1
0
mirror of https://github.com/cc65/cc65.git synced 2024-06-17 00:29:31 +00:00
cc65/src/cc65/expr.c

3210 lines
89 KiB
C
Raw Normal View History

/*
* expr.c
*
* Ullrich von Bassewitz, 21.06.1998
*/
#include <stdio.h>
#include <stdlib.h>
/* common */
#include "check.h"
#include "debugflag.h"
#include "xmalloc.h"
/* cc65 */
#include "asmcode.h"
#include "asmlabel.h"
#include "asmstmt.h"
#include "assignment.h"
#include "codegen.h"
#include "declare.h"
#include "error.h"
#include "funcdesc.h"
#include "function.h"
#include "global.h"
#include "litpool.h"
#include "macrotab.h"
#include "preproc.h"
#include "scanner.h"
#include "stdfunc.h"
#include "symtab.h"
#include "typecast.h"
#include "typecmp.h"
#include "expr.h"
/*****************************************************************************/
/* Data */
/*****************************************************************************/
/* Generator attributes */
#define GEN_NOPUSH 0x01 /* Don't push lhs */
/* Map a generator function and its attributes to a token */
typedef struct {
token_t Tok; /* Token to map to */
unsigned Flags; /* Flags for generator function */
void (*Func) (unsigned, unsigned long); /* Generator func */
} GenDesc;
/* Descriptors for the operations */
static GenDesc GenMUL = { TOK_STAR, GEN_NOPUSH, g_mul };
static GenDesc GenDIV = { TOK_DIV, GEN_NOPUSH, g_div };
static GenDesc GenMOD = { TOK_MOD, GEN_NOPUSH, g_mod };
static GenDesc GenASL = { TOK_SHL, GEN_NOPUSH, g_asl };
static GenDesc GenASR = { TOK_SHR, GEN_NOPUSH, g_asr };
static GenDesc GenLT = { TOK_LT, GEN_NOPUSH, g_lt };
static GenDesc GenLE = { TOK_LE, GEN_NOPUSH, g_le };
static GenDesc GenGE = { TOK_GE, GEN_NOPUSH, g_ge };
static GenDesc GenGT = { TOK_GT, GEN_NOPUSH, g_gt };
static GenDesc GenEQ = { TOK_EQ, GEN_NOPUSH, g_eq };
static GenDesc GenNE = { TOK_NE, GEN_NOPUSH, g_ne };
static GenDesc GenAND = { TOK_AND, GEN_NOPUSH, g_and };
static GenDesc GenXOR = { TOK_XOR, GEN_NOPUSH, g_xor };
static GenDesc GenOR = { TOK_OR, GEN_NOPUSH, g_or };
static GenDesc GenPASGN = { TOK_PLUS_ASSIGN, GEN_NOPUSH, g_add };
static GenDesc GenSASGN = { TOK_MINUS_ASSIGN, GEN_NOPUSH, g_sub };
static GenDesc GenMASGN = { TOK_MUL_ASSIGN, GEN_NOPUSH, g_mul };
static GenDesc GenDASGN = { TOK_DIV_ASSIGN, GEN_NOPUSH, g_div };
static GenDesc GenMOASGN = { TOK_MOD_ASSIGN, GEN_NOPUSH, g_mod };
static GenDesc GenSLASGN = { TOK_SHL_ASSIGN, GEN_NOPUSH, g_asl };
static GenDesc GenSRASGN = { TOK_SHR_ASSIGN, GEN_NOPUSH, g_asr };
static GenDesc GenAASGN = { TOK_AND_ASSIGN, GEN_NOPUSH, g_and };
static GenDesc GenXOASGN = { TOK_XOR_ASSIGN, GEN_NOPUSH, g_xor };
static GenDesc GenOASGN = { TOK_OR_ASSIGN, GEN_NOPUSH, g_or };
/*****************************************************************************/
/* Function forwards */
/*****************************************************************************/
static int hie0 (ExprDesc *lval);
/* Parse comma operator. */
static int expr (int (*func) (ExprDesc*), ExprDesc *lval);
/* Expression parser; func is either hie0 or hie1. */
/*****************************************************************************/
/* Helper functions */
/*****************************************************************************/
static unsigned GlobalModeFlags (unsigned flags)
/* Return the addressing mode flags for the variable with the given flags */
{
flags &= E_MCTYPE;
if (flags == E_TGLAB) {
/* External linkage */
return CF_EXTERNAL;
} else if (flags == E_TREGISTER) {
/* Register variable */
return CF_REGVAR;
} else {
/* Static */
return CF_STATIC;
}
}
static int IsNullPtr (ExprDesc* lval)
/* Return true if this is the NULL pointer constant */
{
return (IsClassInt (lval->Type) && /* Is it an int? */
lval->Flags == E_MCONST && /* Is it constant? */
lval->ConstVal == 0); /* And is it's value zero? */
}
static type* promoteint (type* lhst, type* rhst)
/* In an expression with two ints, return the type of the result */
{
/* Rules for integer types:
* - If one of the values is a long, the result is long.
* - If one of the values is unsigned, the result is also unsigned.
* - Otherwise the result is an int.
*/
if (IsTypeLong (lhst) || IsTypeLong (rhst)) {
if (IsSignUnsigned (lhst) || IsSignUnsigned (rhst)) {
return type_ulong;
} else {
return type_long;
}
} else {
if (IsSignUnsigned (lhst) || IsSignUnsigned (rhst)) {
return type_uint;
} else {
return type_int;
}
}
}
static unsigned typeadjust (ExprDesc* lhs, ExprDesc* rhs, int NoPush)
/* Adjust the two values for a binary operation. lhs is expected on stack or
* to be constant, rhs is expected to be in the primary register or constant.
* The function will put the type of the result into lhs and return the
* code generator flags for the operation.
* If NoPush is given, it is assumed that the operation does not expect the lhs
* to be on stack, and that lhs is in a register instead.
* Beware: The function does only accept int types.
*/
{
unsigned ltype, rtype;
unsigned flags;
/* Get the type strings */
type* lhst = lhs->Type;
type* rhst = rhs->Type;
/* Generate type adjustment code if needed */
ltype = TypeOf (lhst);
if (lhs->Flags == E_MCONST) {
ltype |= CF_CONST;
}
if (NoPush) {
/* Value is in primary register*/
ltype |= CF_REG;
}
rtype = TypeOf (rhst);
if (rhs->Flags == E_MCONST) {
rtype |= CF_CONST;
}
flags = g_typeadjust (ltype, rtype);
/* Set the type of the result */
lhs->Type = promoteint (lhst, rhst);
/* Return the code generator flags */
return flags;
}
unsigned assignadjust (type* lhst, ExprDesc* rhs)
/* Adjust the type of the right hand expression so that it can be assigned to
* the type on the left hand side. This function is used for assignment and
* for converting parameters in a function call. It returns the code generator
* flags for the operation. The type string of the right hand side will be
* set to the type of the left hand side.
*/
{
/* Get the type of the right hand side. Treat function types as
* pointer-to-function
*/
type* rhst = rhs->Type;
if (IsTypeFunc (rhst)) {
rhst = PointerTo (rhst);
}
/* After calling this function, rhs will have the type of the lhs */
rhs->Type = lhst;
/* First, do some type checking */
if (IsTypeVoid (lhst) || IsTypeVoid (rhst)) {
/* If one of the sides are of type void, output a more apropriate
* error message.
*/
Error ("Illegal type");
} else if (IsClassInt (lhst)) {
if (IsClassPtr (rhst)) {
/* Pointer -> int conversion */
Warning ("Converting pointer to integer without a cast");
} else if (IsClassInt (rhst)) {
/* Convert the rhs to the type of the lhs. */
unsigned flags = TypeOf (rhst);
if (rhs->Flags == E_MCONST) {
flags |= CF_CONST;
}
return g_typecast (TypeOf (lhst), flags);
} else {
Error ("Incompatible types");
}
} else if (IsClassPtr (lhst)) {
if (IsClassPtr (rhst)) {
/* Pointer to pointer assignment is valid, if:
* - both point to the same types, or
* - the rhs pointer is a void pointer, or
* - the lhs pointer is a void pointer.
*/
if (!IsTypeVoid (Indirect (lhst)) && !IsTypeVoid (Indirect (rhst))) {
/* Compare the types */
switch (TypeCmp (lhst, rhst)) {
case TC_INCOMPATIBLE:
Error ("Incompatible pointer types");
break;
case TC_QUAL_DIFF:
Error ("Pointer types differ in type qualifiers");
break;
default:
/* Ok */
break;
}
}
} else if (IsClassInt (rhst)) {
/* Int to pointer assignment is valid only for constant zero */
if (rhs->Flags != E_MCONST || rhs->ConstVal != 0) {
Warning ("Converting integer to pointer without a cast");
}
} else if (IsTypeFuncPtr (lhst) && IsTypeFunc(rhst)) {
/* Assignment of function to function pointer is allowed, provided
* that both functions have the same parameter list.
*/
if (TypeCmp (Indirect (lhst), rhst) < TC_EQUAL) {
Error ("Incompatible types");
}
} else {
Error ("Incompatible types");
}
} else {
Error ("Incompatible types");
}
/* Return an int value in all cases where the operands are not both ints */
return CF_INT;
}
void DefineData (ExprDesc* Expr)
/* Output a data definition for the given expression */
{
unsigned Flags = Expr->Flags;
switch (Flags & E_MCTYPE) {
case E_TCONST:
/* Number */
g_defdata (TypeOf (Expr->Type) | CF_CONST, Expr->ConstVal, 0);
break;
case E_TREGISTER:
/* Register variable. Taking the address is usually not
* allowed.
*/
if (!AllowRegVarAddr) {
Error ("Cannot take the address of a register variable");
}
/* FALLTHROUGH */
case E_TGLAB:
case E_TLLAB:
/* Local or global symbol */
g_defdata (GlobalModeFlags (Flags), Expr->Name, Expr->ConstVal);
break;
case E_TLIT:
/* a literal of some kind */
g_defdata (CF_STATIC, LiteralPoolLabel, Expr->ConstVal);
break;
default:
Internal ("Unknown constant type: %04X", Flags);
}
}
static void LoadConstant (unsigned Flags, ExprDesc* Expr)
/* Load the primary register with some constant value. */
{
switch (Expr->Flags & E_MCTYPE) {
case E_TLOFFS:
g_leasp (Expr->ConstVal);
break;
case E_TCONST:
/* Number constant */
g_getimmed (Flags | TypeOf (Expr->Type) | CF_CONST, Expr->ConstVal, 0);
break;
case E_TREGISTER:
/* Register variable. Taking the address is usually not
* allowed.
