cc65/src/ca65/segment.c

630 lines
20 KiB
C

/*****************************************************************************/
/* */
/* segment.c */
/* */
/* Segments for the ca65 macroassembler */
/* */
/* */
/* */
/* (C) 1998-2011, Ullrich von Bassewitz */
/* Roemerstrasse 52 */
/* D-70794 Filderstadt */
/* EMail: uz@cc65.org */
/* */
/* */
/* This software is provided 'as-is', without any expressed or implied */
/* warranty. In no event will the authors be held liable for any damages */
/* arising from the use of this software. */
/* */
/* Permission is granted to anyone to use this software for any purpose, */
/* including commercial applications, and to alter it and redistribute it */
/* freely, subject to the following restrictions: */
/* */
/* 1. The origin of this software must not be misrepresented; you must not */
/* claim that you wrote the original software. If you use this software */
/* in a product, an acknowledgment in the product documentation would be */
/* appreciated but is not required. */
/* 2. Altered source versions must be plainly marked as such, and must not */
/* be misrepresented as being the original software. */
/* 3. This notice may not be removed or altered from any source */
/* distribution. */
/* */
/*****************************************************************************/
#include <string.h>
#include <errno.h>
/* common */
#include "addrsize.h"
#include "alignment.h"
#include "coll.h"
#include "mmodel.h"
#include "segdefs.h"
#include "segnames.h"
#include "xmalloc.h"
/* cc65 */
#include "error.h"
#include "fragment.h"
#include "global.h"
#include "lineinfo.h"
#include "listing.h"
#include "objcode.h"
#include "objfile.h"
#include "segment.h"
#include "span.h"
#include "spool.h"
#include "studyexpr.h"
#include "symtab.h"
/*****************************************************************************/
/* Data */
/*****************************************************************************/
/* If OrgPerSeg is false, all segments share the RelocMode flag and a PC
** used when in absolute mode. OrgPerSeg may be set by .feature org_per_seg
*/
static int RelocMode = 1;
static unsigned long AbsPC = 0; /* PC if in absolute mode */
/* Definitions for predefined segments */
SegDef NullSegDef = STATIC_SEGDEF_INITIALIZER (SEGNAME_NULL, ADDR_SIZE_ABS);
SegDef ZeropageSegDef = STATIC_SEGDEF_INITIALIZER (SEGNAME_ZEROPAGE, ADDR_SIZE_ZP);
SegDef DataSegDef = STATIC_SEGDEF_INITIALIZER (SEGNAME_DATA, ADDR_SIZE_ABS);
SegDef BssSegDef = STATIC_SEGDEF_INITIALIZER (SEGNAME_BSS, ADDR_SIZE_ABS);
SegDef RODataSegDef = STATIC_SEGDEF_INITIALIZER (SEGNAME_RODATA, ADDR_SIZE_ABS);
SegDef CodeSegDef = STATIC_SEGDEF_INITIALIZER (SEGNAME_CODE, ADDR_SIZE_ABS);
/* Collection containing all segments */
Collection SegmentList = STATIC_COLLECTION_INITIALIZER;
/* Currently active segment */
Segment* ActiveSeg;
/*****************************************************************************/
/* Code */
/*****************************************************************************/
static Segment* NewSegFromDef (SegDef* Def)
