assembler directives</title>
<para>
Assembler directives are all instructions to the assembler
that are not actual instructions. Ophis's set of directives
follow.
</para>
<itemizedlist>
<listitem><para><literal>.advance</literal> <emphasis>address</emphasis>:
Forces the program counter to
be <emphasis>address</emphasis>. Unlike
the <literal>.org</literal>
directive, <literal>.advance</literal> outputs zeroes until the
program counter reaches a specified address. Attempting
to <literal>.advance</literal> to a point behind the current
program counter is an assemble-time error.</para></listitem>
<listitem><para><literal>.alias</literal> <emphasis>label</emphasis> <emphasis>value</emphasis>: The
.alias directive assigns an arbitrary value to a label. This
value may be an arbitrary argument, but cannot reference any
label that has not already been defined (this prevents
recursive label dependencies).</para></listitem>
<listitem><para><literal>.byte</literal> <emphasis>arg</emphasis> [ , <emphasis>arg</emphasis>, ... ]:
Specifies a series of arguments, which are evaluated, and
strings, which are included as raw ASCII data. The final
results of these arguments must be one byte in size. Seperate
constants are seperated by comments.</para></listitem>
<listitem><para><literal>.checkpc</literal> <emphasis>address</emphasis>: Ensures that the
program counter is less than or equal to the address
specified, and emits an assemble-time error if it is not.
<emphasis>This produces no code in the final binary - it is there to
ensure that linking a large amount of data together does not
overstep memory boundaries.</emphasis></para></listitem>
<listitem><para><literal>.data</literal> <emphasis>[label]</emphasis>: Sets the segment to
the segment name specified and disallows output. If no label
is given, switches to the default data segment.</para></listitem>
<listitem><para><literal>.incbin</literal> <emphasis>filename</emphasis>: Inserts the
contents of the file specified as binary data. Use it to
include graphics information, precompiled code, or other
non-assembler data.</para></listitem>
<listitem><para><literal>.include</literal> <emphasis>filename</emphasis>: Includes the
entirety of the file specified at that point in the program.
Use this to order your final sources.</para></listitem>
<listitem><para><literal>.org</literal> <emphasis>address</emphasis>: Sets the program
counter to the address specified. <emphasis>This does not emit any
code in and of itself, nor does it overwrite anything that
previously existed.</emphasis> If you wish to jump ahead in memory,
use <literal>.advance</literal>.</para></listitem>
<listitem><para><literal>.require</literal> <emphasis>filename</emphasis>: Includes the entirety
of the file specified at that point in the program. Unlike <literal>.include</literal>,
however, code included with <literal>.require</literal> will only be inserted once.
The <literal>.require</literal> directive is useful for ensuring that certain code libraries
are somewhere in the final binary. They are also very useful for guaranteeing that
macro libraries are available.</para></listitem>
<listitem><para><literal>.space</literal> <emphasis>label</emphasis> <emphasis>size</emphasis>: This
directive is used to organize global variables. It defines the
label specified to be at the current location of the program
counter, and then advances the program counter <emphasis>size</emphasis>
steps ahead. No actual code is produced. This is equivalent
to <literal>label: .org ^+size</literal>.</para></listitem>
<listitem><para><literal>.text</literal> <emphasis>[label]</emphasis>: Sets the segment to
the segment name specified and allows output. If no label is
given, switches to the default text segment.</para></listitem>
<listitem><para><literal>.word</literal> <emphasis>arg</emphasis> [ , <emphasis>arg</emphasis>, ... ]:
Like <literal>.byte</literal>, but values are all treated as two-byte
values and stored low-end first (as is the 6502's wont). Use
this to create jump tables (an unadorned label will evaluate
to that label's location) or otherwise store 16-bit
data.</para></listitem>
<listitem><para><literal>.dword</literal> <emphasis>arg</emphasis> [ , <emphasis>arg</emphasis>, ...]:
Like <literal>.word</literal>, but for 32-bit values.</para></listitem>
<listitem><para><literal>.wordbe</literal> <emphasis>arg</emphasis> [ , <emphasis>arg</emphasis>, ...]:
Like <literal>.word</literal>, but stores the value in a big-endian format (high byte first).</para></listitem>
<listitem><para><literal>.dwordbe</literal> <emphasis>arg</emphasis> [ , <emphasis>arg</emphasis>, ...]:
Like <literal>.dword</literal>, but stores the value high byte first.</para></listitem>
<listitem><para><literal>.scope</literal>: Starts a new scope block. Labels
that begin with an underscore are only reachable from within
their innermost enclosing <literal>.scope</literal> statement.</para></listitem>
<listitem><para><literal>.scend</literal>: Ends a scope block. Makes the
temporary labels defined since the last <literal>.scope</literal>
statement unreachable, and permits them to be redefined in a
new scope.</para></listitem>
<listitem><para><literal>.macro</literal> <emphasis>name</emphasis>: Begins a macro
definition block. This is a scope block that can be inlined
at arbitrary points with <literal>.invoke</literal>. Arguments to the
macro will be bound to temporary labels with names like
<literal>_1</literal>, <literal>_2</literal>, etc.</para></listitem>
<listitem><para><literal>.macend</literal>: Ends a macro definition
block.</para></listitem>
<listitem><para><literal>.invoke</literal> <emphasis>label</emphasis> [<emphasis>argument</emphasis> [,
<emphasis>argument</emphasis> ...]]: invokes (inlines) the specified
macro, binding the values of the arguments to the ones the
macro definition intends to read. A shorthand for <literal>.invoke</literal>
is the name of the macro to invoke, backquoted.</para></listitem>
</itemizedlist>
</section>
</appendix>
<appendix id="ref-link">
<title>Ophis Command Reference</title>
<section>
<title>Command Modes</title>
<para>
These mostly follow the <emphasis>MOS Technology 6500
Microprocessor Family Programming Manual</emphasis>, except
for the Accumulator mode. Accumulator instructions are written
and interpreted identically to Implied mode instructions.
</para>
<itemizedlist>
<listitem><para><emphasis>Implied:</emphasis> <literal>RTS</literal></para></listitem>
<listitem><para><emphasis>Accumulator:</emphasis> <literal>LSR</literal></para></listitem>
<listitem><para><emphasis>Immediate:</emphasis> <literal>LDA #$06</literal></para></listitem>
<listitem><para><emphasis>Zero Page:</emphasis> <literal>LDA $7C</literal></para></listitem>
<listitem><para><emphasis>Zero Page, X:</emphasis> <literal>LDA $7C,X</literal></para></listitem>
<listitem><para><emphasis>Zero Page, Y:</emphasis> <literal>LDA $7C,Y</literal></para></listitem>
<listitem><para><emphasis>Absolute:</emphasis> <literal>LDA $D020</literal></para></listitem>
<listitem><para><emphasis>Absolute, X:</emphasis> <literal>LDA $D000,X</literal></para></listitem>
<listitem><para><emphasis>Absolute, Y:</emphasis> <literal>LDA $D000,Y</literal></para></listitem>
<listitem><para><emphasis>(Zero Page Indirect, X):</emphasis> <literal>LDA ($80, X)</literal></para></listitem>
<listitem><para><emphasis>(Zero Page Indirect), Y:</emphasis> <literal>LDA ($80), Y</literal></para></listitem>
<listitem><para><emphasis>(Absolute Indirect):</emphasis> <literal>JMP ($A000)</literal></para></listitem>
<listitem><para><emphasis>Relative:</emphasis> <literal>BNE loop</literal></para></listitem>
<listitem><para><emphasis>(Absolute Indirect, X):</emphasis> <literal>JMP ($A000, X)</literal> &mdash; Only available with 65C02 extensions</para></listitem>
<listitem><para><emphasis>(Zero Page Indirect):</emphasis> <literal>LDX ($80)</literal> &mdash; Only available with 65C02 extensions</para></listitem>
</itemizedlist>
</section>
<section>
<title>Basic arguments</title>
<para>
Most arguments are just a number or label. The formats for
these are below.