*/
if (!AllowRegVarAddr) {
Error ("Cannot take the address of a register variable");
}
/* FALLTHROUGH */
case E_TGLAB:
case E_TLLAB:
/* Local or global symbol, load address */
Flags |= GlobalModeFlags (Expr->Flags);
Flags &= ~CF_CONST;
g_getimmed (Flags, Expr->Name, Expr->ConstVal);
break;
case E_TLIT:
/* Literal string */
g_getimmed (CF_STATIC, LiteralPoolLabel, Expr->ConstVal);
break;
default:
Internal ("Unknown constant type: %04X", Expr->Flags);
}
}
static int kcalc (token_t tok, long val1, long val2)
/* Calculate an operation with left and right operand constant. */
{
switch (tok) {
case TOK_EQ:
return (val1 == val2);
case TOK_NE:
return (val1 != val2);
case TOK_LT:
return (val1 < val2);
case TOK_LE:
return (val1 <= val2);
case TOK_GE:
return (val1 >= val2);
case TOK_GT:
return (val1 > val2);
case TOK_OR:
return (val1 | val2);
case TOK_XOR:
return (val1 ^ val2);
case TOK_AND:
return (val1 & val2);
case TOK_SHR:
return (val1 >> val2);
case TOK_SHL:
return (val1 << val2);
case TOK_STAR:
return (val1 * val2);
case TOK_DIV:
if (val2 == 0) {
Error ("Division by zero");
return 0x7FFFFFFF;
}
return (val1 / val2);
case TOK_MOD:
if (val2 == 0) {
Error ("Modulo operation with zero");
return 0;
}
return (val1 % val2);
default:
Internal ("kcalc: got token 0x%X\n", tok);
return 0;
}
}
static const GenDesc* FindGen (token_t Tok, const GenDesc** Table)
/* Find a token in a generator table */
{
const GenDesc* G;
while ((G = *Table) != 0) {
if (G->Tok == Tok) {
return G;
}
++Table;
}
return 0;
}
static int istypeexpr (void)
/* Return true if some sort of variable or type is waiting (helper for cast
* and sizeof() in hie10).
*/
{
SymEntry* Entry;
return CurTok.Tok == TOK_LPAREN && (
(NextTok.Tok >= TOK_FIRSTTYPE && NextTok.Tok <= TOK_LASTTYPE) ||
(NextTok.Tok == TOK_CONST) ||
(NextTok.Tok == TOK_IDENT &&
(Entry = FindSym (NextTok.Ident)) != 0 &&
SymIsTypeDef (Entry)));
}
void PushAddr (ExprDesc* lval)
/* If the expression contains an address that was somehow evaluated,
* push this address on the stack. This is a helper function for all
* sorts of implicit or explicit assignment functions where the lvalue
* must be saved if it's not constant, before evaluating the rhs.
*/
{
/* Get the address on stack if needed */
if (lval->Flags != E_MREG && (lval->Flags & E_MEXPR)) {
/* Push the address (always a pointer) */
g_push (CF_PTR, 0);
}
}
void ConstSubExpr (int (*F) (ExprDesc*), ExprDesc* Expr)
/* Will evaluate an expression via the given function. If the result is not
* a constant, a diagnostic will be printed, and the value is replaced by
* a constant one to make sure there are no internal errors that result
* from this input error.
*/
{
InitExprDesc (Expr);
if (F (Expr) != 0 || Expr->Flags != E_MCONST) {
Error ("Constant expression expected");
/* To avoid any compiler errors, make the expression a valid const */
MakeConstIntExpr (Expr, 1);
}
}
void CheckBoolExpr (ExprDesc* lval)
/* Check if the given expression is a boolean expression, output a diagnostic
* if not.
*/
{
/* If it's an integer, it's ok. If it's not an integer, but a pointer,
* the pointer used in a boolean context is also ok
*/
if (!IsClassInt (lval->Type) && !IsClassPtr (lval->Type)) {
Error ("Boolean expression expected");
/* To avoid any compiler errors, make the expression a valid int */
MakeConstIntExpr (lval, 1);
}
}
/*****************************************************************************/
/* code */
/*****************************************************************************/
void exprhs (unsigned flags, int k, ExprDesc* lval)
/* Put the result of an expression into the primary register */
{
int f;
f = lval->Flags;
if (k) {
/* Dereferenced lvalue */
flags |= TypeOf (lval->Type);
if (lval->Test & E_FORCETEST) {
flags |= CF_TEST;
lval->Test &= ~E_FORCETEST;
}
if (f & E_MGLOBAL) { /* ref to globalvar */
/* Generate code */
flags |= GlobalModeFlags (f);
g_getstatic (flags, lval->Name, lval->ConstVal);
} else if (f & E_MLOCAL) {
/* ref to localvar */
g_getlocal (flags, lval->ConstVal);
} else if (f & E_MCONST) {
/* ref to absolute address */
g_getstatic (flags | CF_ABSOLUTE, lval->ConstVal, 0);
} else if (f == E_MEOFFS) {
g_getind (flags, lval->ConstVal);
} else if (f != E_MREG) {
g_getind (flags, 0);
}
} else if (f == E_MEOFFS) {
/* reference not storable */
flags |= TypeOf (lval->Type);
g_inc (flags | CF_CONST, lval->ConstVal);
} else if ((f & E_MEXPR) == 0) {
/* Constant of some sort, load it into the primary */
LoadConstant (flags, lval);
}
/* Are we testing this value? */
if (lval->Test & E_FORCETEST) {
/* Yes, force a test */
flags |= TypeOf (lval->Type);
g_test (flags);
lval->Test &= ~E_FORCETEST;
}
}
static unsigned FunctionParamList (FuncDesc* Func)
/* Parse a function parameter list and pass the parameters to the called
* function. Depending on several criteria this may be done by just pushing
* each parameter separately, or creating the parameter frame once and then
* storing into this frame.
* The function returns the size of the parameters pushed.
*/
{
ExprDesc lval;
/* Initialize variables */
SymEntry* Param = 0; /* Keep gcc silent */
unsigned ParamSize = 0; /* Size of parameters pushed */
unsigned ParamCount = 0; /* Number of parameters pushed */
unsigned FrameSize = 0; /* Size of parameter frame */
unsigned FrameParams = 0; /* Number of params in frame */
int FrameOffs = 0; /* Offset into parameter frame */
int Ellipsis = 0; /* Function is variadic */
/* As an optimization, we may allocate the complete parameter frame at
* once instead of pushing each parameter as it comes. We may do that,
* if...
*
* - optimizations that increase code size are enabled (allocating the
* stack frame at once gives usually larger code).
* - we have more than one parameter to push (don't count the last param
* for __fastcall__ functions).
*/
if (CodeSizeFactor >= 200) {
/* Calculate the number and size of the parameters */
FrameParams = Func->ParamCount;
FrameSize = Func->ParamSize;
if (FrameParams > 0 && (Func->Flags & FD_FASTCALL) != 0) {
/* Last parameter is not pushed */
FrameSize -= CheckedSizeOf (Func->LastParam->Type);
--FrameParams;
}
/* Do we have more than one parameter in the frame? */
if (FrameParams > 1) {
/* Okeydokey, setup the frame */
FrameOffs = oursp;
g_space (FrameSize);
oursp -= FrameSize;
} else {
/* Don't use a preallocated frame */
FrameSize = 0;
}
}
/* Parse the actual parameter list */
while (CurTok.Tok != TOK_RPAREN) {
unsigned CFlags;
unsigned Flags;
/* Count arguments */
++ParamCount;
/* Fetch the pointer to the next argument, check for too many args */
if (ParamCount <= Func->ParamCount) {
/* Beware: If there are parameters with identical names, they
* cannot go into the same symbol table, which means that in this
* case of errorneous input, the number of nodes in the symbol
* table and ParamCount are NOT equal. We have to handle this case
* below to avoid segmentation violations. Since we know that this
* problem can only occur if there is more than one parameter,
* we will just use the last one.
*/
if (ParamCount == 1) {
/* First argument */
Param = Func->SymTab->SymHead;
} else if (Param->NextSym != 0) {
/* Next argument */
Param = Param->NextSym;
CHECK ((Param->Flags & SC_PARAM) != 0);
}
} else if (!Ellipsis) {
/* Too many arguments. Do we have an open param list? */
if ((Func->Flags & FD_VARIADIC) == 0) {
/* End of param list reached, no ellipsis */
Error ("Too many arguments in function call");
}
/* Assume an ellipsis even in case of errors to avoid an error
* message for each other argument.
*/
Ellipsis = 1;
}
/* Do some optimization: If we have a constant value to push,
* use a special function that may optimize.
*/
CFlags = CF_NONE;
if (!Ellipsis && CheckedSizeOf (Param->Type) == 1) {
CFlags = CF_FORCECHAR;
}
Flags = CF_NONE;
if (evalexpr (CFlags, hie1, &lval) == 0) {
/* A constant value */
Flags |= CF_CONST;
}
/* If we don't have an argument spec, accept anything, otherwise
* convert the actual argument to the type needed.
*/
if (!Ellipsis) {
/* Promote the argument if needed */
assignadjust (Param->Type, &lval);
/* If we have a prototype, chars may be pushed as chars */
Flags |= CF_FORCECHAR;
}
/* Use the type of the argument for the push */
Flags |= TypeOf (lval.Type);
/* If this is a fastcall function, don't push the last argument */
if (ParamCount == Func->ParamCount && (Func->Flags & FD_FASTCALL) != 0) {
/* Just load the argument into the primary. This is only needed if
* we have a constant argument, otherwise the value is already in
* the primary.
*/
if (Flags & CF_CONST) {
exprhs (CF_FORCECHAR, 0, &lval);
}
} else {
unsigned ArgSize = sizeofarg (Flags);
if (FrameSize > 0) {
/* We have the space already allocated, store in the frame */
CHECK (FrameSize >= ArgSize);
FrameSize -= ArgSize;
FrameOffs -= ArgSize;
/* Store */
g_putlocal (Flags | CF_NOKEEP, FrameOffs, lval.ConstVal);
} else {
/* Push the argument */
g_push (Flags, lval.ConstVal);
}
/* Calculate total parameter size */
ParamSize += ArgSize;
}
/* Check for end of argument list */
if (CurTok.Tok != TOK_COMMA) {
break;
}
NextToken ();
}
/* Check if we had enough parameters */
if (ParamCount < Func->ParamCount) {
Error ("Too few arguments in function call");
}
/* The function returns the size of all parameters pushed onto the stack.
* However, if there are parameters missing (which is an error and was
* flagged by the compiler) AND a stack frame was preallocated above,
* we would loose track of the stackpointer and generate an internal error
* later. So we correct the value by the parameters that should have been
* pushed to avoid an internal compiler error. Since an error was
* generated before, no code will be output anyway.
*/
return ParamSize + FrameSize;
}
static void FunctionCall (int k, ExprDesc* lval)
/* Perform a function call. */
{
FuncDesc* Func; /* Function descriptor */
int IsFuncPtr; /* Flag */
unsigned ParamSize; /* Number of parameter bytes */
CodeMark Mark = 0; /* Initialize to keep gcc silent */
int PtrOffs = 0; /* Offset of function pointer on stack */
int IsFastCall = 0; /* True if it's a fast call function */
int PtrOnStack = 0; /* True if a pointer copy is on stack */
/* Get a pointer to the function descriptor from the type string */
Func = GetFuncDesc (lval->Type);
/* Handle function pointers transparently */
IsFuncPtr = IsTypeFuncPtr (lval->Type);
if (IsFuncPtr) {
/* Check wether it's a fastcall function that has parameters */
IsFastCall = IsFastCallFunc (lval->Type + 1) && (Func->ParamCount > 0);
/* Things may be difficult, depending on where the function pointer
* resides. If the function pointer is an expression of some sort
* (not a local or global variable), we have to evaluate this
* expression now and save the result for later. Since calls to
* function pointers may be nested, we must save it onto the stack.
* For fastcall functions we do also need to place a copy of the
* pointer on stack, since we cannot use a/x.
*/
PtrOnStack = IsFastCall || ((lval->Flags & (E_MGLOBAL | E_MLOCAL)) == 0);
if (PtrOnStack) {
/* Not a global or local variable, or a fastcall function. Load
* the pointer into the primary and mark it as an expression.
