1
0
mirror of https://github.com/cc65/cc65.git synced 2024-11-17 09:07:32 +00:00
cc65/libsrc/c64/c64-1351.s

403 lines
10 KiB
ArmAsm
Raw Normal View History

;
; Driver for the 1351 proportional mouse. Parts of the code are from
; the Commodore 1351 mouse users guide.
;
; Ullrich von Bassewitz, 2003-12-29
;
.include "zeropage.inc"
.include "mouse-kernel.inc"
.include "c64.inc"
.macpack generic
; ------------------------------------------------------------------------
; Header. Includes jump table
.segment "JUMPTABLE"
HEADER:
; Driver signature
.byte $6d, $6f, $75 ; "mou"
.byte MOUSE_API_VERSION ; Mouse driver API version number
; Jump table.
.addr INSTALL
.addr UNINSTALL
.addr HIDE
.addr SHOW
.addr BOX
.addr MOVE
.addr BUTTONS
.addr POS
.addr INFO
.addr IOCTL
.addr IRQ
; Callback table, set by the kernel before INSTALL is called
CHIDE: jmp $0000 ; Hide the cursor
CSHOW: jmp $0000 ; Show the cursor
CMOVEX: jmp $0000 ; Move the cursor to X coord
CMOVEY: jmp $0000 ; Move the cursor to Y coord
;----------------------------------------------------------------------------
; Constants
SCREEN_HEIGHT = 200
SCREEN_WIDTH = 320
;----------------------------------------------------------------------------
; Global variables. The bounding box values are sorted so that they can be
; written with the least effort in the BOX routine, so don't reorder them.
.bss
Vars:
OldPotX: .res 1 ; Old hw counter values
OldPotY: .res 1
YPos: .res 2 ; Current mouse position, Y
XPos: .res 2 ; Current mouse position, X
YMax: .res 2 ; Y2 value of bounding box
XMax: .res 2 ; X2 value of bounding box
YMin: .res 2 ; Y1 value of bounding box
XMin: .res 2 ; X1 value of bounding box
OldValue: .res 1 ; Temp for MoveCheck routine
NewValue: .res 1 ; Temp for MoveCheck routine
; Default values for above variables
.rodata
.proc DefVars
.byte 0, 0 ; OldPotX/OldPotY
.word SCREEN_HEIGHT/2 ; YPos
.word SCREEN_WIDTH/2 ; XPos
.word SCREEN_HEIGHT ; YMax
.word SCREEN_WIDTH ; XMax
.word 0 ; YMin
.word 0 ; XMin
.endproc
.code
;----------------------------------------------------------------------------
; INSTALL routine. Is called after the driver is loaded into memory. If
; possible, check if the hardware is present.
; Must return an MOUSE_ERR_xx code in a/x.
INSTALL:
; Initialize variables. Just copy the default stuff over
ldx #.sizeof(DefVars)-1
@L1: lda DefVars,x
sta Vars,x
dex
bpl @L1
; Be sure the mouse cursor is invisible and at the default location. We
; need to do that here, because our mouse interrupt handler doesn't set the
; mouse position if it hasn't changed.
sei
jsr CHIDE
lda XPos
ldx XPos+1
jsr CMOVEX
lda YPos
ldx YPos+1
jsr CMOVEY
cli
; Done, return zero (= MOUSE_ERR_OK)
ldx #$00
txa
rts ; Run into UNINSTALL instead
;----------------------------------------------------------------------------
; UNINSTALL routine. Is called before the driver is removed from memory.
; No return code required (the driver is removed from memory on return).
UNINSTALL = HIDE ; Hide cursor on exit
;----------------------------------------------------------------------------
; HIDE routine. Is called to hide the mouse pointer. The mouse kernel manages
; a counter for calls to show/hide, and the driver entry point is only called
; if the mouse is currently visible and should get hidden. For most drivers,
; no special action is required besides hiding the mouse cursor.
; No return code required.
HIDE: sei
jsr CHIDE
cli
rts
;----------------------------------------------------------------------------
; SHOW routine. Is called to show the mouse pointer. The mouse kernel manages
; a counter for calls to show/hide, and the driver entry point is only called
; if the mouse is currently hidden and should become visible. For most drivers,
; no special action is required besides enabling the mouse cursor.
; No return code required.
SHOW: sei
jsr CSHOW
cli
rts
;----------------------------------------------------------------------------
; BOX: Set the mouse bounding box. The parameters are passed as they come from
; the C program, that is, maxy in a/x and the other parameters on the stack.
; The C wrapper will remove the parameters from the stack when the driver
; routine returns.
; No checks are done if the mouse is currently inside the box, this is the job
; of the caller. It is not necessary to validate the parameters, trust the
; caller and save some code here. No return code required.