</para>
<section>
<title>Numeric types</title>
<itemizedlist>
<listitem><para><emphasis>Hex:</emphasis> <literal>$41</literal> (Prefixed with $)</para></listitem>
<listitem><para><emphasis>Decimal:</emphasis> <literal>65</literal> (No markings)</para></listitem>
<listitem><para><emphasis>Octal:</emphasis> <literal>0101</literal> (Prefixed with zero)</para></listitem>
<listitem><para><emphasis>Binary:</emphasis> <literal>%01000001</literal> (Prefixed with %)</para></listitem>
<listitem><para><emphasis>Character:</emphasis> <literal>'A</literal> (Prefixed with single quote)</para></listitem>
</itemizedlist>
</section>
<section>
<title>Label types</title>
<para>
Normal labels are simply referred to by name. Anonymous
labels may be referenced with strings of - or + signs (the
label <literal>-</literal> refers to the immediate
previous anonymous label, <literal>--</literal> the
one before that, etc., while <literal>+</literal>
refers to the next anonymous label), and the special
label <literal>^</literal> refers to the program
counter at the start of the current instruction or directive.
</para>
<para>
Normal labels are <emphasis>defined</emphasis> by
prefixing a line with the label name and then a colon
(e.g., <literal>label:</literal>). Anonymous labels
are defined by prefixing a line with an asterisk
(e.g., <literal>*</literal>).
</para>
<para>
Temporary labels are only reachable from inside the
innermost enclosing <literal>.scope</literal>
statement. They are identical to normal labels in every
way, except that they start with an underscore.
</para>
</section>
<section>
<title>String types</title>
<para>
Strings are enclosed in double quotation marks. Backslashed
characters (including backslashes and double quotes) are
treated literally, so the string <literal>"The man said,
\"The \\ character is the backslash.\""</literal> produces
the ASCII sequence for <literal>The man said, "The \
character is the backslash."</literal>
</para>
<para>
Strings are generally only used as arguments to assembler
directives&mdash;usually for filenames
(e.g., <literal>.include</literal>) but also for string
data (in association with <literal>.byte</literal>).
</para>
<para>
It is legal, though unusual, to attempt to pass a string to
the other data statements. This will produces a series of
words/dwords where all bytes that aren't least-significant
are zero. Endianness and size will match what the directive
itself indicated.
</para>
</section>
</section>
<section>
<title>Compound Arguments</title>
<para>
Compound arguments may be built up from simple ones, using the
standard +, -, *, and / operators, which carry the usual
precedence. Also, the unary operators &gt; and &lt;, which
bind more tightly than anything else, provide the high and low
bytes of 16-bit values, respectively.
</para>
<para>
Use brackets [ ] instead of parentheses ( ) when grouping
arithmetic operations, as the parentheses are needed for the
indirect addressing modes.
</para>
<para>
Examples:
</para>
<itemizedlist>
<listitem><para><literal>$D000</literal> evaluates to $D000</para></listitem>
<listitem><para><literal>$D000+32</literal> evaluates to $D020</para></listitem>
<listitem><para><literal>$D000+$20</literal> also evaluates to $D020</para></listitem>
<listitem><para><literal>&lt;$D000+32</literal> evaluates to $20</para></listitem>
<listitem><para><literal>&gt;$D000+32</literal> evaluates to $F0</para></listitem>
<listitem><para><literal>&gt;[$D000+32]</literal> evaluates to $D0</para></listitem>
<listitem><para><literal>&gt;$D000-275</literal> evaluates to $CE</para></listitem>
</itemizedlist>
</section>
<section>
<title>Memory Model</title>
<para>
In order to properly compute the locations of labels and the
like, Ophis must keep track of where assembled code will
actually be sitting in memory, and it strives to do this in a
way that is independent both of the target file and of the
target machine.
</para>
<section>
<title>Basic PC tracking</title>
<para>
The primary technique Ophis uses is <emphasis>program counter
tracking</emphasis>. As it assembles the code, it keeps
track of a virtual program counter, and uses that to
determine where the labels should go.
</para>
<para>
In the absence of an <literal>.org</literal> directive, it
assumes a starting PC of zero. <literal>.org</literal>
is a simple directive, setting the PC to the value
that <literal>.org</literal> specifies. In the simplest
case, one <literal>.org</literal> directive appears at the
beginning of the code and sets the location for the rest of
the code, which is one contiguous block.
</para>
</section>
<section>
<title>Basic Segmentation simulation</title>
<para>
However, this isn't always practical. Often one wishes to
have a region of memory reserved for data without actually
mapping that memory to the file. On some systems (typically
cartridge-based systems where ROM and RAM are seperate, and
the target file only specifies the ROM image) this is
mandatory. In order to access these variables symbolically,
it's necessary to put the values into the label lookup
table.
</para>
<para>
It is possible, but inconvenient, to do this
with <literal>.alias</literal>, assigning a specific
memory location to each variable. This requires careful
coordination through your code, and makes creating reusable
libraries all but impossible.
</para>
<para>
A better approach is to reserve a section at the beginning
or end of your program, put an <literal>.org</literal>
directive in, then use the <literal>.space</literal>
directive to divide up the data area. This is still a bit
inconvenient, though, because all variables must be
assigned all at once. What we'd really like is to keep
multiple PC counters, one for data and one for code.
</para>
<para>
The <literal>.text</literal>
and <literal>.data</literal> directives do this. Each
has its own PC that starts at zero, and you can switch
between the two at any point without corrupting the other's
counter. In this way each function can have
a <literal>.data</literal> section (filled
with <literal>.space</literal> commands) and
a <literal>.text</literal> section (that contains the
actual code). This lets our library routines be almost
completely self-contained - we can have one source file
that could be <literal>.included</literal> by multiple
projects without getting in anything's way.
</para>
<para>
However, any given program may have its own ideas about
where data and code go, and it's good to ensure with
a <literal>.checkpc</literal> at the end of your code
that you haven't accidentally overwritten code with data or
vice versa. If your <literal>.data</literal>
segment <emphasis>did</emphasis> start at zero, it's
probably wise to make sure you aren't smashing the stack,
too (which is sitting in the region from $0100 to
$01FF).
</para>
<para>
If you write code with no segment-defining statements in
it, the default segment
is <literal>text</literal>.
</para>
<para>
The <literal>data</literal> segment is designed only
for organizing labels. As such, errors will be flagged if
you attempt to actually output information into
a <literal>data</literal> segment.
</para>
</section>
<section>
<title>General Segmentation Simulation</title>
<para>
One text and data segment each is usually sufficient, but
for the cases where it is not, Ophis allows for user-defined
segments. Putting a label
after <literal>.text</literal>
or <literal>.data</literal> produces a new segment with
the specified name.
