1
0
mirror of https://github.com/cc65/cc65.git synced 2024-12-27 15:29:46 +00:00
cc65/libsrc/cbm510/crt0.s

585 lines
14 KiB
ArmAsm
Raw Normal View History

;
; Startup code for cc65 (CBM 500 version)
;
.export _exit
.export __STARTUP__ : absolute = 1 ; Mark as startup
.import _clrscr, initlib, donelib, callirq_y
.import push0, callmain
.import __CHARRAM_START__, __CHARRAM_SIZE__, __VIDRAM_START__
.import __BSS_RUN__, __BSS_SIZE__, __EXTZP_RUN__
.import __INTERRUPTOR_COUNT__
.import scnkey, UDTIM
.include "zeropage.inc"
.include "extzp.inc"
.include "cbm510.inc"
; ------------------------------------------------------------------------
; BASIC header and a small BASIC program. Since it is not possible to start
; programs in other banks using SYS, the BASIC program will write a small
; machine code program into memory at $100 and start that machine code
; program. The machine code program will then start the machine language
; code in bank 0, which will initialize the system by copying stuff from
; the system bank, and start the application.
;
; Here's the basic program that's in the following lines:
;
; 10 for i=0 to 4
; 20 read j
; 30 poke 256+i,j
; 40 next i
; 50 sys 256
; 60 data 120,169,0,133,0
;
; The machine program in the data lines is:
;
; sei
; lda #$00
; sta $00 <-- Switch to bank 0 after this command
;
; Initialization is not only complex because of the jumping from one bank
; into another. but also because we want to save memory, and because of
; this, we will use the system memory ($00-$3FF) for initialization stuff
; that is overwritten later.
;
.segment "BASICHDR"
.byte $03,$00,$11,$00,$0a,$00,$81,$20,$49,$b2,$30,$20,$a4,$20,$34,$00
.byte $19,$00,$14,$00,$87,$20,$4a,$00,$27,$00,$1e,$00,$97,$20,$32,$35
.byte $36,$aa,$49,$2c,$4a,$00,$2f,$00,$28,$00,$82,$20,$49,$00,$39,$00
.byte $32,$00,$9e,$20,$32,$35,$36,$00,$4f,$00,$3c,$00,$83,$20,$31,$32
.byte $30,$2c,$31,$36,$39,$2c,$30,$2c,$31,$33,$33,$2c,$30,$00,$00,$00
;------------------------------------------------------------------------------
; A table that contains values that must be transfered from the system zero
; page into out zero page. Contains pairs of bytes, first one is the address
; in the system ZP, second one is our ZP address. The table goes into page 2,
; but is declared here, because it is needed earlier.
.SEGMENT "PAGE2"
.proc transfer_table
.byte $CA, CURS_Y
.byte $CB, CURS_X
.byte $EC, CHARCOLOR
.endproc
;------------------------------------------------------------------------------
; Page 3 data. This page contains the break vector and the bankswitch
; subroutine that is copied into high memory on startup. The space occupied by
; this routine will later be used for a copy of the bank 15 stack. It must be
; saved, since we're going to destroy it when calling bank 15.
.segment "PAGE3"
BRKVec: .addr _exit ; BRK indirect vector
.proc callbank15
excrts = $FEFE
.org $FEC3
entry: php
pha
lda #$0F ; Bank 15
sta IndReg
txa
pha
tya
pha
sei
ldy #$FF
lda (sysp1),y
tay
lda ExecReg
sta (sysp1),y
dey
lda #.hibyte(excrts-1)
sta (sysp1),y
dey
lda #.lobyte(excrts-1)
sta (sysp1),y
tya
sec
sbc #7
sta $1FF ; Save new sp
tay
tsx
pla
iny
sta (sysp1),y
pla
iny
sta (sysp1),y
pla
iny
sta (sysp1),y
pla
iny
sta (sysp1),y
lda $105,x
sec
sbc #3
iny
sta (sysp1),y
lda $106,x
sbc #0
iny
sta (sysp1),y
ldy $1FF ; Restore sp in bank 15
lda #.hibyte(expull-1)
sta (sysp1),y
dey
lda #.lobyte(expull-1)
sta (sysp1),y
dey
pla
pla
tsx
stx $1FF
tya
tax
txs
lda IndReg
jmp $FFF6
expull: pla
tay
pla
tax
pla
plp
rts
.if (expull <> $FF26)
.error "Symbol expull must be aligned with kernal in bank 15"
.endif
.reloc
.endproc
;------------------------------------------------------------------------------
; The code in the target bank when switching back will be put at the bottom
; of the stack. We will jump here to switch segments. The range $F2..$FF is
; not used by any kernal routine.
