1
0
mirror of https://github.com/cc65/cc65.git synced 2024-05-28 00:48:27 +00:00
cc65/src/cc65/coptind.c
2023-11-13 10:32:09 +01:00

1674 lines
56 KiB
C

/*****************************************************************************/
/* */
/* coptind.c */
/* */
/* Environment independent low level optimizations */
/* */
/* */
/* */
/* (C) 2001-2009, Ullrich von Bassewitz */
/* Roemerstrasse 52 */
/* D-70794 Filderstadt */
/* EMail: uz@cc65.org */
/* */
/* */
/* This software is provided 'as-is', without any expressed or implied */
/* warranty. In no event will the authors be held liable for any damages */
/* arising from the use of this software. */
/* */
/* Permission is granted to anyone to use this software for any purpose, */
/* including commercial applications, and to alter it and redistribute it */
/* freely, subject to the following restrictions: */
/* */
/* 1. The origin of this software must not be misrepresented; you must not */
/* claim that you wrote the original software. If you use this software */
/* in a product, an acknowledgment in the product documentation would be */
/* appreciated but is not required. */
/* 2. Altered source versions must be plainly marked as such, and must not */
/* be misrepresented as being the original software. */
/* 3. This notice may not be removed or altered from any source */
/* distribution. */
/* */
/*****************************************************************************/
/* common */
#include "cpu.h"
/* cc65 */
#include "codeent.h"
#include "coptind.h"
#include "codeinfo.h"
#include "codeopt.h"
#include "error.h"
/*****************************************************************************/
/* Helper functions */
/*****************************************************************************/
static int MemAccess (CodeSeg* S, unsigned From, unsigned To, const CodeEntry* N)
/* Checks a range of code entries if there are any memory accesses to N->Arg */
{
/* Get the length of the argument */
unsigned NLen = strlen (N->Arg);
/* What to check for? */
enum {
None = 0x00,
Base = 0x01, /* Check for location without "+1" */
Word = 0x02, /* Check for location with "+1" added */
} What = None;
/* If the argument of N is a zero page location that ends with "+1", we
** must also check for word accesses to the location without +1.
*/
if (N->AM == AM65_ZP && NLen > 2 && strcmp (N->Arg + NLen - 2, "+1") == 0) {
What |= Base;
}
/* If the argument is zero page indirect, we must also check for accesses
** to "arg+1"
*/
if (N->AM == AM65_ZP_INDY || N->AM == AM65_ZPX_IND || N->AM == AM65_ZP_IND) {
What |= Word;
}
/* Walk over all code entries */
while (From <= To) {
/* Get the next entry */
CodeEntry* E = CS_GetEntry (S, From);
/* Check if there is an argument and if this argument equals Arg in
** some variants.
*/
if (E->Arg[0] != '\0') {
unsigned ELen;
if (strcmp (E->Arg, N->Arg) == 0) {
/* Found an access */
return 1;
}
ELen = strlen (E->Arg);
if ((What & Base) != 0) {
if (ELen == NLen - 2 && strncmp (E->Arg, N->Arg, NLen-2) == 0) {
/* Found an access */
return 1;
}
}
if ((What & Word) != 0) {
if (ELen == NLen + 2 && strncmp (E->Arg, N->Arg, NLen) == 0 &&
E->Arg[NLen] == '+' && E->Arg[NLen+1] == '1') {
/* Found an access */
return 1;
}
}
}
/* Next entry */
++From;
}
/* Nothing found */
return 0;
}
static short ZPRegVal (unsigned short Use, const RegContents* RC)
/* Return the contents of the given zeropage register */
{
if ((Use & REG_TMP1) != 0) {
return RC->Tmp1;
} else if ((Use & REG_PTR1_LO) != 0) {
return RC->Ptr1Lo;
} else if ((Use & REG_PTR1_HI) != 0) {
return RC->Ptr1Hi;
} else if ((Use & REG_SREG_LO) != 0) {
return RC->SRegLo;
} else if ((Use & REG_SREG_HI) != 0) {
return RC->SRegHi;
} else {
return UNKNOWN_REGVAL;
}
}
/*****************************************************************************/
/* Remove unused loads and stores */
/*****************************************************************************/
unsigned OptUnusedLoads (CodeSeg* S)
/* Remove loads of registers where the value loaded is not used later. */
{
unsigned Changes = 0;
/* Walk over the entries */
unsigned I = 0;
while (I < CS_GetEntryCount (S)) {
CodeEntry* N;