</para>
<para>
Say, for example, that we have access to the RAM at the low
end of the address space, but want to reserve the zero page
for truly critical variables, and use the rest of RAM for
everything else. Let's also assume that this is a 6510
chip, and locations $00 and $01 are reserved for the I/O
port. We could start our program off with:
</para>
<programlisting>
.data
.org $200
.data zp
.org $2
.text
.org $800
</programlisting>
<para>
And, to be safe, we would probably want to end our code
with checks to make sure we aren't overwriting anything:
</para>
<programlisting>
.data
.checkpc $800
.data zp
.checkpc $100
</programlisting>
</section>
</section>
<section>
<title>Macros</title>
<para>
Assembly language is a powerful tool&mdash;however, there are
many tasks that need to be done repeatedly, and with
mind-numbing minor modifications. Ophis includes a facility
for <emphasis>macros</emphasis> to allow this. Ophis macros
are very similar in form to function calls in higher level
languages.
</para>
<section>
<title>Defining Macros</title>
<para>
Macros are defined with the <literal>.macro</literal>
and <literal>.macend</literal> commands. Here's a
simple one that will clear the screen on a Commodore
64:
</para>
<programlisting>
.macro clr'screen
lda #147
jsr $FFD2
.macend
</programlisting>
</section>
<section>
<title>Invoking Macros</title>
<para>
To invoke a macro, either use
the <literal>.invoke</literal> command or backquote the
name of the routine. The previous macro may be expanded
out in either of two ways, at any point in the
source:
</para>
<programlisting>.invoke clr'screen</programlisting>
<para>or</para>
<programlisting>`clr'screen</programlisting>
<para>will work equally well.</para>
</section>
<section>
<title>Passing Arguments to Macros</title>
<para>
Macros may take arguments. The arguments to a macro are
all of the <quote>word</quote> type, though byte values may
be passed and used as bytes as well. The first argument in
an invocation is bound to the label
<literal>_1</literal>, the second
to <literal>_2</literal>, and so on. Here's a macro
for storing a 16-bit value into a word pointer:
</para>
<programlisting>
.macro store16 ; `store16 dest, src
lda #&lt;_2
sta _1
lda #&gt;_2
sta _1+1
.macend
</programlisting>
<para>
Macro arguments behave, for the most part, as if they were
defined by <literal>.alias</literal>
commands <emphasis>in the calling context</emphasis>.
(They differ in that they will not produce duplicate-label
errors if those names already exist in the calling scope,
and in that they disappear after the call is
completed.)
</para>
</section>
<section>
<title>Features and Restrictions of the Ophis Macro Model</title>
<para>
Unlike most macro systems (which do textual replacement),
Ophis macros evaluate their arguments and bind them into the
symbol table as temporary labels. This produces some
benefits, but it also puts some restrictions on what kinds of
macros may be defined.
</para>
<para>
The primary benefit of this <quote>expand-via-binding</quote>
discipline is that there are no surprises in the semantics.
The expression <literal>_1+1</literal> in the macro above
will always evaluate to one more than the value that was
passed as the first argument, even if that first argument is
some immensely complex expression that an
expand-via-substitution method may accidentally
mangle.
</para>
<para>
The primary disadvantage of the expand-via-binding
discipline is that only fixed numbers of words and bytes
may be passed. A substitution-based system could define a
macro including the line <literal>LDA _1</literal> and
accept as arguments both <literal>$C000</literal>
(which would put the value of memory location $C000 into
the accumulator) and <literal>#$40</literal> (which
would put the immediate value $40 into the accumulator).
If you <emphasis>really</emphasis> need this kind of
behavior, a run a C preprocessor over your Ophis source,
and use <literal>#define</literal> to your heart's
content.
</para>
</section>
</section>
<section>
<title>Assembler directives</title>
<para>
Assembler directives are all instructions to the assembler
that are not actual instructions. Ophis's set of directives
follow.
</para>
<itemizedlist>
<listitem><para><literal>.advance</literal> <emphasis>address</emphasis>:
Forces the program counter to
be <emphasis>address</emphasis>. Unlike
the <literal>.org</literal>
directive, <literal>.advance</literal> outputs zeroes until the
program counter reaches a specified address. Attempting
to <literal>.advance</literal> to a point behind the current
program counter is an assemble-time error.</para></listitem>
<listitem><para><literal>.alias</literal> <emphasis>label</emphasis> <emphasis>value</emphasis>: The
.alias directive assigns an arbitrary value to a label. This
value may be an arbitrary argument, but cannot reference any
label that has not already been defined (this prevents
recursive label dependencies).</para></listitem>
<listitem><para><literal>.byte</literal> <emphasis>arg</emphasis> [ , <emphasis>arg</emphasis>, ... ]:
Specifies a series of arguments, which are evaluated, and
strings, which are included as raw ASCII data. The final
results of these arguments must be one byte in size. Seperate
constants are seperated by comments.</para></listitem>
<listitem><para><literal>.checkpc</literal> <emphasis>address</emphasis>: Ensures that the
program counter is less than or equal to the address
specified, and emits an assemble-time error if it is not.
<emphasis>This produces no code in the final binary - it is there to
ensure that linking a large amount of data together does not
overstep memory boundaries.</emphasis></para></listitem>
<listitem><para><literal>.data</literal> <emphasis>[label]</emphasis>: Sets the segment to
the segment name specified and disallows output. If no label
is given, switches to the default data segment.</para></listitem>
<listitem><para><literal>.incbin</literal> <emphasis>filename</emphasis>: Inserts the
contents of the file specified as binary data. Use it to
include graphics information, precompiled code, or other
non-assembler data.</para></listitem>
<listitem><para><literal>.include</literal> <emphasis>filename</emphasis>: Includes the
entirety of the file specified at that point in the program.
Use this to order your final sources.</para></listitem>
<listitem><para><literal>.org</literal> <emphasis>address</emphasis>: Sets the program
counter to the address specified. <emphasis>This does not emit any
code in and of itself, nor does it overwrite anything that
previously existed.</emphasis> If you wish to jump ahead in memory,
use <literal>.advance</literal>.</para></listitem>
<listitem><para><literal>.require</literal> <emphasis>filename</emphasis>: Includes the entirety
of the file specified at that point in the program. Unlike <literal>.include</literal>,
however, code included with <literal>.require</literal> will only be inserted once.