*/
exprhs (CF_NONE, k, lval);
lval->Flags |= E_MEXPR;
/* Remember the code position */
Mark = GetCodePos ();
/* Push the pointer onto the stack and remember the offset */
g_push (CF_PTR, 0);
PtrOffs = oursp;
}
/* Check for known standard functions and inline them if requested */
} else if (InlineStdFuncs && IsStdFunc ((const char*) lval->Name)) {
/* Inline this function */
HandleStdFunc (Func, lval);
return;
}
/* Parse the parameter list */
ParamSize = FunctionParamList (Func);
/* We need the closing paren here */
ConsumeRParen ();
/* Special handling for function pointers */
if (IsFuncPtr) {
/* If the function is not a fastcall function, load the pointer to
* the function into the primary.
*/
if (!IsFastCall) {
/* Not a fastcall function - we may use the primary */
if (PtrOnStack) {
/* If we have no parameters, the pointer is still in the
* primary. Remove the code to push it and correct the
* stack pointer.
*/
if (ParamSize == 0) {
RemoveCode (Mark);
pop (CF_PTR);
PtrOnStack = 0;
} else {
/* Load from the saved copy */
g_getlocal (CF_PTR, PtrOffs);
}
} else {
/* Load from original location */
exprhs (CF_NONE, k, lval);
}
/* Call the function */
g_callind (TypeOf (lval->Type+1), ParamSize, PtrOffs);
} else {
/* Fastcall function. We cannot use the primary for the function
* pointer and must therefore use an offset to the stack location.
* Since fastcall functions may never be variadic, we can use the
* index register for this purpose.
*/
g_callind (CF_LOCAL, ParamSize, PtrOffs);
}
/* If we have a pointer on stack, remove it */
if (PtrOnStack) {
g_space (- (int) sizeofarg (CF_PTR));
pop (CF_PTR);
}
/* Skip T_PTR */
++lval->Type;
} else {
/* Normal function */
g_call (TypeOf (lval->Type), (const char*) lval->Name, ParamSize);
}
}
static int primary (ExprDesc* lval)
/* This is the lowest level of the expression parser. */
{
int k;
/* Initialize fields in the expression stucture */
lval->Test = 0; /* No test */
lval->Sym = 0; /* Symbol unknown */
/* Character and integer constants. */
if (CurTok.Tok == TOK_ICONST || CurTok.Tok == TOK_CCONST) {
lval->Flags = E_MCONST | E_TCONST;
lval->Type = CurTok.Type;
lval->ConstVal = CurTok.IVal;
NextToken ();
return 0;
}
/* Process parenthesized subexpression by calling the whole parser
* recursively.
*/
if (CurTok.Tok == TOK_LPAREN) {
NextToken ();
InitExprDesc (lval); /* Remove any attributes */
k = hie0 (lval);
ConsumeRParen ();
return k;
}
/* If we run into an identifier in preprocessing mode, we assume that this
* is an undefined macro and replace it by a constant value of zero.
*/
if (Preprocessing && CurTok.Tok == TOK_IDENT) {
MakeConstIntExpr (lval, 0);
return 0;
}
/* All others may only be used if the expression evaluation is not called
* recursively by the preprocessor.
*/
if (Preprocessing) {
/* Illegal expression in PP mode */
Error ("Preprocessor expression expected");
MakeConstIntExpr (lval, 1);
return 0;
}
/* Identifier? */
if (CurTok.Tok == TOK_IDENT) {
SymEntry* Sym;
ident Ident;
/* Get a pointer to the symbol table entry */
Sym = lval->Sym = FindSym (CurTok.Ident);
/* Is the symbol known? */
if (Sym) {
/* We found the symbol - skip the name token */
NextToken ();
/* The expression type is the symbol type */
lval->Type = Sym->Type;
/* Check for illegal symbol types */
CHECK ((Sym->Flags & SC_LABEL) != SC_LABEL);
if (Sym->Flags & SC_TYPE) {
/* Cannot use type symbols */
Error ("Variable identifier expected");
/* Assume an int type to make lval valid */
lval->Flags = E_MLOCAL | E_TLOFFS;
lval->Type = type_int;
lval->ConstVal = 0;
return 0;
}
/* Check for legal symbol types */
if ((Sym->Flags & SC_CONST) == SC_CONST) {
/* Enum or some other numeric constant */
lval->Flags = E_MCONST | E_TCONST;
lval->ConstVal = Sym->V.ConstVal;
return 0;
} else if ((Sym->Flags & SC_FUNC) == SC_FUNC) {
/* Function */
lval->Flags = E_MGLOBAL | E_MCONST | E_TGLAB;
lval->Name = (unsigned long) Sym->Name;
lval->ConstVal = 0;
} else if ((Sym->Flags & SC_AUTO) == SC_AUTO) {
/* Local variable. If this is a parameter for a variadic
* function, we have to add some address calculations, and the
* address is not const.
*/
if ((Sym->Flags & SC_PARAM) == SC_PARAM && F_IsVariadic (CurrentFunc)) {
/* Variadic parameter */
g_leavariadic (Sym->V.Offs - F_GetParamSize (CurrentFunc));
lval->Flags = E_MEXPR;
lval->ConstVal = 0;
} else {
/* Normal parameter */
lval->Flags = E_MLOCAL | E_TLOFFS;
lval->ConstVal = Sym->V.Offs;
}
} else if ((Sym->Flags & SC_REGISTER) == SC_REGISTER) {
/* Register variable, zero page based */
lval->Flags = E_MGLOBAL | E_MCONST | E_TREGISTER;
lval->Name = Sym->V.R.RegOffs;
lval->ConstVal = 0;
} else if ((Sym->Flags & SC_STATIC) == SC_STATIC) {
/* Static variable */
if (Sym->Flags & (SC_EXTERN | SC_STORAGE)) {
lval->Flags = E_MGLOBAL | E_MCONST | E_TGLAB;
lval->Name = (unsigned long) Sym->Name;
} else {
lval->Flags = E_MGLOBAL | E_MCONST | E_TLLAB;
lval->Name = Sym->V.Label;
}
lval->ConstVal = 0;
} else {
/* Local static variable */
lval->Flags = E_MGLOBAL | E_MCONST | E_TLLAB;
lval->Name = Sym->V.Offs;
lval->ConstVal = 0;
}
/* The symbol is referenced now */
Sym->Flags |= SC_REF;
if (IsTypeFunc (lval->Type) || IsTypeArray (lval->Type)) {
return 0;
}
return 1;
}
/* We did not find the symbol. Remember the name, then skip it */
strcpy (Ident, CurTok.Ident);
NextToken ();
/* IDENT is either an auto-declared function or an undefined variable. */
if (CurTok.Tok == TOK_LPAREN) {
/* Declare a function returning int. For that purpose, prepare a
* function signature for a function having an empty param list
* and returning int.
*/
Warning ("Function call without a prototype");
Sym = AddGlobalSym (Ident, GetImplicitFuncType(), SC_EXTERN | SC_REF | SC_FUNC);
lval->Type = Sym->Type;
lval->Flags = E_MGLOBAL | E_MCONST | E_TGLAB;
lval->Name = (unsigned long) Sym->Name;
lval->ConstVal = 0;
return 0;
} else {
/* Undeclared Variable */
Sym = AddLocalSym (Ident, type_int, SC_AUTO | SC_REF, 0);
lval->Flags = E_MLOCAL | E_TLOFFS;
lval->Type = type_int;
lval->ConstVal = 0;
Error ("Undefined symbol: `%s'", Ident);
return 1;
}
}
/* String literal? */
if (CurTok.Tok == TOK_SCONST) {
lval->Flags = E_MCONST | E_TLIT;
lval->ConstVal = CurTok.IVal;
lval->Type = GetCharArrayType (GetLiteralPoolOffs () - CurTok.IVal);
NextToken ();
return 0;
}
/* ASM statement? */
if (CurTok.Tok == TOK_ASM) {
AsmStatement ();
lval->Type = type_void;
lval->Flags = E_MEXPR;
lval->ConstVal = 0;
return 0;
}
/* __AX__ and __EAX__ pseudo values? */
if (CurTok.Tok == TOK_AX || CurTok.Tok == TOK_EAX) {
lval->Type = (CurTok.Tok == TOK_AX)? type_uint : type_ulong;
lval->Flags = E_MREG;
lval->Test &= ~E_CC;
lval->ConstVal = 0;
NextToken ();
return 1; /* May be used as lvalue */
}
/* Illegal primary. */
Error ("Expression expected");
MakeConstIntExpr (lval, 1);
return 0;
}
static int arrayref (int k, ExprDesc* lval)
/* Handle an array reference */
{
unsigned lflags;
unsigned rflags;
int ConstBaseAddr;
int ConstSubAddr;
int l;
ExprDesc lval2;
CodeMark Mark1;
CodeMark Mark2;
type* tptr1;
type* tptr2;
/* Skip the bracket */
NextToken ();
/* Get the type of left side */
tptr1 = lval->Type;
/* We can apply a special treatment for arrays that have a const base
* address. This is true for most arrays and will produce a lot better
* code. Check if this is a const base address.
*/
lflags = lval->Flags & ~E_MCTYPE;
ConstBaseAddr = (lflags == E_MCONST) || /* Constant numeric address */
(lflags & E_MGLOBAL) != 0 || /* Static array, or ... */
lflags == E_MLOCAL; /* Local array */
/* If we have a constant base, we delay the address fetch */
Mark1 = GetCodePos ();
Mark2 = 0; /* Silence gcc */
if (!ConstBaseAddr) {
/* Get a pointer to the array into the primary */
exprhs (CF_NONE, k, lval);
/* Get the array pointer on stack. Do not push more than 16
* bit, even if this value is greater, since we cannot handle
* other than 16bit stuff when doing indexing.
*/
Mark2 = GetCodePos ();
g_push (CF_PTR, 0);
}
/* TOS now contains ptr to array elements. Get the subscript. */
l = hie0 (&lval2);
if (l == 0 && lval2.Flags == E_MCONST) {
/* The array subscript is a constant - remove value from stack */
if (!ConstBaseAddr) {
RemoveCode (Mark2);
pop (CF_PTR);
} else {
/* Get an array pointer into the primary */
exprhs (CF_NONE, k, lval);
}
if (IsClassPtr (tptr1)) {
/* Scale the subscript value according to element size */
lval2.ConstVal *= CheckedPSizeOf (tptr1);
/* Remove code for lhs load */
RemoveCode (Mark1);
/* Handle constant base array on stack. Be sure NOT to
* handle pointers the same way, and check for character literals
* (both won't work).
*/
if (IsTypeArray (tptr1) && lval->Flags != (E_MCONST | E_TLIT) &&
((lval->Flags & ~E_MCTYPE) == E_MCONST ||
(lval->Flags & ~E_MCTYPE) == E_MLOCAL ||
(lval->Flags & E_MGLOBAL) != 0 ||
(lval->Flags == E_MEOFFS))) {
lval->ConstVal += lval2.ConstVal;
} else {
/* Pointer - load into primary and remember offset */
if ((lval->Flags & E_MEXPR) == 0 || k != 0) {
exprhs (CF_NONE, k, lval);
}
lval->ConstVal = lval2.ConstVal;
lval->Flags = E_MEOFFS;
}
/* Result is of element type */
lval->Type = Indirect (tptr1);
/* Done */
goto end_array;
} else if (IsClassPtr (tptr2 = lval2.Type)) {
/* Subscript is pointer, get element type */
lval2.Type = Indirect (tptr2);
/* Scale the rhs value in the primary register */
g_scale (TypeOf (tptr1), CheckedSizeOf (lval2.Type));
/* */
lval->Type = lval2.Type;
} else {
Error ("Cannot subscript");
}
/* Add the subscript. Since arrays are indexed by integers,
* we will ignore the true type of the subscript here and
* use always an int.