/* Create a new segment from a segment definition. Used only internally, no
** checks.
*/
{
/* Create a new segment */
Segment* S = xmalloc (sizeof (*S));
/* Initialize it */
S->Root = 0;
S->Last = 0;
S->FragCount = 0;
S->Num = CollCount (&SegmentList);
S->Flags = SEG_FLAG_NONE;
S->Align = 1;
S->RelocMode = 1;
S->PC = 0;
S->AbsPC = 0;
S->Def = Def;
/* Insert it into the segment list */
CollAppend (&SegmentList, S);
/* And return it... */
return S;
}
static Segment* NewSegment (const char* Name, unsigned char AddrSize)
/* Create a new segment, insert it into the global list and return it */
{
/* Check for too many segments */
if (CollCount (&SegmentList) >= 256) {
Fatal ("Too many segments");
}
/* Check the segment name for invalid names */
if (!ValidSegName (Name)) {
Error ("Illegal segment name: '%s'", Name);
}
/* Create a new segment and return it */
return NewSegFromDef (NewSegDef (Name, AddrSize));
}
Fragment* GenFragment (unsigned char Type, unsigned short Len)
/* Generate a new fragment, add it to the current segment and return it. */
{
/* Create the new fragment */
Fragment* F = NewFragment (Type, Len);
/* Insert the fragment into the current segment */
if (ActiveSeg->Root) {
ActiveSeg->Last->Next = F;
ActiveSeg->Last = F;
} else {
ActiveSeg->Root = ActiveSeg->Last = F;
}
++ActiveSeg->FragCount;
/* Add this fragment to the current listing line */
if (LineCur) {
if (LineCur->FragList == 0) {
LineCur->FragList = F;
} else {
LineCur->FragLast->LineList = F;
}
LineCur->FragLast = F;
}
/* Increment the program counter */
ActiveSeg->PC += F->Len;
if (OrgPerSeg) {
/* Relocatable mode is switched per segment */
if (!ActiveSeg->RelocMode) {
ActiveSeg->AbsPC += F->Len;
}
} else {
/* Relocatable mode is switched globally */
if (!RelocMode) {
AbsPC += F->Len;
}
}
/* Return the fragment */
return F;
}
void UseSeg (const SegDef* D)
/* Use the segment with the given name */
{
unsigned I;
for (I = 0; I < CollCount (&SegmentList); ++I) {
Segment* Seg = CollAtUnchecked (&SegmentList, I);
if (strcmp (Seg->Def->Name, D->Name) == 0) {
/* We found this segment. Check if the type is identical */
if (D->AddrSize != ADDR_SIZE_DEFAULT &&
Seg->Def->AddrSize != D->AddrSize) {
Error ("Segment attribute mismatch");
/* Use the new attribute to avoid errors */
Seg->Def->AddrSize = D->AddrSize;
}
ActiveSeg = Seg;
return;
}
}
/* Segment is not in list, create a new one */
if (D->AddrSize == ADDR_SIZE_DEFAULT) {
ActiveSeg = NewSegment (D->Name, ADDR_SIZE_ABS);
} else {
ActiveSeg = NewSegment (D->Name, D->AddrSize);
}
}
unsigned long GetPC (void)
/* Get the program counter of the current segment */
{
if (OrgPerSeg) {
/* Relocatable mode is switched per segment */
return ActiveSeg->RelocMode? ActiveSeg->PC : ActiveSeg->AbsPC;
} else {
/* Relocatable mode is switched globally */
return RelocMode? ActiveSeg->PC : AbsPC;
}
}
void EnterAbsoluteMode (unsigned long PC)
/* Enter absolute (non relocatable mode). Depending on the OrgPerSeg flag,
** this will either switch the mode globally or for the current segment.
*/
{
if (OrgPerSeg) {
/* Relocatable mode is switched per segment */
ActiveSeg->RelocMode = 0;
ActiveSeg->AbsPC = PC;
} else {
/* Relocatable mode is switched globally */
RelocMode = 0;
AbsPC = PC;
}
}
int GetRelocMode (void)
/* Return true if we're currently in relocatable mode */
{
if (OrgPerSeg) {
/* Relocatable mode is switched per segment */
return ActiveSeg->RelocMode;
} else {
/* Relocatable mode is switched globally */
return RelocMode;
}
}
void EnterRelocMode (void)
/* Enter relocatable mode. Depending on the OrgPerSeg flag, this will either
** switch the mode globally or for the current segment.
*/
{
if (OrgPerSeg) {
/* Relocatable mode is switched per segment */
ActiveSeg->RelocMode = 1;
} else {
/* Relocatable mode is switched globally */
RelocMode = 1;
}
}
void SegAlign (unsigned long Alignment, int FillVal)
/* Align the PC segment to Alignment. If FillVal is -1, emit fill fragments
** (the actual fill value will be determined by the linker), otherwise use
** the given value.
*/
{
unsigned char Data [4];
unsigned long CombinedAlignment;
unsigned long Count;
/* The segment must have the combined alignment of all separate alignments
** in the source. Calculate this alignment and check it for sanity.
*/
CombinedAlignment = LeastCommonMultiple (ActiveSeg->Align, Alignment);
if (CombinedAlignment > MAX_ALIGNMENT) {
Error ("Combined alignment for active segment is %lu which exceeds %lu",
CombinedAlignment, MAX_ALIGNMENT);