The <literal>.require</literal> directive is useful for ensuring that certain code libraries
are somewhere in the final binary. They are also very useful for guaranteeing that
macro libraries are available.</para></listitem>
<listitem><para><literal>.space</literal> <emphasis>label</emphasis> <emphasis>size</emphasis>: This
directive is used to organize global variables. It defines the
label specified to be at the current location of the program
counter, and then advances the program counter <emphasis>size</emphasis>
steps ahead. No actual code is produced. This is equivalent
to <literal>label: .org ^+size</literal>.</para></listitem>
<listitem><para><literal>.text</literal> <emphasis>[label]</emphasis>: Sets the segment to
the segment name specified and allows output. If no label is
given, switches to the default text segment.</para></listitem>
<listitem><para><literal>.word</literal> <emphasis>arg</emphasis> [ , <emphasis>arg</emphasis>, ... ]:
Like <literal>.byte</literal>, but values are all treated as two-byte
values and stored low-end first (as is the 6502's wont). Use
this to create jump tables (an unadorned label will evaluate
to that label's location) or otherwise store 16-bit
data.</para></listitem>
<listitem><para><literal>.dword</literal> <emphasis>arg</emphasis> [ , <emphasis>arg</emphasis>, ...]:
Like <literal>.word</literal>, but for 32-bit values.</para></listitem>
<listitem><para><literal>.wordbe</literal> <emphasis>arg</emphasis> [ , <emphasis>arg</emphasis>, ...]:
Like <literal>.word</literal>, but stores the value in a big-endian format (high byte first).</para></listitem>
<listitem><para><literal>.dwordbe</literal> <emphasis>arg</emphasis> [ , <emphasis>arg</emphasis>, ...]:
Like <literal>.dword</literal>, but stores the value high byte first.</para></listitem>
<listitem><para><literal>.scope</literal>: Starts a new scope block. Labels
that begin with an underscore are only reachable from within
their innermost enclosing <literal>.scope</literal> statement.</para></listitem>
<listitem><para><literal>.scend</literal>: Ends a scope block. Makes the
temporary labels defined since the last <literal>.scope</literal>
statement unreachable, and permits them to be redefined in a
new scope.</para></listitem>
<listitem><para><literal>.macro</literal> <emphasis>name</emphasis>: Begins a macro
definition block. This is a scope block that can be inlined
at arbitrary points with <literal>.invoke</literal>. Arguments to the
macro will be bound to temporary labels with names like
<literal>_1</literal>, <literal>_2</literal>, etc.</para></listitem>
<listitem><para><literal>.macend</literal>: Ends a macro definition
block.</para></listitem>
<listitem><para><literal>.invoke</literal> <emphasis>label</emphasis> [<emphasis>argument</emphasis> [,
<emphasis>argument</emphasis> ...]]: invokes (inlines) the specified
macro, binding the values of the arguments to the ones the
macro definition intends to read. A shorthand for <literal>.invoke</literal>
is the name of the macro to invoke, backquoted.</para></listitem>
</itemizedlist>
</section>
</appendix>

View File

@ -1,74 +1,74 @@
; Test file for 65C02 extended opcode compliance
; This odd little source file uses every addressing mode
; of every opcode, and uses the opcode itself as the argument
; to each instruction that takes one. The resulting binary's
; bytes are thus in strictly increasing numerical order.
; Some opcodes have multiple mnemonics; we provide both.
; This file also doesn't include the 65C02's opcodes that
; are also available in stock 6502s - see testbase.oph for
; those.
TSB $04 ; 04: TSB - Zero Page
RMB0 $07 ; 07: RMB0 - Zero Page
TSB $0C0C ; 0C: TSB - Absolute
BBR0 ^+$11 ; 0F: BBR0 - Relative
ORA ($12) ; 12: ORA - (Zero Page)
TRB $14 ; 14: TRB - Zero Page
RMB1 $17 ; 17: RMB1 - Zero Page
INA ; 1A: INA - Implied
INC ; INC - Implied
TRB $1C1C ; 1C: TRB - Absolute
BBR1 ^+$21 ; 1F: BBR1 - Relative
RMB2 $27 ; 27: RMB2 - Zero Page
BBR2 ^+$31 ; 2F: BBR2 - Relative
AND ($32) ; 32: AND - (Zero Page)
BIT $34, X ; 34: BIT - Zero Page, X
RMB3 $37 ; 37: RMB3 - Zero Page
DEA ; 3A: DEA - Implied
DEC ; 3A: DEC - Implied
BIT $3C3C,X ; 3C: BIT - Absolute, X
BBR3 ^+$41 ; 3F: BBR3 - Relative
RMB4 $47 ; 47: RMB4 - Zero Page
BBR4 ^+$51 ; 4F: BBR4 - Relative
EOR ($52) ; 52: EOR - (Zero Page)
RMB5 $57 ; 57: RMB5 - Zero Page
PHY ; 5A: PHY - Implied
BBR5 ^+$61 ; 5F: BBR5 - Relative
STZ $64 ; 64: STZ - Zero Page
RMB6 $67 ; 67: RMB6 - Zero Page
BBR6 ^+$71 ; 6F: BBR6 - Relative
ADC ($72) ; 72: ADC - (Zero Page)
STZ $74, X ; 74: STZ - Zero Page, X
RMB7 $77 ; 77: RMB7 - Zero Page
PLY ; 7A: PLY - Implied
JMP ($7C7C, X) ; 7C: JMP - (Absolute, X)
BBR7 ^+$81 ; 7F: BBR7 - Relative
BRA ^-$7E ; 80: BRA - Relative
SMB0 $87 ; 87: SMB0 - Zero Page
BIT #$89 ; 89: BIT - Immediate
BBS0 ^-$6F ; 8F: BBS0 - Relative
STA ($92) ; 92: STA - (Zero Page)
SMB1 $97 ; 97: SMB1 - Zero Page
STZ $9C9C ; 9C: STZ - Absolute
STZ $9E9E, X ; 9E: STZ - Absolute, X
BBS1 ^-$5F ; 9F: BBS1 - Relative
SMB2 $A7 ; A7: SMB2 - Zero Page
BBS2 ^-$4F ; AF: BBS2 - Relative
LDA ($B2) ; B2: LDA - (Zero Page)
SMB3 $B7 ; B7: SMB3 - Zero Page
BBS3 ^-$3F ; BF: BBS3 - Relative
SMB4 $C7 ; C7: SMB4 - Zero Page
WAI ; CB: WAI - Implied
BBS4 ^-$2F ; CF: BBS4 - Relative
CMP ($D2) ; D2: CMP - (Zero Page)
SMB5 $D7 ; D7: SMB5 - Zero Page
PHX ; DA: PHX - Implied
STP ; DB: STP - Implied
BBS5 ^-$1F ; DF: BBS5 - Relative
SMB6 $E7 ; E7: SMB6 - Zero Page
BBS6 ^-$0F ; EF: BBS6 - Relative
SBC ($F2) ; F2: SBC - (Zero Page)
SMB7 $F7 ; F7: SMB7 - Zero Page
PLX ; FA: PLX - Implied
BBS7 ^+$01 ; FF: BBS7 - Relative
; Test file for 65C02 extended opcode compliance
; This odd little source file uses every addressing mode
; of every opcode, and uses the opcode itself as the argument
; to each instruction that takes one. The resulting binary's
; bytes are thus in strictly increasing numerical order.
; Some opcodes have multiple mnemonics; we provide both.
; This file also doesn't include the 65C02's opcodes that
; are also available in stock 6502s - see testbase.oph for
; those.