*/
g_inc (CF_INT | CF_CONST, lval2.ConstVal);
} else {
/* Array subscript is not constant. Load it into the primary */
Mark2 = GetCodePos ();
exprhs (CF_NONE, l, &lval2);
tptr2 = lval2.Type;
if (IsClassPtr (tptr1)) {
/* Get the element type */
lval->Type = Indirect (tptr1);
/* Indexing is based on int's, so we will just use the integer
* portion of the index (which is in (e)ax, so there's no further
* action required).
*/
g_scale (CF_INT, CheckedSizeOf (lval->Type));
} else if (IsClassPtr (tptr2)) {
/* Get the element type */
lval2.Type = Indirect (tptr2);
/* Get the int value on top. If we go here, we're sure,
* both values are 16 bit (the first one was truncated
* if necessary and the second one is a pointer).
* Note: If ConstBaseAddr is true, we don't have a value on
* stack, so to "swap" both, just push the subscript.
*/
if (ConstBaseAddr) {
g_push (CF_INT, 0);
exprhs (CF_NONE, k, lval);
ConstBaseAddr = 0;
} else {
g_swap (CF_INT);
}
/* Scale it */
g_scale (TypeOf (tptr1), CheckedSizeOf (lval2.Type));
lval->Type = lval2.Type;
} else {
Error ("Cannot subscript");
}
/* The offset is now in the primary register. It didn't have a
* constant base address for the lhs, the lhs address is already
* on stack, and we must add the offset. If the base address was
* constant, we call special functions to add the address to the
* offset value.
*/
if (!ConstBaseAddr) {
/* Add the subscript. Both values are int sized. */
g_add (CF_INT, 0);
} else {
/* If the subscript has itself a constant address, it is often
* a better idea to reverse again the order of the evaluation.
* This will generate better code if the subscript is a byte
* sized variable. But beware: This is only possible if the
* subscript was not scaled, that is, if this was a byte array
* or pointer.
*/
rflags = lval2.Flags & ~E_MCTYPE;
ConstSubAddr = (rflags == E_MCONST) || /* Constant numeric address */
(rflags & E_MGLOBAL) != 0 || /* Static array, or ... */
rflags == E_MLOCAL; /* Local array */
if (ConstSubAddr && CheckedSizeOf (lval->Type) == SIZEOF_CHAR) {
type* SavedType;
/* Reverse the order of evaluation */
unsigned flags = (CheckedSizeOf (lval2.Type) == SIZEOF_CHAR)? CF_CHAR : CF_INT;
RemoveCode (Mark2);
/* Get a pointer to the array into the primary. We have changed
* Type above but we need the original type to load the
* address, so restore it temporarily.
*/
SavedType = lval->Type;
lval->Type = tptr1;
exprhs (CF_NONE, k, lval);
lval->Type = SavedType;
/* Add the variable */
if (rflags == E_MLOCAL) {
g_addlocal (flags, lval2.ConstVal);
} else {
flags |= GlobalModeFlags (lval2.Flags);
g_addstatic (flags, lval2.Name, lval2.ConstVal);
}
} else {
if (lflags == E_MCONST) {
/* Constant numeric address. Just add it */
g_inc (CF_INT | CF_UNSIGNED, lval->ConstVal);
} else if (lflags == E_MLOCAL) {
/* Base address is a local variable address */
if (IsTypeArray (tptr1)) {
g_addaddr_local (CF_INT, lval->ConstVal);
} else {
g_addlocal (CF_PTR, lval->ConstVal);
}
} else {
/* Base address is a static variable address */
unsigned flags = CF_INT;
flags |= GlobalModeFlags (lval->Flags);
if (IsTypeArray (tptr1)) {
g_addaddr_static (flags, lval->Name, lval->ConstVal);
} else {
g_addstatic (flags, lval->Name, lval->ConstVal);
}
}
}
}
}
lval->Flags = E_MEXPR;
end_array:
ConsumeRBrack ();
return !IsTypeArray (lval->Type);
}
static int structref (int k, ExprDesc* lval)
/* Process struct field after . or ->. */
{
ident Ident;
SymEntry* Field;
int flags;
/* Skip the token and check for an identifier */
NextToken ();
if (CurTok.Tok != TOK_IDENT) {
Error ("Identifier expected");
lval->Type = type_int;
return 0;
}
/* Get the symbol table entry and check for a struct field */
strcpy (Ident, CurTok.Ident);
NextToken ();
Field = FindStructField (lval->Type, Ident);
if (Field == 0) {
Error ("Struct/union has no field named `%s'", Ident);
lval->Type = type_int;
return 0;
}
/* If we have constant input data, the result is also constant */
flags = lval->Flags & ~E_MCTYPE;
if (flags == E_MCONST ||
(k == 0 && (flags == E_MLOCAL ||
(flags & E_MGLOBAL) != 0 ||
lval->Flags == E_MEOFFS))) {
lval->ConstVal += Field->V.Offs;
} else {
if ((flags & E_MEXPR) == 0 || k != 0) {
exprhs (CF_NONE, k, lval);
}
lval->ConstVal = Field->V.Offs;
lval->Flags = E_MEOFFS;
}
lval->Type = Field->Type;
return !IsTypeArray (Field->Type);
}
static int hie11 (ExprDesc *lval)
/* Handle compound types (structs and arrays) */
{
int k;
type* tptr;
k = primary (lval);
if (CurTok.Tok < TOK_LBRACK || CurTok.Tok > TOK_PTR_REF) {
/* Not for us */
return k;
}
while (1) {
if (CurTok.Tok == TOK_LBRACK) {
/* Array reference */
k = arrayref (k, lval);
} else if (CurTok.Tok == TOK_LPAREN) {
/* Function call. Skip the opening parenthesis */
NextToken ();
tptr = lval->Type;
if (IsTypeFunc (lval->Type) || IsTypeFuncPtr (lval->Type)) {
/* Call the function */
FunctionCall (k, lval);
/* Result is in the primary register */
lval->Flags = E_MEXPR;
/* Set to result */
lval->Type = GetFuncReturn (lval->Type);
} else {
Error ("Illegal function call");
}
k = 0;
} else if (CurTok.Tok == TOK_DOT) {
if (!IsClassStruct (lval->Type)) {
Error ("Struct expected");
}
k = structref (0, lval);
} else if (CurTok.Tok == TOK_PTR_REF) {
tptr = lval->Type;
if (tptr[0] != T_PTR || (tptr[1] & T_STRUCT) == 0) {
Error ("Struct pointer expected");
}
k = structref (k, lval);
} else {
return k;
}
}
}
void Store (ExprDesc* lval, const type* StoreType)
/* Store the primary register into the location denoted by lval. If StoreType
* is given, use this type when storing instead of lval->Type. If StoreType
* is NULL, use lval->Type instead.
*/
{
unsigned Flags;
unsigned f = lval->Flags;
/* If StoreType was not given, use lval->Type instead */
if (StoreType == 0) {
StoreType = lval->Type;
}
/* Get the code generator flags */
Flags = TypeOf (StoreType);
if (f & E_MGLOBAL) {
Flags |= GlobalModeFlags (f);
if (lval->Test) {
/* Just testing */
Flags |= CF_TEST;
}
/* Generate code */
g_putstatic (Flags, lval->Name, lval->ConstVal);
} else if (f & E_MLOCAL) {
/* Store an auto variable */
g_putlocal (Flags, lval->ConstVal, 0);
} else if (f == E_MEOFFS) {
/* Store indirect with offset */
g_putind (Flags, lval->ConstVal);
} else if (f != E_MREG) {
if (f & E_MEXPR) {
/* Indirect without offset */
g_putind (Flags, 0);
} else {
/* Store into absolute address */
g_putstatic (Flags | CF_ABSOLUTE, lval->ConstVal, 0);
}
}
/* Assume that each one of the stores will invalidate CC */
lval->Test &= ~E_CC;
}
static void pre_incdec (ExprDesc* lval, void (*inc) (unsigned, unsigned long))
/* Handle --i and ++i */
{
int k;
unsigned flags;
unsigned long val;
NextToken ();
if ((k = hie10 (lval)) == 0) {
Error ("Invalid lvalue");
return;
}
/* Get the data type */
flags = TypeOf (lval->Type) | CF_FORCECHAR | CF_CONST;
/* Get the increment value in bytes */
val = (lval->Type [0] == T_PTR)? CheckedPSizeOf (lval->Type) : 1;
/* We're currently only able to handle some adressing modes */
if ((lval->Flags & E_MGLOBAL) == 0 && /* Global address? */
(lval->Flags & E_MLOCAL) == 0 && /* Local address? */
(lval->Flags & E_MCONST) == 0 && /* Constant address? */
(lval->Flags & E_MEXPR) == 0) { /* Address in a/x? */
/* Use generic code. Push the address if needed */
PushAddr (lval);
/* Fetch the value */
exprhs (CF_NONE, k, lval);
/* Increment value in primary */
inc (flags, val);
/* Store the result back */
Store (lval, 0);
} else {
/* Special code for some addressing modes - use the special += ops */
if (lval->Flags & E_MGLOBAL) {
flags |= GlobalModeFlags (lval->Flags);
if (inc == g_inc) {
g_addeqstatic (flags, lval->Name, lval->ConstVal, val);
} else {
g_subeqstatic (flags, lval->Name, lval->ConstVal, val);
}
} else if (lval->Flags & E_MLOCAL) {
/* ref to localvar */
if (inc == g_inc) {
g_addeqlocal (flags, lval->ConstVal, val);
} else {
g_subeqlocal (flags, lval->ConstVal, val);
}
} else if (lval->Flags & E_MCONST) {
/* ref to absolute address */
flags |= CF_ABSOLUTE;
if (inc == g_inc) {
g_addeqstatic (flags, lval->ConstVal, 0, val);
} else {
g_subeqstatic (flags, lval->ConstVal, 0, val);
}
} else if (lval->Flags & E_MEXPR) {
/* Address in a/x, check if we have an offset */
unsigned Offs = (lval->Flags == E_MEOFFS)? lval->ConstVal : 0;
if (inc == g_inc) {
g_addeqind (flags, Offs, val);
} else {
g_subeqind (flags, Offs, val);
}
} else {
Internal ("Invalid addressing mode");
}
}
/* Result is an expression */
lval->Flags = E_MEXPR;
}
static void post_incdec (ExprDesc* lval, int k, void (*inc) (unsigned, unsigned long))
/* Handle i-- and i++ */
{
unsigned flags;
NextToken ();
if (k == 0) {
Error ("Invalid lvalue");
return;
}
/* Get the data type */
flags = TypeOf (lval->Type);
/* Push the address if needed */
PushAddr (lval);
/* Fetch the value and save it (since it's the result of the expression) */
exprhs (CF_NONE, 1, lval);
g_save (flags | CF_FORCECHAR);
/* If we have a pointer expression, increment by the size of the type */
if (lval->Type[0] == T_PTR) {
inc (flags | CF_CONST | CF_FORCECHAR, CheckedSizeOf (lval->Type + 1));
} else {
inc (flags | CF_CONST | CF_FORCECHAR, 1);
}
/* Store the result back */
Store (lval, 0);
/* Restore the original value */
g_restore (flags | CF_FORCECHAR);
lval->Flags = E_MEXPR;
}
static void unaryop (int tok, ExprDesc* lval)
/* Handle unary -/+ and ~ */
{
int k;
unsigned flags;
NextToken ();
k = hie10 (lval);
if (k == 0 && (lval->Flags & E_MCONST) != 0) {
/* Value is constant */
switch (tok) {
case TOK_MINUS: lval->ConstVal = -lval->ConstVal; break;
case TOK_PLUS: break;
case TOK_COMP: lval->ConstVal = ~lval->ConstVal; break;
default: Internal ("Unexpected token: %d", tok);
}
} else {
/* Value is not constant */
exprhs (CF_NONE, k, lval);
/* Get the type of the expression */
flags = TypeOf (lval->Type);
/* Handle the operation */
switch (tok) {
case TOK_MINUS: g_neg (flags); break;
case TOK_PLUS: break;
case TOK_COMP: g_com (flags); break;
default: Internal ("Unexpected token: %d", tok);
}
lval->Flags = E_MEXPR;
}
}
int hie10 (ExprDesc* lval)
/* Handle ++, --, !, unary - etc. */
{
int k;
type* t;
switch (CurTok.Tok) {
case TOK_INC:
pre_incdec (lval, g_inc);
return 0;
case TOK_DEC:
pre_incdec (lval, g_dec);
return 0;
case TOK_PLUS:
case TOK_MINUS:
case TOK_COMP:
unaryop (CurTok.Tok, lval);
return 0;
case TOK_BOOL_NOT:
NextToken ();
if (evalexpr (CF_NONE, hie10, lval) == 0) {
/* Constant expression */
lval->ConstVal = !lval->ConstVal;
} else {
g_bneg (TypeOf (lval->Type));
lval->Test |= E_CC; /* bneg will set cc */
lval->Flags = E_MEXPR; /* say it's an expr */
}
return 0; /* expr not storable */
case TOK_STAR:
NextToken ();
if (evalexpr (CF_NONE, hie10, lval) != 0) {
/* Expression is not const, indirect value loaded into primary */
lval->Flags = E_MEXPR;
lval->ConstVal = 0; /* Offset is zero now */
}
/* If the expression is already a pointer to function, the
* additional dereferencing operator must be ignored.