BOX: ldy #5
sei
sta YMax
stx YMax+1
@L1: lda (sp),y
sta XMax,y
dey
bpl @L1
cli
rts
;----------------------------------------------------------------------------
; MOVE: Move the mouse to a new position. The position is passed as it comes
; from the C program, that is: X on the stack and Y in a/x. The C wrapper will
; remove the parameter from the stack on return.
; No checks are done if the new position is valid (within the bounding box or
; the screen). No return code required.
;
MOVE: sei ; No interrupts
sta YPos
stx YPos+1 ; New Y position
jsr CMOVEY ; Set it
ldy #$01
lda (sp),y
sta XPos+1
tax
dey
lda (sp),y
sta XPos ; New X position
jsr CMOVEX ; Move the cursor
cli ; Allow interrupts
rts
;----------------------------------------------------------------------------
; BUTTONS: Return the button mask in a/x.
BUTTONS:
lda #$7F
sei
sta CIA1_PRA
lda CIA1_PRB ; Read joystick #0
cli
ldx #0
and #$1F
eor #$1F
rts
;----------------------------------------------------------------------------
; POS: Return the mouse position in the MOUSE_POS struct pointed to by ptr1.
; No return code required.
POS: ldy #MOUSE_POS::XCOORD ; Structure offset
sei ; Disable interrupts
lda XPos ; Transfer the position
sta (ptr1),y
lda XPos+1
iny
sta (ptr1),y
lda YPos
iny
sta (ptr1),y
lda YPos+1
cli ; Enable interrupts
iny
sta (ptr1),y ; Store last byte
rts ; Done
;----------------------------------------------------------------------------
; INFO: Returns mouse position and current button mask in the MOUSE_INFO
; struct pointed to by ptr1. No return code required.
;
; We're cheating here to keep the code smaller: The first fields of the
; mouse_info struct are identical to the mouse_pos struct, so we will just
; call _mouse_pos to initialize the struct pointer and fill the position
; fields.
INFO: jsr POS
; Fill in the button state
jsr BUTTONS ; Will not touch ptr1
ldy #MOUSE_INFO::BUTTONS
sta (ptr1),y
rts
;----------------------------------------------------------------------------
; IOCTL: Driver defined entry point. The wrapper will pass a pointer to ioctl
; specific data in ptr1, and the ioctl code in A.
; Must return an error code in a/x.
;
IOCTL: lda #<MOUSE_ERR_INV_IOCTL ; We don't support ioclts for now
ldx #>MOUSE_ERR_INV_IOCTL
rts
;----------------------------------------------------------------------------
; IRQ: Irq handler entry point. Called as a subroutine but in IRQ context
; (so be careful).
;
IRQ: lda SID_ADConv1 ; Get mouse X movement
ldy OldPotX
jsr MoveCheck ; Calculate movement vector
sty OldPotX
; Skip processing if nothing has changed
bcc @SkipX
; Calculate the new X coordinate (--> a/y)
add XPos
tay ; Remember low byte
txa
adc XPos+1
tax
; Limit the X coordinate to the bounding box
cpy XMin
sbc XMin+1
bpl @L1
ldy XMin
ldx XMin+1
jmp @L2
@L1: txa
cpy XMax
sbc XMax+1
bmi @L2
ldy XMax
ldx XMax+1
@L2: sty XPos
stx XPos+1
; Move the mouse pointer to the new X pos
tya
jsr CMOVEX
; Calculate the Y movement vector
@SkipX: lda SID_ADConv2 ; Get mouse Y movement
ldy OldPotY
jsr MoveCheck ; Calculate movement
sty OldPotY
; Skip processing if nothing has changed
bcc @SkipY
; Calculate the new Y coordinate (--> a/y)
sta OldValue
lda YPos
sub OldValue
tay
stx OldValue
lda YPos+1
sbc OldValue
tax
; Limit the Y coordinate to the bounding box
cpy YMin
sbc YMin+1
bpl @L3
ldy YMin
ldx YMin+1
jmp @L4
@L3: txa
cpy YMax
sbc YMax+1
bmi @L4
ldy YMax
ldx YMax+1
@L4: sty YPos
stx YPos+1
; Move the mouse pointer to the new X pos
tya
jmp CMOVEY
; Done
@SkipY: rts
; --------------------------------------------------------------------------
;
; Move check routine, called for both coordinates.
;
; Entry: y = old value of pot register
; a = current value of pot register
; Exit: y = value to use for old value
; x/a = delta value for position
;
MoveCheck:
sty OldValue
sta NewValue
ldx #$00
sub OldValue ; a = mod64 (new - old)
and #%01111111
cmp #%01000000 ; if (a > 0)
bcs @L1 ;
lsr a ; a /= 2;
beq @L2 ; if (a != 0)
ldy NewValue ; y = NewValue
sec
rts ; return
@L1: ora #%11000000 ; else or in high order bits
cmp #$FF ; if (a != -1)
beq @L2
sec
ror a ; a /= 2
dex ; high byte = -1 (X = $FF)
ldy NewValue
sec
rts
@L2: txa ; A = $00
clc
rts