TSB $04 ; 04: TSB - Zero Page
RMB0 $07 ; 07: RMB0 - Zero Page
TSB $0C0C ; 0C: TSB - Absolute
BBR0 ^+$11 ; 0F: BBR0 - Relative
ORA ($12) ; 12: ORA - (Zero Page)
TRB $14 ; 14: TRB - Zero Page
RMB1 $17 ; 17: RMB1 - Zero Page
INA ; 1A: INA - Implied
INC ; INC - Implied
TRB $1C1C ; 1C: TRB - Absolute
BBR1 ^+$21 ; 1F: BBR1 - Relative
RMB2 $27 ; 27: RMB2 - Zero Page
BBR2 ^+$31 ; 2F: BBR2 - Relative
AND ($32) ; 32: AND - (Zero Page)
BIT $34, X ; 34: BIT - Zero Page, X
RMB3 $37 ; 37: RMB3 - Zero Page
DEA ; 3A: DEA - Implied
DEC ; 3A: DEC - Implied
BIT $3C3C,X ; 3C: BIT - Absolute, X
BBR3 ^+$41 ; 3F: BBR3 - Relative
RMB4 $47 ; 47: RMB4 - Zero Page
BBR4 ^+$51 ; 4F: BBR4 - Relative
EOR ($52) ; 52: EOR - (Zero Page)
RMB5 $57 ; 57: RMB5 - Zero Page
PHY ; 5A: PHY - Implied
BBR5 ^+$61 ; 5F: BBR5 - Relative
STZ $64 ; 64: STZ - Zero Page
RMB6 $67 ; 67: RMB6 - Zero Page
BBR6 ^+$71 ; 6F: BBR6 - Relative
ADC ($72) ; 72: ADC - (Zero Page)
STZ $74, X ; 74: STZ - Zero Page, X
RMB7 $77 ; 77: RMB7 - Zero Page
PLY ; 7A: PLY - Implied
JMP ($7C7C, X) ; 7C: JMP - (Absolute, X)
BBR7 ^+$81 ; 7F: BBR7 - Relative
BRA ^-$7E ; 80: BRA - Relative
SMB0 $87 ; 87: SMB0 - Zero Page
BIT #$89 ; 89: BIT - Immediate
BBS0 ^-$6F ; 8F: BBS0 - Relative
STA ($92) ; 92: STA - (Zero Page)
SMB1 $97 ; 97: SMB1 - Zero Page
STZ $9C9C ; 9C: STZ - Absolute
STZ $9E9E, X ; 9E: STZ - Absolute, X
BBS1 ^-$5F ; 9F: BBS1 - Relative
SMB2 $A7 ; A7: SMB2 - Zero Page
BBS2 ^-$4F ; AF: BBS2 - Relative
LDA ($B2) ; B2: LDA - (Zero Page)
SMB3 $B7 ; B7: SMB3 - Zero Page
BBS3 ^-$3F ; BF: BBS3 - Relative
SMB4 $C7 ; C7: SMB4 - Zero Page
WAI ; CB: WAI - Implied
BBS4 ^-$2F ; CF: BBS4 - Relative
CMP ($D2) ; D2: CMP - (Zero Page)
SMB5 $D7 ; D7: SMB5 - Zero Page
PHX ; DA: PHX - Implied
STP ; DB: STP - Implied
BBS5 ^-$1F ; DF: BBS5 - Relative
SMB6 $E7 ; E7: SMB6 - Zero Page
BBS6 ^-$0F ; EF: BBS6 - Relative
SBC ($F2) ; F2: SBC - (Zero Page)
SMB7 $F7 ; F7: SMB7 - Zero Page
PLX ; FA: PLX - Implied
BBS7 ^+$01 ; FF: BBS7 - Relative

View File

@ -1,7 +1,7 @@
; This data file just dumps out $00-$0F repeatedly with different forms.
.byte 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
.word 256, $0302, $0504, $0706, $0908, $0b0a, $0d0c, $0f0e
.dword $03020100, $07060504, $0b0a0908, $0f0e0d0c
.wordbe 1, $0203, $0405, $0607, $0809, $0a0b, $0c0d, $0e0f
.dwordbe $010203, $04050607, $08090a0b, $0c0d0e0f
; This data file just dumps out $00-$0F repeatedly with different forms.
.byte 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
.word 256, $0302, $0504, $0706, $0908, $0b0a, $0d0c, $0f0e
.dword $03020100, $07060504, $0b0a0908, $0f0e0d0c
.wordbe 1, $0203, $0405, $0607, $0809, $0a0b, $0c0d, $0e0f
.dwordbe $010203, $04050607, $08090a0b, $0c0d0e0f

View File

@ -1,256 +1,256 @@
00: BRK - Implied
01: ORA - (Zero Page, X)
02:
03:
04:
05: ORA - Zero Page
06: ASL - Zero Page
07:
08: PHP - Implied
09: ORA - Immediate
0A: ASL - Implied
0B:
0C:
0D: ORA - Absolute
0E: ASL - Absolute
0F:
10: BPL - Relative
11: ORA - (Zero Page), Y
12:
13:
14:
15: ORA - Zero Page, X
16: ASL - Zero Page, X
17:
18: CLC - Implied
19: ORA - Absolute, Y
1A:
1B:
1C:
1D: ORA - Absolute, X
1E: ASL - Absolute, X
1F:
20: JSR - Absolute
21: AND - (Zero Page, X)
22:
23:
24: BIT - Zero Page
25: AND - Zero Page
26: ROL - Zero Page
27:
28: PLP - Implied
29: AND - Immediate
2A: ROL - Implied
2B:
2C: BIT - Absolute
2D: AND - Absolute
2E: ROL - Absolute
2F:
30: BMI - Relative
31: AND - (Zero Page), Y
32:
33:
34:
35: AND - Zero Page, X
36: ROL - Zero Page, X
37:
38: SEC - Implied
39: AND - Absolute, Y
3A:
3B:
3C:
3D: AND - Absolute, X
3E: ROL - Absolute, X
3F:
40: RTI - Implied
41: EOR - (Zero Page, X)
42:
43:
44:
45: EOR - Zero Page
46: LSR - Zero Page
47:
48: PHA - Implied
49: EOR - Immediate
4A: LSR - Implied
4B:
4C: JMP - Absolute
4D: EOR - Absolute
4E: LSR - Absolute
4F:
50: BVC - Relative
51: EOR - (Zero Page), Y
52:
53:
54:
55: EOR - Zero Page, X
56: LSR - Zero Page, X
57:
58: CLI - Implied
59: EOR - Absolute, Y
5A:
5B:
5C:
5D: EOR - Absolute, X
5E: LSR - Absolute, X
5F:
60: RTS - Implied
61: ADC - (Zero Page, X)
62:
63:
64:
65: ADC - Zero Page
66: ROR - Zero Page
67:
68: PLA - Implied
69: ADC - Immediate
6A: ROR - Implied
6B:
6C: JMP - (Absolute)
6D: ADC - Absolute
6E: ROR - Absolute
6F:
70: BVS - Relative
71: ADC - (Zero Page), Y
72:
73:
74:
75: ADC - Zero Page, X
76: ROR - Zero Page, X
77:
78: SEI - Implied
79: ADC - Absolute, Y
7A:
7B:
7C:
7D: ADC - Absolute, X
7E: ROR - Absolute, X
7F:
80:
81: STA - (Zero Page, X)
82:
83:
84: STY - Zero Page
85: STA - Zero Page
86: STX - Zero Page
87:
88: DEY - Implied
89:
8A: TXA - Implied
8B:
8C: STY - Absolute
8D: STA - Absolute
8E: STX - Absolute
8F:
90: BCC - Relative
91: STA - (Zero Page), Y
92:
93:
94: STY - Zero Page, X
95: STA - Zero Page, X