/* Avoid creating large fills for an object file that is thrown away
** later.
*/
Count = 1;
} else {
ActiveSeg->Align = CombinedAlignment;
/* Output a warning for larger alignments if not suppressed */
if (CombinedAlignment >= LARGE_ALIGNMENT && CombinedAlignment > ActiveSeg->Align && CombinedAlignment > Alignment && !LargeAlignment) {
Warning (0, "Combined alignment is suspiciously large (%lu)",
CombinedAlignment);
}
/* Calculate the number of fill bytes */
Count = AlignCount (ActiveSeg->PC, Alignment);
}
/* Emit the data or a fill fragment */
if (FillVal != -1) {
/* User defined fill value */
memset (Data, FillVal, sizeof (Data));
while (Count) {
if (Count > sizeof (Data)) {
EmitData (Data, sizeof (Data));
Count -= sizeof (Data);
} else {
EmitData (Data, Count);
Count = 0;
}
}
} else {
/* Linker defined fill value */
EmitFill (Count);
}
}
unsigned char GetSegAddrSize (unsigned SegNum)
/* Return the address size of the segment with the given number */
{
/* Is there such a segment? */
if (SegNum >= CollCount (&SegmentList)) {
FAIL ("Invalid segment number");
}
/* Return the address size */
return ((Segment*) CollAtUnchecked (&SegmentList, SegNum))->Def->AddrSize;
}
void SegDone (void)
/* Check the segments for range and other errors. Do cleanup. */
{
static const unsigned long U_Hi[4] = {
0x000000FFUL, 0x0000FFFFUL, 0x00FFFFFFUL, 0xFFFFFFFFUL
};
static const long S_Hi[4] = {
0x0000007FL, 0x00007FFFL, 0x007FFFFFL, 0x7FFFFFFFL
};
unsigned I;
for (I = 0; I < CollCount (&SegmentList); ++I) {
Segment* S = CollAtUnchecked (&SegmentList, I);
Fragment* F = S->Root;
while (F) {
if (F->Type == FRAG_EXPR || F->Type == FRAG_SEXPR) {
/* We have an expression, study it */
ExprDesc ED;
ED_Init (&ED);
StudyExpr (F->V.Expr, &ED);
/* Check if the expression is constant */
if (ED_IsConst (&ED)) {
unsigned J;
/* The expression is constant. Check for range errors. */
CHECK (F->Len <= 4);
if (F->Type == FRAG_SEXPR) {
long Hi = S_Hi[F->Len-1];
long Lo = ~Hi;
if (ED.Val > Hi || ED.Val < Lo) {
LIError (&F->LI,
"Range error (%ld not in [%ld..%ld])",
ED.Val, Lo, Hi);
}
} else {
if (((unsigned long)ED.Val) > U_Hi[F->Len-1]) {
LIError (&F->LI,
"Range error (%lu not in [0..%lu])",
(unsigned long)ED.Val, U_Hi[F->Len-1]);
}
}
/* We don't need the expression tree any longer */
FreeExpr (F->V.Expr);
/* Convert the fragment into a literal fragment */
for (J = 0; J < F->Len; ++J) {
F->V.Data[J] = ED.Val & 0xFF;
ED.Val >>= 8;
}
F->Type = FRAG_LITERAL;
} else if (RelaxChecks == 0) {
/* We cannot evaluate the expression now, leave the job for
** the linker. However, we can check if the address size
** matches the fragment size. Mismatches are errors in
** most situations.
*/
if ((F->Len == 1 && ED.AddrSize > ADDR_SIZE_ZP) ||
(F->Len == 2 && ED.AddrSize > ADDR_SIZE_ABS) ||
(F->Len == 3 && ED.AddrSize > ADDR_SIZE_FAR)) {
LIError (&F->LI, "Range error (Address size %u does not match fragment size %u)", ED.AddrSize, F->Len);
}
}
/* Release memory allocated for the expression decriptor */
ED_Done (&ED);
}
F = F->Next;
}
}
}
void SegDump (void)
/* Dump the contents of all segments */
{
unsigned I;
unsigned X = 0;
printf ("\n");
for (I = 0; I < CollCount (&SegmentList); ++I) {
Segment* S = CollAtUnchecked (&SegmentList, I);
unsigned I;
Fragment* F;
int State = -1;
printf ("New segment: %s", S->Def->Name);
F = S->Root;
while (F) {
if (F->Type == FRAG_LITERAL) {
if (State != 0) {
printf ("\n Literal:");
X = 15;
State = 0;
}
for (I = 0; I < F->Len; ++I) {
printf (" %02X", F->V.Data [I]);
X += 3;
}
} else if (F->Type == FRAG_EXPR || F->Type == FRAG_SEXPR) {
State = 1;
printf ("\n Expression (%u): ", F->Len);
DumpExpr (F->V.Expr, SymResolve);
} else if (F->Type == FRAG_FILL) {
State = 1;
printf ("\n Fill bytes (%u)", F->Len);
} else {
Internal ("Unknown fragment type: %u", F->Type);
}
if (X > 65) {
State = -1;
}
F = F->Next;
}
printf ("\n End PC = $%04X\n", (unsigned)(S->PC & 0xFFFF));
}
printf ("\n");
}
void SegInit (void)
/* Initialize segments */
{
/* Create the predefined segments. Code segment is active */
ActiveSeg = NewSegFromDef (&CodeSegDef);
NewSegFromDef (&RODataSegDef);
NewSegFromDef (&BssSegDef);
NewSegFromDef (&DataSegDef);
NewSegFromDef (&ZeropageSegDef);
NewSegFromDef (&NullSegDef);
}
void SetSegmentSizes (void)