*/
if (IsTypeFuncPtr (lval->Type)) {
/* Expression not storable */
return 0;
} else {
if (IsClassPtr (lval->Type)) {
lval->Type = Indirect (lval->Type);
} else {
Error ("Illegal indirection");
}
return 1;
}
break;
case TOK_AND:
NextToken ();
k = hie10 (lval);
/* The & operator may be applied to any lvalue, and it may be
* applied to functions, even if they're no lvalues.
*/
if (k == 0 && !IsTypeFunc (lval->Type)) {
/* Allow the & operator with an array */
if (!IsTypeArray (lval->Type)) {
Error ("Illegal address");
}
} else {
t = TypeAlloc (TypeLen (lval->Type) + 2);
t [0] = T_PTR;
TypeCpy (t + 1, lval->Type);
lval->Type = t;
}
return 0;
case TOK_SIZEOF:
NextToken ();
if (istypeexpr ()) {
type Type[MAXTYPELEN];
NextToken ();
lval->ConstVal = CheckedSizeOf (ParseType (Type));
ConsumeRParen ();
} else {
/* Remember the output queue pointer */
CodeMark Mark = GetCodePos ();
hie10 (lval);
lval->ConstVal = CheckedSizeOf (lval->Type);
/* Remove any generated code */
RemoveCode (Mark);
}
lval->Flags = E_MCONST | E_TCONST;
lval->Type = type_uint;
lval->Test &= ~E_CC;
return 0;
default:
if (istypeexpr ()) {
/* A cast */
return TypeCast (lval);
}
}
k = hie11 (lval);
switch (CurTok.Tok) {
case TOK_INC:
post_incdec (lval, k, g_inc);
return 0;
case TOK_DEC:
post_incdec (lval, k, g_dec);
return 0;
default:
return k;
}
}
static int hie_internal (const GenDesc** ops, /* List of generators */
ExprDesc* lval, /* parent expr's lval */
int (*hienext) (ExprDesc*),
int* UsedGen) /* next higher level */
/* Helper function */
{
int k;
ExprDesc lval2;
CodeMark Mark1;
CodeMark Mark2;
const GenDesc* Gen;
token_t tok; /* The operator token */
unsigned ltype, type;
int rconst; /* Operand is a constant */
k = hienext (lval);
*UsedGen = 0;
while ((Gen = FindGen (CurTok.Tok, ops)) != 0) {
/* Tell the caller that we handled it's ops */
*UsedGen = 1;
/* All operators that call this function expect an int on the lhs */
if (!IsClassInt (lval->Type)) {
Error ("Integer expression expected");
}
/* Remember the operator token, then skip it */
tok = CurTok.Tok;
NextToken ();
/* Get the lhs on stack */
Mark1 = GetCodePos ();
ltype = TypeOf (lval->Type);
if (k == 0 && lval->Flags == E_MCONST) {
/* Constant value */
Mark2 = GetCodePos ();
g_push (ltype | CF_CONST, lval->ConstVal);
} else {
/* Value not constant */
exprhs (CF_NONE, k, lval);
Mark2 = GetCodePos ();
g_push (ltype, 0);
}
/* Get the right hand side */
rconst = (evalexpr (CF_NONE, hienext, &lval2) == 0);
/* Check the type of the rhs */
if (!IsClassInt (lval2.Type)) {
Error ("Integer expression expected");
}
/* Check for const operands */
if (k == 0 && lval->Flags == E_MCONST && rconst) {
/* Both operands are constant, remove the generated code */
RemoveCode (Mark1);
pop (ltype);
/* Evaluate the result */
lval->ConstVal = kcalc (tok, lval->ConstVal, lval2.ConstVal);
/* Get the type of the result */
lval->Type = promoteint (lval->Type, lval2.Type);
} else {
/* If the right hand side is constant, and the generator function
* expects the lhs in the primary, remove the push of the primary
* now.
*/
unsigned rtype = TypeOf (lval2.Type);
type = 0;
if (rconst) {
/* Second value is constant - check for div */
type |= CF_CONST;
rtype |= CF_CONST;
if (tok == TOK_DIV && lval2.ConstVal == 0) {
Error ("Division by zero");
} else if (tok == TOK_MOD && lval2.ConstVal == 0) {
Error ("Modulo operation with zero");
}
if ((Gen->Flags & GEN_NOPUSH) != 0) {
RemoveCode (Mark2);
pop (ltype);
ltype |= CF_REG; /* Value is in register */
}
}
/* Determine the type of the operation result. */
type |= g_typeadjust (ltype, rtype);
lval->Type = promoteint (lval->Type, lval2.Type);
/* Generate code */
Gen->Func (type, lval2.ConstVal);
lval->Flags = E_MEXPR;
}
/* We have a rvalue now */
k = 0;
}
return k;
}
static int hie_compare (const GenDesc** ops, /* List of generators */
ExprDesc* lval, /* parent expr's lval */
int (*hienext) (ExprDesc*))
/* Helper function for the compare operators */
{
int k;
ExprDesc lval2;
CodeMark Mark1;
CodeMark Mark2;
const GenDesc* Gen;
token_t tok; /* The operator token */
unsigned ltype;
int rconst; /* Operand is a constant */
k = hienext (lval);
while ((Gen = FindGen (CurTok.Tok, ops)) != 0) {
/* Remember the operator token, then skip it */
tok = CurTok.Tok;
NextToken ();
/* Get the lhs on stack */
Mark1 = GetCodePos ();
ltype = TypeOf (lval->Type);
if (k == 0 && lval->Flags == E_MCONST) {
/* Constant value */
Mark2 = GetCodePos ();
g_push (ltype | CF_CONST, lval->ConstVal);
} else {
/* Value not constant */
exprhs (CF_NONE, k, lval);
Mark2 = GetCodePos ();
g_push (ltype, 0);
}
/* Get the right hand side */
rconst = (evalexpr (CF_NONE, hienext, &lval2) == 0);
/* Make sure, the types are compatible */
if (IsClassInt (lval->Type)) {
if (!IsClassInt (lval2.Type) && !(IsClassPtr(lval2.Type) && IsNullPtr(lval))) {
Error ("Incompatible types");
}
} else if (IsClassPtr (lval->Type)) {
if (IsClassPtr (lval2.Type)) {
/* Both pointers are allowed in comparison if they point to
* the same type, or if one of them is a void pointer.
*/
type* left = Indirect (lval->Type);
type* right = Indirect (lval2.Type);
if (TypeCmp (left, right) < TC_EQUAL && *left != T_VOID && *right != T_VOID) {
/* Incomatible pointers */
Error ("Incompatible types");
}
} else if (!IsNullPtr (&lval2)) {
Error ("Incompatible types");
}
}
/* Check for const operands */
if (k == 0 && lval->Flags == E_MCONST && rconst) {
/* Both operands are constant, remove the generated code */
RemoveCode (Mark1);
pop (ltype);
/* Evaluate the result */
lval->ConstVal = kcalc (tok, lval->ConstVal, lval2.ConstVal);
} else {
/* If the right hand side is constant, and the generator function
* expects the lhs in the primary, remove the push of the primary
* now.
*/
unsigned flags = 0;
if (rconst) {
flags |= CF_CONST;
if ((Gen->Flags & GEN_NOPUSH) != 0) {
RemoveCode (Mark2);
pop (ltype);
ltype |= CF_REG; /* Value is in register */
}
}
/* Determine the type of the operation result. If the left
* operand is of type char and the right is a constant, or
* if both operands are of type char, we will encode the
* operation as char operation. Otherwise the default
* promotions are used.
*/
if (IsTypeChar (lval->Type) && (IsTypeChar (lval2.Type) || rconst)) {
flags |= CF_CHAR;
if (IsSignUnsigned (lval->Type) || IsSignUnsigned (lval2.Type)) {
flags |= CF_UNSIGNED;
}
if (rconst) {
flags |= CF_FORCECHAR;
}
} else {
unsigned rtype = TypeOf (lval2.Type) | (flags & CF_CONST);
flags |= g_typeadjust (ltype, rtype);
}
/* Generate code */
Gen->Func (flags, lval2.ConstVal);
lval->Flags = E_MEXPR;
}
/* Result type is always int */
lval->Type = type_int;
/* We have a rvalue now, condition codes are set */
k = 0;
lval->Test |= E_CC;
}
return k;
}
static int hie9 (ExprDesc *lval)
/* Process * and / operators. */
{
static const GenDesc* hie9_ops [] = {
&GenMUL, &GenDIV, &GenMOD, 0
};
int UsedGen;
return hie_internal (hie9_ops, lval, hie10, &UsedGen);
}
static void parseadd (int k, ExprDesc* lval)
/* Parse an expression with the binary plus operator. lval contains the
* unprocessed left hand side of the expression and will contain the
* result of the expression on return.