.segment "STARTUP"
Back: sta ExecReg
; We are at $100 now. The following snippet is a copy of the code that is poked
; in the system bank memory by the basic header program, it's only for
; documentation and not actually used here:
sei
lda #$00
sta ExecReg
; This is the actual starting point of our code after switching banks for
; startup. Beware: The following code will get overwritten as soon as we
; use the stack (since it's in page 1)! We jump to another location, since
; we need some space for subroutines that aren't used later.
jmp Origin
; Hardware vectors, copied to $FFFA
.proc vectors
sta ExecReg
rts
nop
.word nmi ; NMI vector
.word 0 ; Reset - not used
.word irq ; IRQ vector
.endproc
; Initializers for the extended zeropage. See extzp.s
.proc extzp
.word $0100 ; sysp1
.word $0300 ; sysp3
.word $d800 ; vic
.word $da00 ; sid
.word $db00 ; cia1
.word $dc00 ; cia2
.word $dd00 ; acia
.word $de00 ; tpi1
.word $df00 ; tpi2
.word $eab1 ; ktab1
.word $eb11 ; ktab2
.word $eb71 ; ktab3
.word $ebd1 ; ktab4
.endproc
; Switch the indirect segment to the system bank
Origin: lda #$0F
sta IndReg
; Initialize the extended zeropage
ldx #.sizeof(extzp)-1
L1: lda extzp,x
sta <__EXTZP_RUN__,x
dex
bpl L1
; Save the old stack pointer from the system bank and setup our hw sp
tsx
txa
ldy #$FF
sta (sysp1),y ; Save system stack point into $F:$1FF
ldx #$FE ; Leave $1FF untouched for cross bank calls
txs ; Set up our own stack
; Copy stuff from the system zeropage to ours
lda #.sizeof(transfer_table)
sta ktmp
L2: ldx ktmp
ldy transfer_table-2,x
lda transfer_table-1,x
tax
lda (sysp0),y
sta $00,x
dec ktmp
dec ktmp
bne L2
; Set the interrupt, NMI and other vectors
ldx #.sizeof(vectors)-1
L3: lda vectors,x
sta $10000 - .sizeof(vectors),x
dex
bpl L3
; Setup the C stack
lda #.lobyte(callbank15::entry)
sta sp
lda #.hibyte(callbank15::entry)
sta sp+1
; Setup the subroutine and jump vector table that redirects kernal calls to
; the system bank.
ldy #.sizeof(callbank15)
@L1: lda callbank15-1,y
sta callbank15::entry-1,y
dey
bne @L1
; Setup the jump vector table. Y is zero on entry.
ldx #45-1 ; Number of vectors
@L2: lda #$20 ; JSR opcode
sta $FF6F,y
iny
lda #.lobyte(callbank15::entry)
sta $FF6F,y
iny
lda #.hibyte(callbank15::entry)
sta $FF6F,y
iny
dex
bpl @L2
; Set the indirect segment to bank we're executing in
lda ExecReg
sta IndReg
; Zero the BSS segment. We will do that here instead calling the routine
; in the common library, since we have the memory anyway, and this way,
; it's reused later.
lda #<__BSS_RUN__
sta ptr1
lda #>__BSS_RUN__
sta ptr1+1
lda #0
tay
; Clear full pages
ldx #>__BSS_SIZE__
beq Z2
Z1: sta (ptr1),y
iny
bne Z1
inc ptr1+1 ; Next page
dex
bne Z1
; Clear the remaining page
Z2: ldx #<__BSS_SIZE__
beq Z4
Z3: sta (ptr1),y
iny
dex
bne Z3
Z4: jmp Init
; ------------------------------------------------------------------------
; We are at $200 now. We may now start calling subroutines safely, since
; the code we execute is no longer in the stack page.
.segment "PAGE2"
; Copy the character rom from the system bank into the execution bank
Init: lda #<$C000
sta ptr1
lda #>$C000
sta ptr1+1
lda #<__CHARRAM_START__
sta ptr2
lda #>__CHARRAM_START__
sta ptr2+1
lda #>__CHARRAM_SIZE__ ; 16 * 256 bytes to copy
sta tmp1
ldy #$00
ccopy: lda #$0F
sta IndReg ; Access the system bank
ccopy1: lda (ptr1),y
sta __VIDRAM_START__,y
iny
bne ccopy1
lda ExecReg
sta IndReg
ccopy2: lda __VIDRAM_START__,y
sta (ptr2),y
iny
bne ccopy2
inc ptr1+1
inc ptr2+1 ; Bump high pointer bytes
dec tmp1
bne ccopy
; Clear the video memory. We will do this before switching the video to bank 0
; to avoid garbage when doing so.