96: STX - Zero Page, Y
97:
98: TYA - Implied
99: STA - Absolute, Y
9A: TXS - Implied
9B:
9C:
9D: STA - Absolute, X
9E:
9F:
A0: LDY - Immediate
A1: LDA - (Zero Page, X)
A2: LDX - Immediate
A3:
A4: LDY - Zero Page
A5: LDA - Zero Page
A6: LDX - Zero Page
A7:
A8: TAY - Implied
A9: LDA - Immediate
AA: TAX - Implied
AB:
AC: LDY - Absolute
AD: LDA - Absolute
AE: LDX - Absolute
AF:
B0: BCS - Relative
B1: LDA - (Zero Page), Y
B2:
B3:
B4: LDY - Zero Page, X
B5: LDA - Zero Page, X
B6: LDX - Zero Page, Y
B7:
B8: CLV - Implied
B9: LDA - Absolute, Y
BA: TSX - Implied
BB:
BC: LDY - Absolute, X
BD: LDA - Absolute, X
BE: LDX - Absolute, Y
BF:
C0: CPY - Immediate
C1: CMP - (Zero Page, X)
C2:
C3:
C4: CPY - Zero Page
C5: CMP - Zero Page
C6: DEC - Zero Page
C7:
C8: INY - Implied
C9: CMP - Immediate
CA: DEX - Implied
CB:
CC: CPY - Absolute
CD: CMP - Absolute
CE: DEC - Absolute
CF:
D0: BNE - Relative
D1: CMP - (Zero Page), Y
D2:
D3:
D4:
D5: CMP - Zero Page, X
D6: DEC - Zero Page, X
D7:
D8: CLD - Implied
D9: CMP - Absolute, Y
DA:
DB:
DC:
DD: CMP - Absolute, X
DE: DEC - Absolute, X
DF:
E0: CPX - Immediate
E1: SBC - (Zero Page, X)
E2:
E3:
E4: CPX - Zero Page
E5: SBC - Zero Page
E6: INC - Zero Page
E7:
E8: INX - Implied
E9: SBC - Immediate
EA: NOP - Implied
EB:
EC: CPX - Absolute
ED: SBC - Absolute
EE: INC - Absolute
EF:
F0: BEQ - Relative
F1: SBC - (Zero Page), Y
F2:
F3:
F4:
F5: SBC - Zero Page, X
F6: INC - Zero Page, X
F7:
F8: SED - Implied
F9: SBC - Absolute, Y
FA:
FB:
FC:
FD: SBC - Absolute, X
FE: INC - Absolute, X
FF:
00: BRK - Implied
01: ORA - (Zero Page, X)
02:
03:
04:
05: ORA - Zero Page
06: ASL - Zero Page
07:
08: PHP - Implied
09: ORA - Immediate
0A: ASL - Implied
0B:
0C:
0D: ORA - Absolute
0E: ASL - Absolute
0F:
10: BPL - Relative
11: ORA - (Zero Page), Y
12:
13:
14:
15: ORA - Zero Page, X
16: ASL - Zero Page, X
17:
18: CLC - Implied
19: ORA - Absolute, Y
1A:
1B:
1C:
1D: ORA - Absolute, X
1E: ASL - Absolute, X
1F:
20: JSR - Absolute
21: AND - (Zero Page, X)
22:
23:
24: BIT - Zero Page
25: AND - Zero Page
26: ROL - Zero Page
27:
28: PLP - Implied
29: AND - Immediate
2A: ROL - Implied
2B:
2C: BIT - Absolute
2D: AND - Absolute
2E: ROL - Absolute
2F:
30: BMI - Relative
31: AND - (Zero Page), Y
32:
33:
34:
35: AND - Zero Page, X
36: ROL - Zero Page, X
37:
38: SEC - Implied
39: AND - Absolute, Y
3A:
3B:
3C:
3D: AND - Absolute, X
3E: ROL - Absolute, X
3F:
40: RTI - Implied
41: EOR - (Zero Page, X)
42:
43:
44:
45: EOR - Zero Page
46: LSR - Zero Page
47:
48: PHA - Implied
49: EOR - Immediate
4A: LSR - Implied
4B:
4C: JMP - Absolute
4D: EOR - Absolute
4E: LSR - Absolute
4F:
50: BVC - Relative
51: EOR - (Zero Page), Y
52:
53:
54:
55: EOR - Zero Page, X
56: LSR - Zero Page, X
57:
58: CLI - Implied
59: EOR - Absolute, Y
5A:
5B:
5C:
5D: EOR - Absolute, X
5E: LSR - Absolute, X
5F:
60: RTS - Implied
61: ADC - (Zero Page, X)
62:
63:
64:
65: ADC - Zero Page
66: ROR - Zero Page
67:
68: PLA - Implied
69: ADC - Immediate
6A: ROR - Implied
6B:
6C: JMP - (Absolute)
6D: ADC - Absolute
6E: ROR - Absolute
6F:
70: BVS - Relative
71: ADC - (Zero Page), Y
72:
73:
74:
75: ADC - Zero Page, X
76: ROR - Zero Page, X
77:
78: SEI - Implied
79: ADC - Absolute, Y
7A:
7B:
7C:
7D: ADC - Absolute, X
7E: ROR - Absolute, X
7F:
80:
81: STA - (Zero Page, X)
82:
83:
84: STY - Zero Page
85: STA - Zero Page
86: STX - Zero Page
87:
88: DEY - Implied
89:
8A: TXA - Implied
8B:
8C: STY - Absolute
8D: STA - Absolute
8E: STX - Absolute
8F:
90: BCC - Relative
91: STA - (Zero Page), Y
92:
93:
94: STY - Zero Page, X
95: STA - Zero Page, X
96: STX - Zero Page, Y
97:
98: TYA - Implied
99: STA - Absolute, Y
9A: TXS - Implied
9B:
9C:
9D: STA - Absolute, X
9E:
9F:
A0: LDY - Immediate
A1: LDA - (Zero Page, X)
A2: LDX - Immediate
A3:
A4: LDY - Zero Page
A5: LDA - Zero Page
A6: LDX - Zero Page
A7:
A8: TAY - Implied
A9: LDA - Immediate
AA: TAX - Implied
AB:
AC: LDY - Absolute
AD: LDA - Absolute
AE: LDX - Absolute
AF:
B0: BCS - Relative
B1: LDA - (Zero Page), Y
B2:
B3:
B4: LDY - Zero Page, X
B5: LDA - Zero Page, X
B6: LDX - Zero Page, Y
B7:
B8: CLV - Implied
B9: LDA - Absolute, Y
BA: TSX - Implied
BB:
BC: LDY - Absolute, X
BD: LDA - Absolute, X
BE: LDX - Absolute, Y
BF:
C0: CPY - Immediate
C1: CMP - (Zero Page, X)
C2:
C3:
C4: CPY - Zero Page
C5: CMP - Zero Page
C6: DEC - Zero Page
C7:
C8: INY - Implied
C9: CMP - Immediate
CA: DEX - Implied
CB:
CC: CPY - Absolute
CD: CMP - Absolute
CE: DEC - Absolute
CF:
D0: BNE - Relative
D1: CMP - (Zero Page), Y
D2:
D3:
D4:
D5: CMP - Zero Page, X
D6: DEC - Zero Page, X
D7:
D8: CLD - Implied
D9: CMP - Absolute, Y
DA:
DB:
DC:
DD: CMP - Absolute, X
DE: DEC - Absolute, X
DF:
E0: CPX - Immediate
E1: SBC - (Zero Page, X)
E2:
E3:
E4: CPX - Zero Page
E5: SBC - Zero Page
E6: INC - Zero Page
E7:
E8: INX - Implied
E9: SBC - Immediate
EA: NOP - Implied
EB:
EC: CPX - Absolute
ED: SBC - Absolute
EE: INC - Absolute
EF:
F0: BEQ - Relative
F1: SBC - (Zero Page), Y
F2:
F3:
F4:
F5: SBC - Zero Page, X
F6: INC - Zero Page, X
F7:
F8: SED - Implied
F9: SBC - Absolute, Y
FA:
FB:
FC:
FD: SBC - Absolute, X
FE: INC - Absolute, X
FF:

View File

@ -1,256 +1,256 @@
00: BRK - Implied
01: ORA - (Zero Page, X)
02:
03:
04: TSB - Zero Page
05: ORA - Zero Page
06: ASL - Zero Page
07: RMB0 - Zero Page
08: PHP - Implied
09: ORA - Immediate
0A: ASL - Implied
0B:
0C: TSB - Absolute
0D: ORA - Absolute
0E: ASL - Absolute
0F: BBR0 - Relative
10: BPL - Relative
11: ORA - (Zero Page), Y
12: ORA - (Zero Page)
13:
14: TRB - Zero Page
15: ORA - Zero Page, X
16: ASL - Zero Page, X
17: RMB1 - Zero Page
18: CLC - Implied
19: ORA - Absolute, Y
1A: INA - Implied; INC - Implied
1B:
1C: TRB - Absolute
1D: ORA - Absolute, X
1E: ASL - Absolute, X
1F: BBR1 - Relative
20: JSR - Absolute
21: AND - (Zero Page, X)
22:
23:
24: BIT - Zero Page
25: AND - Zero Page
26: ROL - Zero Page
27: RMB2 - Zero Page
28: PLP - Implied
29: AND - Immediate
2A: ROL - Implied
2B:
2C: BIT - Absolute
2D: AND - Absolute
2E: ROL - Absolute
2F: BBR2 - Relative
30: BMI - Relative
31: AND - (Zero Page), Y
32: AND - (Zero Page)
33:
34: BIT - Zero Page, X
35: AND - Zero Page, X
36: ROL - Zero Page, X
37: RMB3 - Zero Page
38: SEC - Implied
39: AND - Absolute, Y
3A: DEA - Implied; DEC - Implied
3B:
3C: BIT - Absolute, X
3D: AND - Absolute, X
3E: ROL - Absolute, X
3F: BBR3 - Relative
40: RTI - Implied
41: EOR - (Zero Page, X)
42:
43:
44:
45: EOR - Zero Page
46: LSR - Zero Page
47: RMB4 - Zero Page
48: PHA - Implied
49: EOR - Immediate
4A: LSR - Implied
4B:
4C: JMP - Absolute
4D: EOR - Absolute
4E: LSR - Absolute
4F: BBR4 - Relative
50: BVC - Relative
51: EOR - (Zero Page), Y
52: EOR - (Zero Page)
53:
54:
55: EOR - Zero Page, X
56: LSR - Zero Page, X
57: RMB5 - Zero Page
58: CLI - Implied
59: EOR - Absolute, Y
5A: PHY - Implied
5B:
5C:
5D: EOR - Absolute, X
5E: LSR - Absolute, X
5F: BBR5 - Relative
60: RTS - Implied
61: ADC - (Zero Page, X)
62:
63:
64: STZ - Zero Page
65: ADC - Zero Page
66: ROR - Zero Page
67: RMB6 - Zero Page
68: PLA - Implied
69: ADC - Immediate
6A: ROR - Implied
6B:
6C: JMP - (Absolute)
6D: ADC - Absolute
6E: ROR - Absolute
6F: BBR6 - Relative
70: BVS - Relative
71: ADC - (Zero Page), Y
72: ADC - (Zero Page)
73:
74: STZ - Zero Page, X
75: ADC - Zero Page, X
76: ROR - Zero Page, X
77: RMB7 - Zero Page
78: SEI - Implied
79: ADC - Absolute, Y
7A: PLY - Implied
7B:
7C: JMP - (Absolute, X)
7D: ADC - Absolute, X
7E: ROR - Absolute, X
7F: BBR7 - Relative
80: BRA - Relative
81: STA - (Zero Page, X)
82:
83:
84: STY - Zero Page
85: STA - Zero Page
86: STX - Zero Page
87: SMB0 - Zero Page
88: DEY - Implied
89: BIT - Immediate
8A: TXA - Implied
8B:
8C: STY - Absolute
8D: STA - Absolute
8E: STX - Absolute
8F: BBS0 - Relative
90: BCC - Relative
91: STA - (Zero Page), Y
92: STA - (Zero Page)
93:
94: STY - Zero Page, X
95: STA - Zero Page, X
96: STX - Zero Page, Y
97: SMB1 - Zero Page
98: TYA - Implied
99: STA - Absolute, Y
9A: TXS - Implied
9B:
9C: STZ - Absolute
9D: STA - Absolute, X
9E: STZ - Absolute, X
9F: BBS1 - Relative
A0: LDY - Immediate
A1: LDA - (Zero Page, X)
A2: LDX - Immediate
A3:
A4: LDY - Zero Page
A5: LDA - Zero Page
A6: LDX - Zero Page
A7: SMB2 - Zero Page
A8: TAY - Implied
A9: LDA - Immediate
AA: TAX - Implied
AB:
AC: LDY - Absolute
AD: LDA - Absolute
AE: LDX - Absolute
AF: BBS2 - Relative
B0: BCS - Relative
B1: LDA - (Zero Page), Y
B2: LDA - (Zero Page)
B3:
B4: LDY - Zero Page, X
B5: LDA - Zero Page, X
B6: LDX - Zero Page, Y
B7: SMB3 - Zero Page
B8: CLV - Implied
B9: LDA - Absolute, Y
BA: TSX - Implied
BB:
BC: LDY - Absolute, X
BD: LDA - Absolute, X
BE: LDX - Absolute, Y
BF: BBS3 - Relative
C0: CPY - Immediate
C1: CMP - (Zero Page, X)
C2:
C3:
C4: CPY - Zero Page
C5: CMP - Zero Page
C6: DEC - Zero Page
C7: SMB4 - Zero Page
C8: INY - Implied
C9: CMP - Immediate
CA: DEX - Implied
CB: WAI - Implied
CC: CPY - Absolute
CD: CMP - Absolute
CE: DEC - Absolute
CF: BBS4 - Relative
D0: BNE - Relative
D1: CMP - (Zero Page), Y
D2: CMP - (Zero Page)
D3:
D4:
D5: CMP - Zero Page, X
D6: DEC - Zero Page, X
D7: SMB5 - Zero Page
D8: CLD - Implied
D9: CMP - Absolute, Y
DA: PHX - Implied
DB: STP - Implied
DC:
DD: CMP - Absolute, X
DE: DEC - Absolute, X
DF: BBS5 - Relative
E0: CPX - Immediate
E1: SBC - (Zero Page, X)
E2:
E3:
E4: CPX - Zero Page
E5: SBC - Zero Page
E6: INC - Zero Page
E7: SMB6 - Zero Page
E8: INX - Implied
E9: SBC - Immediate
EA: NOP - Implied
EB:
EC: CPX - Absolute
ED: SBC - Absolute
EE: INC - Absolute
EF: BBS6 - Relative
F0: BEQ - Relative
F1: SBC - (Zero Page), Y
F2: SBC - (Zero Page)
F3:
F4:
F5: SBC - Zero Page, X