*/
{
ExprDesc lval2;
unsigned flags; /* Operation flags */
CodeMark Mark; /* Remember code position */
type* lhst; /* Type of left hand side */
type* rhst; /* Type of right hand side */
/* Skip the PLUS token */
NextToken ();
/* Get the left hand side type, initialize operation flags */
lhst = lval->Type;
flags = 0;
/* Check for constness on both sides */
if (k == 0 && (lval->Flags & E_MCONST) != 0) {
/* The left hand side is a constant. Good. Get rhs */
k = hie9 (&lval2);
if (k == 0 && lval2.Flags == E_MCONST) {
/* Right hand side is also constant. Get the rhs type */
rhst = lval2.Type;
/* Both expressions are constants. Check for pointer arithmetic */
if (IsClassPtr (lhst) && IsClassInt (rhst)) {
/* Left is pointer, right is int, must scale rhs */
lval->ConstVal += lval2.ConstVal * CheckedPSizeOf (lhst);
/* Result type is a pointer */
} else if (IsClassInt (lhst) && IsClassPtr (rhst)) {
/* Left is int, right is pointer, must scale lhs */
lval->ConstVal = lval->ConstVal * CheckedPSizeOf (rhst) + lval2.ConstVal;
/* Result type is a pointer */
lval->Type = lval2.Type;
} else if (IsClassInt (lhst) && IsClassInt (rhst)) {
/* Integer addition */
lval->ConstVal += lval2.ConstVal;
typeadjust (lval, &lval2, 1);
} else {
/* OOPS */
Error ("Invalid operands for binary operator `+'");
}
/* Result is constant, condition codes not set */
lval->Test &= ~E_CC;
} else {
/* lhs is a constant and rhs is not constant. Load rhs into
* the primary.
*/
exprhs (CF_NONE, k, &lval2);
/* Beware: The check above (for lhs) lets not only pass numeric
* constants, but also constant addresses (labels), maybe even
* with an offset. We have to check for that here.
*/
/* First, get the rhs type. */
rhst = lval2.Type;
/* Setup flags */
if (lval->Flags == E_MCONST) {
/* A numerical constant */
flags |= CF_CONST;
} else {
/* Constant address label */
flags |= GlobalModeFlags (lval->Flags) | CF_CONSTADDR;
}
/* Check for pointer arithmetic */
if (IsClassPtr (lhst) && IsClassInt (rhst)) {
/* Left is pointer, right is int, must scale rhs */
g_scale (CF_INT, CheckedPSizeOf (lhst));
/* Operate on pointers, result type is a pointer */
flags |= CF_PTR;
/* Generate the code for the add */
if (lval->Flags == E_MCONST) {
/* Numeric constant */
g_inc (flags, lval->ConstVal);
} else {
/* Constant address */
g_addaddr_static (flags, lval->Name, lval->ConstVal);
}
} else if (IsClassInt (lhst) && IsClassPtr (rhst)) {
/* Left is int, right is pointer, must scale lhs. */
unsigned ScaleFactor = CheckedPSizeOf (rhst);
/* Operate on pointers, result type is a pointer */
flags |= CF_PTR;
lval->Type = lval2.Type;
/* Since we do already have rhs in the primary, if lhs is
* not a numeric constant, and the scale factor is not one
* (no scaling), we must take the long way over the stack.
*/
if (lval->Flags == E_MCONST) {
/* Numeric constant, scale lhs */
lval->ConstVal *= ScaleFactor;
/* Generate the code for the add */
g_inc (flags, lval->ConstVal);
} else if (ScaleFactor == 1) {
/* Constant address but no need to scale */
g_addaddr_static (flags, lval->Name, lval->ConstVal);
} else {
/* Constant address that must be scaled */
g_push (TypeOf (lval2.Type), 0); /* rhs --> stack */
g_getimmed (flags, lval->Name, lval->ConstVal);
g_scale (CF_PTR, ScaleFactor);
g_add (CF_PTR, 0);
}
} else if (IsClassInt (lhst) && IsClassInt (rhst)) {
/* Integer addition */
flags |= typeadjust (lval, &lval2, 1);
/* Generate the code for the add */
if (lval->Flags == E_MCONST) {
/* Numeric constant */
g_inc (flags, lval->ConstVal);
} else {
/* Constant address */
g_addaddr_static (flags, lval->Name, lval->ConstVal);
}
} else {
/* OOPS */
Error ("Invalid operands for binary operator `+'");
}
/* Result is in primary register */
lval->Flags = E_MEXPR;
lval->Test &= ~E_CC;
}
} else {
/* Left hand side is not constant. Get the value onto the stack. */
exprhs (CF_NONE, k, lval); /* --> primary register */
Mark = GetCodePos ();
g_push (TypeOf (lval->Type), 0); /* --> stack */
/* Evaluate the rhs */
if (evalexpr (CF_NONE, hie9, &lval2) == 0) {
/* Right hand side is a constant. Get the rhs type */
rhst = lval2.Type;
/* Remove pushed value from stack */
RemoveCode (Mark);
pop (TypeOf (lval->Type));
/* Check for pointer arithmetic */
if (IsClassPtr (lhst) && IsClassInt (rhst)) {
/* Left is pointer, right is int, must scale rhs */
lval2.ConstVal *= CheckedPSizeOf (lhst);
/* Operate on pointers, result type is a pointer */
flags = CF_PTR;
} else if (IsClassInt (lhst) && IsClassPtr (rhst)) {
/* Left is int, right is pointer, must scale lhs (ptr only) */
g_scale (CF_INT | CF_CONST, CheckedPSizeOf (rhst));
/* Operate on pointers, result type is a pointer */
flags = CF_PTR;
lval->Type = lval2.Type;
} else if (IsClassInt (lhst) && IsClassInt (rhst)) {
/* Integer addition */
flags = typeadjust (lval, &lval2, 1);
} else {
/* OOPS */
Error ("Invalid operands for binary operator `+'");
}
/* Generate code for the add */
g_inc (flags | CF_CONST, lval2.ConstVal);
/* Result is in primary register */
lval->Flags = E_MEXPR;
lval->Test &= ~E_CC;
} else {
/* lhs and rhs are not constant. Get the rhs type. */
rhst = lval2.Type;
/* Check for pointer arithmetic */
if (IsClassPtr (lhst) && IsClassInt (rhst)) {
/* Left is pointer, right is int, must scale rhs */
g_scale (CF_INT, CheckedPSizeOf (lhst));
/* Operate on pointers, result type is a pointer */
flags = CF_PTR;
} else if (IsClassInt (lhst) && IsClassPtr (rhst)) {
/* Left is int, right is pointer, must scale lhs */
g_tosint (TypeOf (rhst)); /* Make sure, TOS is int */
g_swap (CF_INT); /* Swap TOS and primary */
g_scale (CF_INT, CheckedPSizeOf (rhst));
/* Operate on pointers, result type is a pointer */
flags = CF_PTR;
lval->Type = lval2.Type;
} else if (IsClassInt (lhst) && IsClassInt (rhst)) {
/* Integer addition. Note: Result is never constant.
* Problem here is that typeadjust does not know if the
* variable is an rvalue or lvalue, so if both operands
* are dereferenced constant numeric addresses, typeadjust
* thinks the operation works on constants. Removing
* CF_CONST here means handling the symptoms, however, the
* whole parser is such a mess that I fear to break anything
* when trying to apply another solution.
*/
flags = typeadjust (lval, &lval2, 0) & ~CF_CONST;
} else {
/* OOPS */
Error ("Invalid operands for binary operator `+'");
}
/* Generate code for the add */
g_add (flags, 0);
/* Result is in primary register */
lval->Flags = E_MEXPR;
lval->Test &= ~E_CC;
}
}
}
static void parsesub (int k, ExprDesc* lval)
/* Parse an expression with the binary minus operator. lval contains the
* unprocessed left hand side of the expression and will contain the
* result of the expression on return.
*/
{
ExprDesc lval2;
unsigned flags; /* Operation flags */
type* lhst; /* Type of left hand side */
type* rhst; /* Type of right hand side */
CodeMark Mark1; /* Save position of output queue */
CodeMark Mark2; /* Another position in the queue */
int rscale; /* Scale factor for the result */
/* Skip the MINUS token */
NextToken ();
/* Get the left hand side type, initialize operation flags */
lhst = lval->Type;
flags = 0;
rscale = 1; /* Scale by 1, that is, don't scale */
/* Remember the output queue position, then bring the value onto the stack */
Mark1 = GetCodePos ();
exprhs (CF_NONE, k, lval); /* --> primary register */
Mark2 = GetCodePos ();
g_push (TypeOf (lhst), 0); /* --> stack */
/* Parse the right hand side */
if (evalexpr (CF_NONE, hie9, &lval2) == 0) {
/* The right hand side is constant. Get the rhs type. */
rhst = lval2.Type;
/* Check left hand side */
if (k == 0 && (lval->Flags & E_MCONST) != 0) {
/* Both sides are constant, remove generated code */
RemoveCode (Mark1);
pop (TypeOf (lhst)); /* Clean up the stack */
/* Check for pointer arithmetic */
if (IsClassPtr (lhst) && IsClassInt (rhst)) {
/* Left is pointer, right is int, must scale rhs */
lval->ConstVal -= lval2.ConstVal * CheckedPSizeOf (lhst);
/* Operate on pointers, result type is a pointer */
} else if (IsClassPtr (lhst) && IsClassPtr (rhst)) {
/* Left is pointer, right is pointer, must scale result */
if (TypeCmp (Indirect (lhst), Indirect (rhst)) < TC_QUAL_DIFF) {
Error ("Incompatible pointer types");
} else {
lval->ConstVal = (lval->ConstVal - lval2.ConstVal) /
CheckedPSizeOf (lhst);
}
/* Operate on pointers, result type is an integer */
lval->Type = type_int;
} else if (IsClassInt (lhst) && IsClassInt (rhst)) {
/* Integer subtraction */
typeadjust (lval, &lval2, 1);
lval->ConstVal -= lval2.ConstVal;
} else {
/* OOPS */
Error ("Invalid operands for binary operator `-'");
}
/* Result is constant, condition codes not set */
/* lval->Flags = E_MCONST; ### */
lval->Test &= ~E_CC;
} else {
/* Left hand side is not constant, right hand side is.
* Remove pushed value from stack.
*/
RemoveCode (Mark2);
pop (TypeOf (lhst));
if (IsClassPtr (lhst) && IsClassInt (rhst)) {
/* Left is pointer, right is int, must scale rhs */
lval2.ConstVal *= CheckedPSizeOf (lhst);
/* Operate on pointers, result type is a pointer */
flags = CF_PTR;
} else if (IsClassPtr (lhst) && IsClassPtr (rhst)) {
/* Left is pointer, right is pointer, must scale result */
if (TypeCmp (Indirect (lhst), Indirect (rhst)) < TC_QUAL_DIFF) {
Error ("Incompatible pointer types");
} else {
rscale = CheckedPSizeOf (lhst);
}
/* Operate on pointers, result type is an integer */
flags = CF_PTR;
lval->Type = type_int;
} else if (IsClassInt (lhst) && IsClassInt (rhst)) {
/* Integer subtraction */
flags = typeadjust (lval, &lval2, 1);
} else {
/* OOPS */
Error ("Invalid operands for binary operator `-'");
}
/* Do the subtraction */
g_dec (flags | CF_CONST, lval2.ConstVal);
/* If this was a pointer subtraction, we must scale the result */
if (rscale != 1) {
g_scale (flags, -rscale);
}
/* Result is in primary register */
lval->Flags = E_MEXPR;
lval->Test &= ~E_CC;
}
} else {
/* Right hand side is not constant. Get the rhs type. */
rhst = lval2.Type;
/* Check for pointer arithmetic */
if (IsClassPtr (lhst) && IsClassInt (rhst)) {
/* Left is pointer, right is int, must scale rhs */
g_scale (CF_INT, CheckedPSizeOf (lhst));
/* Operate on pointers, result type is a pointer */
flags = CF_PTR;
} else if (IsClassPtr (lhst) && IsClassPtr (rhst)) {
/* Left is pointer, right is pointer, must scale result */
if (TypeCmp (Indirect (lhst), Indirect (rhst)) < TC_QUAL_DIFF) {
Error ("Incompatible pointer types");
} else {
rscale = CheckedPSizeOf (lhst);
}
/* Operate on pointers, result type is an integer */
flags = CF_PTR;
lval->Type = type_int;
} else if (IsClassInt (lhst) && IsClassInt (rhst)) {
/* Integer subtraction. If the left hand side descriptor says that
* the lhs is const, we have to remove this mark, since this is no
* longer true, lhs is on stack instead.