jsr _clrscr
; Reprogram the VIC so that the text screen and the character ROM is in the
; execution bank. This is done in three steps:
lda #$0F ; We need access to the system bank
sta IndReg
; Place the VIC video RAM into bank 0
; CA (STATVID) = 0
; CB (VICDOTSEL) = 0
ldy #TPI::CR
lda (tpi1),y
sta vidsave+0
and #%00001111
ora #%10100000
sta (tpi1),y
; Set bit 14/15 of the VIC address range to the high bits of __VIDRAM_START__
; PC6/PC7 (VICBANKSEL 0/1) = 11
ldy #TPI::PRC
lda (tpi2),y
sta vidsave+1
and #$3F
ora #<((>__VIDRAM_START__) & $C0)
sta (tpi2),y
; Set the VIC base address register to the addresses of the video and
; character RAM.
ldy #VIC_VIDEO_ADR
lda (vic),y
sta vidsave+2
and #$01
ora #<(((__VIDRAM_START__ >> 6) & $F0) | ((__CHARRAM_START__ >> 10) & $0E) | $02)
; and #$0F
; ora #<(((>__VIDRAM_START__) << 2) & $F0)
sta (vic),y
; Switch back to the execution bank
lda ExecReg
sta IndReg
; Activate chained interrupt handlers, then enable interrupts.
lda #.lobyte(__INTERRUPTOR_COUNT__*2)
sta irqcount
cli
; Call module constructors.
jsr initlib
; Push arguments and call main()
jsr callmain
; Call module destructors. This is also the _exit entry and the default entry
; point for the break vector.
_exit: pha ; Save the return code on stack
jsr donelib ; Run module destructors
lda #$00
sta irqcount ; Disable custom irq handlers
; Address the system bank
lda #$0F
sta IndReg
; Switch back the video to the system bank
ldy #TPI::CR
lda vidsave+0
sta (tpi1),y
ldy #TPI::PRC
lda vidsave+1
sta (tpi2),y
ldy #VIC_VIDEO_ADR
lda vidsave+2
sta (vic),y
; Copy stuff back from our zeropage to the systems
.if 0
lda #.sizeof(transfer_table)
sta ktmp
@L0: ldx ktmp
ldy transfer_table-2,x
lda transfer_table-1,x
tax
lda $00,x
sta (sysp0),y
dec ktmp
dec ktmp
bne @L0
.endif
; Place the program return code into ST
pla
ldy #$9C ; ST
sta (sysp0),y
; Setup the welcome code at the stack bottom in the system bank.
ldy #$FF
lda (sysp1),y ; Load system bank sp
tax
iny ; Y = 0
lda #$58 ; CLI opcode
sta (sysp1),y
iny
lda #$60 ; RTS opcode
sta (sysp1),y
lda IndReg
sei
txs
jmp Back
; -------------------------------------------------------------------------
; The IRQ handler goes into PAGE2. For performance reasons, and to allow
; easier chaining, we do handle the IRQs in the execution bank (instead of
; passing them to the system bank).
; This is the mapping of the active irq register of the 6525 (tpi1):
;
; Bit 7 6 5 4 3 2 1 0
; | | | | ^ 50 Hz
; | | | ^ SRQ IEEE 488
; | | ^ cia
; | ^ IRQB ext. Port
; ^ acia
irq: pha
txa
pha
tya
pha
lda IndReg
pha
lda ExecReg
sta IndReg ; Be sure to address our segment
tsx
lda $105,x ; Get the flags from the stack
and #$10 ; Test break flag
bne dobrk
; It's an IRQ
cld
; Call chained IRQ handlers
ldy irqcount
beq irqskip
jsr callirq_y ; Call the functions
; Done with chained IRQ handlers, check the TPI for IRQs and handle them
irqskip:lda #$0F
sta IndReg
ldy #TPI::AIR
lda (tpi1),y ; Interrupt Register 6525
beq noirq
; 50/60Hz interrupt
cmp #%00000001 ; ticker irq?
bne irqend
jsr scnkey ; Poll the keyboard
jsr UDTIM ; Bump the time
; Done
irqend: ldy #TPI::AIR
sta (tpi1),y ; Clear interrupt
noirq: pla
sta IndReg
pla
tay
pla
tax
pla
nmi: rti
dobrk: jmp (BRKVec)
; -------------------------------------------------------------------------
; Data area
.data
vidsave:.res 3
.bss
irqcount: .byte 0