F6: INC - Zero Page, X
F7: SMB7 - Zero Page
F8: SED - Implied
F9: SBC - Absolute, Y
FA: PLX - Implied
FB:
FC:
FD: SBC - Absolute, X
FE: INC - Absolute, X
FF: BBS7 - Relative
00: BRK - Implied
01: ORA - (Zero Page, X)
02:
03:
04: TSB - Zero Page
05: ORA - Zero Page
06: ASL - Zero Page
07: RMB0 - Zero Page
08: PHP - Implied
09: ORA - Immediate
0A: ASL - Implied
0B:
0C: TSB - Absolute
0D: ORA - Absolute
0E: ASL - Absolute
0F: BBR0 - Relative
10: BPL - Relative
11: ORA - (Zero Page), Y
12: ORA - (Zero Page)
13:
14: TRB - Zero Page
15: ORA - Zero Page, X
16: ASL - Zero Page, X
17: RMB1 - Zero Page
18: CLC - Implied
19: ORA - Absolute, Y
1A: INA - Implied; INC - Implied
1B:
1C: TRB - Absolute
1D: ORA - Absolute, X
1E: ASL - Absolute, X
1F: BBR1 - Relative
20: JSR - Absolute
21: AND - (Zero Page, X)
22:
23:
24: BIT - Zero Page
25: AND - Zero Page
26: ROL - Zero Page
27: RMB2 - Zero Page
28: PLP - Implied
29: AND - Immediate
2A: ROL - Implied
2B:
2C: BIT - Absolute
2D: AND - Absolute
2E: ROL - Absolute
2F: BBR2 - Relative
30: BMI - Relative
31: AND - (Zero Page), Y
32: AND - (Zero Page)
33:
34: BIT - Zero Page, X
35: AND - Zero Page, X
36: ROL - Zero Page, X
37: RMB3 - Zero Page
38: SEC - Implied
39: AND - Absolute, Y
3A: DEA - Implied; DEC - Implied
3B:
3C: BIT - Absolute, X
3D: AND - Absolute, X
3E: ROL - Absolute, X
3F: BBR3 - Relative
40: RTI - Implied
41: EOR - (Zero Page, X)
42:
43:
44:
45: EOR - Zero Page
46: LSR - Zero Page
47: RMB4 - Zero Page
48: PHA - Implied
49: EOR - Immediate
4A: LSR - Implied
4B:
4C: JMP - Absolute
4D: EOR - Absolute
4E: LSR - Absolute
4F: BBR4 - Relative
50: BVC - Relative
51: EOR - (Zero Page), Y
52: EOR - (Zero Page)
53:
54:
55: EOR - Zero Page, X
56: LSR - Zero Page, X
57: RMB5 - Zero Page
58: CLI - Implied
59: EOR - Absolute, Y
5A: PHY - Implied
5B:
5C:
5D: EOR - Absolute, X
5E: LSR - Absolute, X
5F: BBR5 - Relative
60: RTS - Implied
61: ADC - (Zero Page, X)
62:
63:
64: STZ - Zero Page
65: ADC - Zero Page
66: ROR - Zero Page
67: RMB6 - Zero Page
68: PLA - Implied
69: ADC - Immediate
6A: ROR - Implied
6B:
6C: JMP - (Absolute)
6D: ADC - Absolute
6E: ROR - Absolute
6F: BBR6 - Relative
70: BVS - Relative
71: ADC - (Zero Page), Y
72: ADC - (Zero Page)
73:
74: STZ - Zero Page, X
75: ADC - Zero Page, X
76: ROR - Zero Page, X
77: RMB7 - Zero Page
78: SEI - Implied
79: ADC - Absolute, Y
7A: PLY - Implied
7B:
7C: JMP - (Absolute, X)
7D: ADC - Absolute, X
7E: ROR - Absolute, X
7F: BBR7 - Relative
80: BRA - Relative
81: STA - (Zero Page, X)
82:
83:
84: STY - Zero Page
85: STA - Zero Page
86: STX - Zero Page
87: SMB0 - Zero Page
88: DEY - Implied
89: BIT - Immediate
8A: TXA - Implied
8B:
8C: STY - Absolute
8D: STA - Absolute
8E: STX - Absolute
8F: BBS0 - Relative
90: BCC - Relative
91: STA - (Zero Page), Y
92: STA - (Zero Page)
93:
94: STY - Zero Page, X
95: STA - Zero Page, X
96: STX - Zero Page, Y
97: SMB1 - Zero Page
98: TYA - Implied
99: STA - Absolute, Y
9A: TXS - Implied
9B:
9C: STZ - Absolute
9D: STA - Absolute, X
9E: STZ - Absolute, X
9F: BBS1 - Relative
A0: LDY - Immediate
A1: LDA - (Zero Page, X)
A2: LDX - Immediate
A3:
A4: LDY - Zero Page
A5: LDA - Zero Page
A6: LDX - Zero Page
A7: SMB2 - Zero Page
A8: TAY - Implied
A9: LDA - Immediate
AA: TAX - Implied
AB:
AC: LDY - Absolute
AD: LDA - Absolute
AE: LDX - Absolute
AF: BBS2 - Relative
B0: BCS - Relative
B1: LDA - (Zero Page), Y
B2: LDA - (Zero Page)
B3:
B4: LDY - Zero Page, X
B5: LDA - Zero Page, X
B6: LDX - Zero Page, Y
B7: SMB3 - Zero Page
B8: CLV - Implied
B9: LDA - Absolute, Y
BA: TSX - Implied
BB:
BC: LDY - Absolute, X
BD: LDA - Absolute, X
BE: LDX - Absolute, Y
BF: BBS3 - Relative
C0: CPY - Immediate
C1: CMP - (Zero Page, X)
C2:
C3:
C4: CPY - Zero Page
C5: CMP - Zero Page
C6: DEC - Zero Page
C7: SMB4 - Zero Page
C8: INY - Implied
C9: CMP - Immediate
CA: DEX - Implied
CB: WAI - Implied
CC: CPY - Absolute
CD: CMP - Absolute
CE: DEC - Absolute
CF: BBS4 - Relative
D0: BNE - Relative
D1: CMP - (Zero Page), Y
D2: CMP - (Zero Page)
D3:
D4:
D5: CMP - Zero Page, X
D6: DEC - Zero Page, X
D7: SMB5 - Zero Page
D8: CLD - Implied
D9: CMP - Absolute, Y
DA: PHX - Implied
DB: STP - Implied
DC:
DD: CMP - Absolute, X
DE: DEC - Absolute, X
DF: BBS5 - Relative
E0: CPX - Immediate
E1: SBC - (Zero Page, X)
E2:
E3:
E4: CPX - Zero Page
E5: SBC - Zero Page
E6: INC - Zero Page
E7: SMB6 - Zero Page
E8: INX - Implied
E9: SBC - Immediate
EA: NOP - Implied
EB:
EC: CPX - Absolute
ED: SBC - Absolute
EE: INC - Absolute
EF: BBS6 - Relative
F0: BEQ - Relative
F1: SBC - (Zero Page), Y
F2: SBC - (Zero Page)
F3:
F4:
F5: SBC - Zero Page, X
F6: INC - Zero Page, X
F7: SMB7 - Zero Page
F8: SED - Implied
F9: SBC - Absolute, Y
FA: PLX - Implied
FB:
FC:
FD: SBC - Absolute, X
FE: INC - Absolute, X
FF: BBS7 - Relative