*/
if (lval->Flags == E_MCONST) {
lval->Flags = E_MEXPR;
}
/* Adjust operand types */
flags = typeadjust (lval, &lval2, 0);
} else {
/* OOPS */
Error ("Invalid operands for binary operator `-'");
}
/* Generate code for the sub (the & is a hack here) */
g_sub (flags & ~CF_CONST, 0);
/* If this was a pointer subtraction, we must scale the result */
if (rscale != 1) {
g_scale (flags, -rscale);
}
/* Result is in primary register */
lval->Flags = E_MEXPR;
lval->Test &= ~E_CC;
}
}
static int hie8 (ExprDesc* lval)
/* Process + and - binary operators. */
{
int k = hie9 (lval);
while (CurTok.Tok == TOK_PLUS || CurTok.Tok == TOK_MINUS) {
if (CurTok.Tok == TOK_PLUS) {
parseadd (k, lval);
} else {
parsesub (k, lval);
}
k = 0;
}
return k;
}
static int hie7 (ExprDesc *lval)
/* Parse << and >>. */
{
static const GenDesc* hie7_ops [] = {
&GenASL, &GenASR, 0
};
int UsedGen;
return hie_internal (hie7_ops, lval, hie8, &UsedGen);
}
static int hie6 (ExprDesc *lval)
/* process greater-than type comparators */
{
static const GenDesc* hie6_ops [] = {
&GenLT, &GenLE, &GenGE, &GenGT, 0
};
return hie_compare (hie6_ops, lval, hie7);
}
static int hie5 (ExprDesc *lval)
{
static const GenDesc* hie5_ops[] = {
&GenEQ, &GenNE, 0
};
return hie_compare (hie5_ops, lval, hie6);
}
static int hie4 (ExprDesc* lval)
/* Handle & (bitwise and) */
{
static const GenDesc* hie4_ops [] = {
&GenAND, 0
};
int UsedGen;
return hie_internal (hie4_ops, lval, hie5, &UsedGen);
}
static int hie3 (ExprDesc *lval)
/* Handle ^ (bitwise exclusive or) */
{
static const GenDesc* hie3_ops [] = {
&GenXOR, 0
};
int UsedGen;
return hie_internal (hie3_ops, lval, hie4, &UsedGen);
}
static int hie2 (ExprDesc *lval)
/* Handle | (bitwise or) */
{
static const GenDesc* hie2_ops [] = {
&GenOR, 0
};
int UsedGen;
return hie_internal (hie2_ops, lval, hie3, &UsedGen);
}
static int hieAndPP (ExprDesc* lval)
/* Process "exp && exp" in preprocessor mode (that is, when the parser is
* called recursively from the preprocessor.
*/
{
ExprDesc lval2;
ConstSubExpr (hie2, lval);
while (CurTok.Tok == TOK_BOOL_AND) {
/* Left hand side must be an int */
if (!IsClassInt (lval->Type)) {
Error ("Left hand side must be of integer type");
MakeConstIntExpr (lval, 1);
}
/* Skip the && */
NextToken ();
/* Get rhs */
ConstSubExpr (hie2, &lval2);
/* Since we are in PP mode, all we know about is integers */
if (!IsClassInt (lval2.Type)) {
Error ("Right hand side must be of integer type");
MakeConstIntExpr (&lval2, 1);
}
/* Combine the two */
lval->ConstVal = (lval->ConstVal && lval2.ConstVal);
}
/* Always a rvalue */
return 0;
}
static int hieOrPP (ExprDesc *lval)
/* Process "exp || exp" in preprocessor mode (that is, when the parser is
* called recursively from the preprocessor.
*/
{
ExprDesc lval2;
ConstSubExpr (hieAndPP, lval);
while (CurTok.Tok == TOK_BOOL_OR) {
/* Left hand side must be an int */
if (!IsClassInt (lval->Type)) {
Error ("Left hand side must be of integer type");
MakeConstIntExpr (lval, 1);
}
/* Skip the && */
NextToken ();
/* Get rhs */
ConstSubExpr (hieAndPP, &lval2);
/* Since we are in PP mode, all we know about is integers */
if (!IsClassInt (lval2.Type)) {
Error ("Right hand side must be of integer type");
MakeConstIntExpr (&lval2, 1);
}
/* Combine the two */
lval->ConstVal = (lval->ConstVal || lval2.ConstVal);
}
/* Always a rvalue */
return 0;
}
static int hieAnd (ExprDesc* lval, unsigned TrueLab, int* BoolOp)
/* Process "exp && exp" */
{
int k;
int lab;
ExprDesc lval2;
k = hie2 (lval);
if (CurTok.Tok == TOK_BOOL_AND) {
/* Tell our caller that we're evaluating a boolean */
*BoolOp = 1;
/* Get a label that we will use for false expressions */
lab = GetLocalLabel ();
/* If the expr hasn't set condition codes, set the force-test flag */
if ((lval->Test & E_CC) == 0) {
lval->Test |= E_FORCETEST;
}
/* Load the value */
exprhs (CF_FORCECHAR, k, lval);
/* Generate the jump */
g_falsejump (CF_NONE, lab);
/* Parse more boolean and's */
while (CurTok.Tok == TOK_BOOL_AND) {
/* Skip the && */
NextToken ();
/* Get rhs */
k = hie2 (&lval2);
if ((lval2.Test & E_CC) == 0) {
lval2.Test |= E_FORCETEST;
}
exprhs (CF_FORCECHAR, k, &lval2);
/* Do short circuit evaluation */
if (CurTok.Tok == TOK_BOOL_AND) {
g_falsejump (CF_NONE, lab);
} else {
/* Last expression - will evaluate to true */
g_truejump (CF_NONE, TrueLab);
}
}
/* Define the false jump label here */
g_defcodelabel (lab);
/* Define the label */
lval->Flags = E_MEXPR;
lval->Test |= E_CC; /* Condition codes are set */
k = 0;
}
return k;
}
static int hieOr (ExprDesc *lval)
/* Process "exp || exp". */
{
int k;
ExprDesc lval2;
int BoolOp = 0; /* Did we have a boolean op? */
int AndOp; /* Did we have a && operation? */
unsigned TrueLab; /* Jump to this label if true */
unsigned DoneLab;
/* Get a label */
TrueLab = GetLocalLabel ();
/* Call the next level parser */
k = hieAnd (lval, TrueLab, &BoolOp);
/* Any boolean or's? */
if (CurTok.Tok == TOK_BOOL_OR) {
/* If the expr hasn't set condition codes, set the force-test flag */
if ((lval->Test & E_CC) == 0) {
lval->Test |= E_FORCETEST;
}
/* Get first expr */
exprhs (CF_FORCECHAR, k, lval);
/* For each expression jump to TrueLab if true. Beware: If we
* had && operators, the jump is already in place!
*/
if (!BoolOp) {
g_truejump (CF_NONE, TrueLab);
}
/* Remember that we had a boolean op */
BoolOp = 1;
/* while there's more expr */
while (CurTok.Tok == TOK_BOOL_OR) {
/* skip the || */
NextToken ();
/* Get a subexpr */
AndOp = 0;
k = hieAnd (&lval2, TrueLab, &AndOp);
if ((lval2.Test & E_CC) == 0) {
lval2.Test |= E_FORCETEST;
}
exprhs (CF_FORCECHAR, k, &lval2);
/* If there is more to come, add shortcut boolean eval. */
g_truejump (CF_NONE, TrueLab);
}
lval->Flags = E_MEXPR;
lval->Test |= E_CC; /* Condition codes are set */
k = 0;
}
/* If we really had boolean ops, generate the end sequence */
if (BoolOp) {
DoneLab = GetLocalLabel ();
g_getimmed (CF_INT | CF_CONST, 0, 0); /* Load FALSE */
g_falsejump (CF_NONE, DoneLab);
g_defcodelabel (TrueLab);
g_getimmed (CF_INT | CF_CONST, 1, 0); /* Load TRUE */
g_defcodelabel (DoneLab);
}
return k;
}
static int hieQuest (ExprDesc *lval)
/* Parse "lvalue ? exp : exp" */
{
int k;
int labf;
int labt;
ExprDesc lval2; /* Expression 2 */
ExprDesc lval3; /* Expression 3 */
type* type2; /* Type of expression 2 */
type* type3; /* Type of expression 3 */
type* rtype; /* Type of result */
k = Preprocessing? hieOrPP (lval) : hieOr (lval);
if (CurTok.Tok == TOK_QUEST) {
NextToken ();
if ((lval->Test & E_CC) == 0) {
/* Condition codes not set, force a test */
lval->Test |= E_FORCETEST;
}
exprhs (CF_NONE, k, lval);
labf = GetLocalLabel ();
g_falsejump (CF_NONE, labf);
/* Parse second expression */
k = expr (hie1, &lval2);
type2 = lval2.Type;
if (!IsTypeVoid (lval2.Type)) {
/* Load it into the primary */
exprhs (CF_NONE, k, &lval2);
}
labt = GetLocalLabel ();
ConsumeColon ();
g_jump (labt);
/* Parse the third expression */
g_defcodelabel (labf);
k = expr (hie1, &lval3);
type3 = lval3.Type;
if (!IsTypeVoid (lval3.Type)) {
/* Load it into the primary */
exprhs (CF_NONE, k, &lval3);
}
/* Check if any conversions are needed, if so, do them.
* Conversion rules for ?: expression are:
* - if both expressions are int expressions, default promotion
* rules for ints apply.
* - if both expressions are pointers of the same type, the
* result of the expression is of this type.
* - if one of the expressions is a pointer and the other is
* a zero constant, the resulting type is that of the pointer
* type.
* - if both expressions are void expressions, the result is of
* type void.
* - all other cases are flagged by an error.
*/
if (IsClassInt (type2) && IsClassInt (type3)) {
/* Get common type */
rtype = promoteint (type2, type3);
/* Convert the third expression to this type if needed */
g_typecast (TypeOf (rtype), TypeOf (type3));
/* Setup a new label so that the expr3 code will jump around
* the type cast code for expr2.