/* Set the default segment sizes according to the memory model */
{
/* Initialize segment sizes. The segment definitions do already contain
** the correct values for the default case (near), so we must only change
** things that should be different.
*/
switch (MemoryModel) {
case MMODEL_NEAR:
break;
case MMODEL_FAR:
CodeSegDef.AddrSize = ADDR_SIZE_FAR;
break;
case MMODEL_HUGE:
CodeSegDef.AddrSize = ADDR_SIZE_FAR;
DataSegDef.AddrSize = ADDR_SIZE_FAR;
BssSegDef.AddrSize = ADDR_SIZE_FAR;
RODataSegDef.AddrSize = ADDR_SIZE_FAR;
break;
default:
Internal ("Invalid memory model: %d", MemoryModel);
}
}
static void WriteOneSeg (Segment* Seg)
/* Write one segment to the object file */
{
Fragment* Frag;
unsigned long DataSize;
unsigned long EndPos;
/* Remember the file position, then write a dummy for the size of the
** following data
*/
unsigned long SizePos = ObjGetFilePos ();
ObjWrite32 (0);
/* Write the segment data */
ObjWriteVar (GetStringId (Seg->Def->Name)); /* Name of the segment */
ObjWriteVar (Seg->Flags); /* Segment flags */
ObjWriteVar (Seg->PC); /* Size */
ObjWriteVar (Seg->Align); /* Segment alignment */
ObjWrite8 (Seg->Def->AddrSize); /* Address size of the segment */
ObjWriteVar (Seg->FragCount); /* Number of fragments */
/* Now walk through the fragment list for this segment and write the
** fragments.
*/
Frag = Seg->Root;
while (Frag) {
/* Write data depending on the type */
switch (Frag->Type) {
case FRAG_LITERAL:
ObjWrite8 (FRAG_LITERAL);
ObjWriteVar (Frag->Len);
ObjWriteData (Frag->V.Data, Frag->Len);
break;
case FRAG_EXPR:
switch (Frag->Len) {
case 1: ObjWrite8 (FRAG_EXPR8); break;
case 2: ObjWrite8 (FRAG_EXPR16); break;
case 3: ObjWrite8 (FRAG_EXPR24); break;
case 4: ObjWrite8 (FRAG_EXPR32); break;
default: Internal ("Invalid fragment size: %u", Frag->Len);
}
WriteExpr (Frag->V.Expr);
break;
case FRAG_SEXPR:
switch (Frag->Len) {
case 1: ObjWrite8 (FRAG_SEXPR8); break;
case 2: ObjWrite8 (FRAG_SEXPR16); break;
case 3: ObjWrite8 (FRAG_SEXPR24); break;
case 4: ObjWrite8 (FRAG_SEXPR32); break;
default: Internal ("Invalid fragment size: %u", Frag->Len);
}
WriteExpr (Frag->V.Expr);
break;
case FRAG_FILL:
ObjWrite8 (FRAG_FILL);
ObjWriteVar (Frag->Len);
break;
default:
Internal ("Invalid fragment type: %u", Frag->Type);
}
/* Write the line infos for this fragment */
WriteLineInfo (&Frag->LI);
/* Next fragment */
Frag = Frag->Next;
}
/* Calculate the size of the data, seek back and write it */
EndPos = ObjGetFilePos (); /* Remember where we are */
DataSize = EndPos - SizePos - 4; /* Don't count size itself */
ObjSetFilePos (SizePos); /* Seek back to the size */
ObjWrite32 (DataSize); /* Write the size */
ObjSetFilePos (EndPos); /* Seek back to the end */
}
void WriteSegments (void)
/* Write the segment data to the object file */
{
unsigned I;
/* Tell the object file module that we're about to start the seg list */
ObjStartSegments ();
/* First thing is segment count */
ObjWriteVar (CollCount (&SegmentList));
/* Now walk through all segments and write them to the object file */
for (I = 0; I < CollCount (&SegmentList); ++I) {
/* Write one segment */
WriteOneSeg (CollAtUnchecked (&SegmentList, I));
}
/* Done writing segments */
ObjEndSegments ();
}