*/
labf = GetLocalLabel (); /* Get new label */
g_jump (labf); /* Jump around code */
/* The jump for expr2 goes here */
g_defcodelabel (labt);
/* Create the typecast code for expr2 */
g_typecast (TypeOf (rtype), TypeOf (type2));
/* Jump here around the typecase code. */
g_defcodelabel (labf);
labt = 0; /* Mark other label as invalid */
} else if (IsClassPtr (type2) && IsClassPtr (type3)) {
/* Must point to same type */
if (TypeCmp (Indirect (type2), Indirect (type3)) < TC_EQUAL) {
Error ("Incompatible pointer types");
}
/* Result has the common type */
rtype = lval2.Type;
} else if (IsClassPtr (type2) && IsNullPtr (&lval3)) {
/* Result type is pointer, no cast needed */
rtype = lval2.Type;
} else if (IsNullPtr (&lval2) && IsClassPtr (type3)) {
/* Result type is pointer, no cast needed */
rtype = lval3.Type;
} else if (IsTypeVoid (type2) && IsTypeVoid (type3)) {
/* Result type is void */
rtype = lval3.Type;
} else {
Error ("Incompatible types");
rtype = lval2.Type; /* Doesn't matter here */
}
/* If we don't have the label defined until now, do it */
if (labt) {
g_defcodelabel (labt);
}
/* Setup the target expression */
lval->Flags = E_MEXPR;
lval->Type = rtype;
k = 0;
}
return k;
}
static void opeq (const GenDesc* Gen, ExprDesc *lval, int k)
/* Process "op=" operators. */
{
ExprDesc lval2;
unsigned flags;
CodeMark Mark;
int MustScale;
NextToken ();
if (k == 0) {
Error ("Invalid lvalue in assignment");
return;
}
/* Determine the type of the lhs */
flags = TypeOf (lval->Type);
MustScale = (Gen->Func == g_add || Gen->Func == g_sub) &&
lval->Type [0] == T_PTR;
/* Get the lhs address on stack (if needed) */
PushAddr (lval);
/* Fetch the lhs into the primary register if needed */
exprhs (CF_NONE, k, lval);
/* Bring the lhs on stack */
Mark = GetCodePos ();
g_push (flags, 0);
/* Evaluate the rhs */
if (evalexpr (CF_NONE, hie1, &lval2) == 0) {
/* The resulting value is a constant. If the generator has the NOPUSH
* flag set, don't push the lhs.
*/
if (Gen->Flags & GEN_NOPUSH) {
RemoveCode (Mark);
pop (flags);
}
if (MustScale) {
/* lhs is a pointer, scale rhs */
lval2.ConstVal *= CheckedSizeOf (lval->Type+1);
}
/* If the lhs is character sized, the operation may be later done
* with characters.
*/
if (CheckedSizeOf (lval->Type) == SIZEOF_CHAR) {
flags |= CF_FORCECHAR;
}
/* Special handling for add and sub - some sort of a hack, but short code */
if (Gen->Func == g_add) {
g_inc (flags | CF_CONST, lval2.ConstVal);
} else if (Gen->Func == g_sub) {
g_dec (flags | CF_CONST, lval2.ConstVal);
} else {
Gen->Func (flags | CF_CONST, lval2.ConstVal);
}
} else {
/* rhs is not constant and already in the primary register */
if (MustScale) {
/* lhs is a pointer, scale rhs */
g_scale (TypeOf (lval2.Type), CheckedSizeOf (lval->Type+1));
}
/* If the lhs is character sized, the operation may be later done
* with characters.
*/
if (CheckedSizeOf (lval->Type) == SIZEOF_CHAR) {
flags |= CF_FORCECHAR;
}
/* Adjust the types of the operands if needed */
Gen->Func (g_typeadjust (flags, TypeOf (lval2.Type)), 0);
}
Store (lval, 0);
lval->Flags = E_MEXPR;
}
static void addsubeq (const GenDesc* Gen, ExprDesc *lval, int k)
/* Process the += and -= operators */
{
ExprDesc lval2;
unsigned lflags;
unsigned rflags;
int MustScale;
/* We must have an lvalue */
if (k == 0) {
Error ("Invalid lvalue in assignment");
return;
}
/* We're currently only able to handle some adressing modes */
if ((lval->Flags & E_MGLOBAL) == 0 && /* Global address? */
(lval->Flags & E_MLOCAL) == 0 && /* Local address? */
(lval->Flags & E_MCONST) == 0) { /* Constant address? */
/* Use generic routine */
opeq (Gen, lval, k);
return;
}
/* Skip the operator */
NextToken ();
/* Check if we have a pointer expression and must scale rhs */
MustScale = (lval->Type [0] == T_PTR);
/* Initialize the code generator flags */
lflags = 0;
rflags = 0;
/* Evaluate the rhs */
if (evalexpr (CF_NONE, hie1, &lval2) == 0) {
/* The resulting value is a constant. */
if (MustScale) {
/* lhs is a pointer, scale rhs */
lval2.ConstVal *= CheckedSizeOf (lval->Type+1);
}
rflags |= CF_CONST;
lflags |= CF_CONST;
} else {
/* rhs is not constant and already in the primary register */
if (MustScale) {
/* lhs is a pointer, scale rhs */
g_scale (TypeOf (lval2.Type), CheckedSizeOf (lval->Type+1));
}
}
/* Setup the code generator flags */
lflags |= TypeOf (lval->Type) | CF_FORCECHAR;
rflags |= TypeOf (lval2.Type);
/* Cast the rhs to the type of the lhs */
g_typecast (lflags, rflags);
/* Output apropriate code */
if (lval->Flags & E_MGLOBAL) {
/* Static variable */
lflags |= GlobalModeFlags (lval->Flags);
if (Gen->Tok == TOK_PLUS_ASSIGN) {
g_addeqstatic (lflags, lval->Name, lval->ConstVal, lval2.ConstVal);
} else {
g_subeqstatic (lflags, lval->Name, lval->ConstVal, lval2.ConstVal);
}
} else if (lval->Flags & E_MLOCAL) {
/* ref to localvar */
if (Gen->Tok == TOK_PLUS_ASSIGN) {
g_addeqlocal (lflags, lval->ConstVal, lval2.ConstVal);
} else {
g_subeqlocal (lflags, lval->ConstVal, lval2.ConstVal);
}
} else if (lval->Flags & E_MCONST) {
/* ref to absolute address */
lflags |= CF_ABSOLUTE;
if (Gen->Tok == TOK_PLUS_ASSIGN) {
g_addeqstatic (lflags, lval->ConstVal, 0, lval2.ConstVal);
} else {
g_subeqstatic (lflags, lval->ConstVal, 0, lval2.ConstVal);
}
} else if (lval->Flags & E_MEXPR) {
/* Address in a/x. */
if (Gen->Tok == TOK_PLUS_ASSIGN) {
g_addeqind (lflags, lval->ConstVal, lval2.ConstVal);
} else {
g_subeqind (lflags, lval->ConstVal, lval2.ConstVal);
}
} else {
Internal ("Invalid addressing mode");
}
/* Expression is in the primary now */
lval->Flags = E_MEXPR;
}
int hie1 (ExprDesc* lval)
/* Parse first level of expression hierarchy. */
{
int k;
k = hieQuest (lval);
switch (CurTok.Tok) {
case TOK_RPAREN:
case TOK_SEMI:
return k;
case TOK_ASSIGN:
NextToken ();
if (k == 0) {
Error ("Invalid lvalue in assignment");
} else {
Assignment (lval);
}
break;
case TOK_PLUS_ASSIGN:
addsubeq (&GenPASGN, lval, k);
break;
case TOK_MINUS_ASSIGN:
addsubeq (&GenSASGN, lval, k);
break;
case TOK_MUL_ASSIGN:
opeq (&GenMASGN, lval, k);
break;
case TOK_DIV_ASSIGN:
opeq (&GenDASGN, lval, k);
break;
case TOK_MOD_ASSIGN:
opeq (&GenMOASGN, lval, k);
break;
case TOK_SHL_ASSIGN:
opeq (&GenSLASGN, lval, k);
break;
case TOK_SHR_ASSIGN:
opeq (&GenSRASGN, lval, k);
break;
case TOK_AND_ASSIGN:
opeq (&GenAASGN, lval, k);
break;
case TOK_XOR_ASSIGN:
opeq (&GenXOASGN, lval, k);
break;
case TOK_OR_ASSIGN:
opeq (&GenOASGN, lval, k);
break;
default:
return k;
}
return 0;
}
static int hie0 (ExprDesc *lval)
/* Parse comma operator. */
{
int k;
k = hie1 (lval);
while (CurTok.Tok == TOK_COMMA) {
NextToken ();
k = hie1 (lval);
}
return k;
}
int evalexpr (unsigned flags, int (*f) (ExprDesc*), ExprDesc* lval)
/* Will evaluate an expression via the given function. If the result is a
* constant, 0 is returned and the value is put in the lval struct. If the
* result is not constant, exprhs is called to bring the value into the
* primary register and 1 is returned.
*/
{
int k;
/* Evaluate */
k = f (lval);
if (k == 0 && lval->Flags == E_MCONST) {
/* Constant expression */
return 0;
} else {
/* Not constant, load into the primary */
exprhs (flags, k, lval);
return 1;
}
}
static int expr (int (*func) (ExprDesc*), ExprDesc *lval)
/* Expression parser; func is either hie0 or hie1. */
{
int k;
int savsp;
savsp = oursp;
k = (*func) (lval);
/* Do some checks if code generation is still constistent */
if (savsp != oursp) {
if (Debug) {
fprintf (stderr, "oursp != savesp (%d != %d)\n", oursp, savsp);
} else {
Internal ("oursp != savsp (%d != %d)", oursp, savsp);
}
}
return k;
}
void expression1 (ExprDesc* lval)
/* Evaluate an expression on level 1 (no comma operator) and put it into
* the primary register
*/
{
InitExprDesc (lval);
exprhs (CF_NONE, expr (hie1, lval), lval);
}
void expression (ExprDesc* lval)
/* Evaluate an expression and put it into the primary register */
{
InitExprDesc (lval);
exprhs (CF_NONE, expr (hie0, lval), lval);
}
void ConstExpr (ExprDesc* lval)
/* Get a constant value */
{
InitExprDesc (lval);
if (expr (hie1, lval) != 0 || (lval->Flags & E_MCONST) == 0) {
Error ("Constant expression expected");
/* To avoid any compiler errors, make the expression a valid const */
MakeConstIntExpr (lval, 1);
}
}
void ConstIntExpr (ExprDesc* Val)
/* Get a constant int value */
{
InitExprDesc (Val);
if (expr (hie1, Val) != 0 ||
(Val->Flags & E_MCONST) == 0 ||
!IsClassInt (Val->Type)) {
Error ("Constant integer expression expected");
/* To avoid any compiler errors, make the expression a valid const */
MakeConstIntExpr (Val, 1);
}
}
void intexpr (ExprDesc* lval)
/* Get an integer expression */
{
expression (lval);
if (!IsClassInt (lval->Type)) {
Error ("Integer expression expected");
/* To avoid any compiler errors, make the expression a valid int */
MakeConstIntExpr (lval, 1);
}
}
void Test (unsigned Label, int Invert)
/* Evaluate a boolean test expression and jump depending on the result of
* the test and on Invert.
*/
{
int k;
ExprDesc lval;
/* Evaluate the expression */
k = expr (hie0, InitExprDesc (&lval));
/* Check for a boolean expression */
CheckBoolExpr (&lval);
/* Check for a constant expression */
if (k == 0 && lval.Flags == E_MCONST) {
/* Constant rvalue */
if (!Invert && lval.ConstVal == 0) {
g_jump (Label);
Warning ("Unreachable code");
} else if (Invert && lval.ConstVal != 0) {
g_jump (Label);
}
} else {
/* If the expr hasn't set condition codes, set the force-test flag */
if ((lval.Test & E_CC) == 0) {
lval.Test |= E_FORCETEST;
}
/* Load the value into the primary register */
exprhs (CF_FORCECHAR, k, &lval);
/* Generate the jump */
if (Invert) {
g_truejump (CF_NONE, Label);
} else {
g_falsejump (CF_NONE, Label);
}
}
}
void TestInParens (unsigned Label, int Invert)
/* Evaluate a boolean test expression in parenthesis and jump depending on
* the result of the test * and on Invert.
*/
{
/* Eat the parenthesis */
ConsumeLParen ();
/* Do the test */
Test (Label, Invert);
/* Check for the closing brace */
ConsumeRParen ();
}