/* Get next entry */
CodeEntry* E = CS_GetEntry (S, I);
/* Check if it's a register load or transfer insn */
if ((E->Info & (OF_LOAD | OF_XFR | OF_REG_INCDEC)) != 0 &&
(N = CS_GetNextEntry (S, I)) != 0 &&
!CE_UseLoadFlags (N)) {
/* Check which sort of load or transfer it is */
unsigned R;
switch (E->OPC) {
case OP65_DEA:
case OP65_INA:
case OP65_LDA:
case OP65_TXA:
case OP65_TYA: R = REG_A; break;
case OP65_DEX:
case OP65_INX:
case OP65_LDX:
case OP65_TAX: R = REG_X; break;
case OP65_DEY:
case OP65_INY:
case OP65_LDY:
case OP65_TAY: R = REG_Y; break;
default: goto NextEntry; /* OOPS */
}
/* Get register usage and check if the register value is used later */
if ((GetRegInfo (S, I+1, R) & R) == 0) {
/* Register value is not used, remove the load */
CS_DelEntry (S, I);
/* Remember, we had changes. Account the deleted entry in I. */
++Changes;
--I;
}
}
NextEntry:
/* Next entry */
++I;
}
/* Return the number of changes made */
return Changes;
}
unsigned OptUnusedStores (CodeSeg* S)
/* Remove stores into zero page registers that aren't used later */
{
unsigned Changes = 0;
/* Walk over the entries */
unsigned I = 0;
while (I < CS_GetEntryCount (S)) {
/* Get next entry */
CodeEntry* E = CS_GetEntry (S, I);
/* Check if it's a register load or transfer insn */
if ((E->Info & OF_STORE) != 0 &&
E->AM == AM65_ZP &&
(E->Chg & REG_ZP) != 0) {
/* Check for the zero page location. We know that there cannot be
** more than one zero page location involved in the store.
*/
unsigned R = E->Chg & REG_ZP;
/* Get register usage and check if the register value is used later */
if ((GetRegInfo (S, I+1, R) & R) == 0) {
/* Register value is not used, remove the load */
CS_DelEntry (S, I);
/* Remember, we had changes */
++Changes;
/* Continue with next insn */
continue;
}
}
/* Next entry */
++I;
}
/* Return the number of changes made */
return Changes;
}
unsigned OptLoad3 (CodeSeg* S)
/* Remove repeated loads from one and the same memory location */
{
unsigned Changes = 0;
CodeEntry* Load = 0;
/* Walk over the entries */
unsigned I = 0;
while (I < CS_GetEntryCount (S)) {
/* Get next entry */
CodeEntry* E = CS_GetEntry (S, I);
/* Forget a preceeding load if we have a label */
if (Load && CE_HasLabel (E)) {
Load = 0;
}
/* Check if this insn is a load */
if (E->Info & OF_LOAD) {
CodeEntry* N;
/* If we had a preceeding load that is identical, remove this one.
** If it is not identical, or we didn't have one, remember it.
*/
if (Load != 0 &&
E->OPC == Load->OPC &&
E->AM == Load->AM &&
((E->Arg == 0 && Load->Arg == 0) ||
strcmp (E->Arg, Load->Arg) == 0) &&
(N = CS_GetNextEntry (S, I)) != 0 &&
(N->Info & OF_CBRA) == 0) {
/* Now remove the call to the subroutine */
CS_DelEntry (S, I);
/* Remember, we had changes */
++Changes;
/* Next insn */
continue;
} else {
Load = E;
}
} else if ((E->Info & OF_CMP) == 0 && (E->Info & OF_CBRA) == 0) {
/* Forget the first load on occurance of any insn we don't like */
Load = 0;
}
/* Next entry */
++I;
}
/* Return the number of changes made */
return Changes;
}
unsigned OptDupLoads (CodeSeg* S)
/* Remove loads of registers where the value loaded is already in the register. */
{
unsigned Changes = 0;
unsigned I;
/* Walk over the entries */
I = 0;
while (I < CS_GetEntryCount (S)) {
CodeEntry* N;
/* Get next entry */
CodeEntry* E = CS_GetEntry (S, I);
/* Assume we won't delete or replace the entry */
int Delete = 0;
opc_t NewOPC = OP65_INVALID;
/* Get a pointer to the input registers of the insn */
const RegContents* In = &E->RI->In;
/* Handle the different instructions */
switch (E->OPC) {
case OP65_LDA:
if (RegValIsKnown (In->RegA) && /* Value of A is known */
CE_IsKnownImm (E, In->RegA) && /* Value to be loaded is known */
(N = CS_GetNextEntry (S, I)) != 0 && /* There is a next entry */
!CE_UseLoadFlags (N)) { /* Which does not use the flags */
Delete = 1;
}
break;
case OP65_LDX:
if (RegValIsKnown (In->RegX) && /* Value of X is known */
CE_IsKnownImm (E, In->RegX) && /* Value to be loaded is known */
(N = CS_GetNextEntry (S, I)) != 0 && /* There is a next entry */
!CE_UseLoadFlags (N)) { /* Which does not use the flags */
Delete = 1;
}
break;
case OP65_LDY:
if (RegValIsKnown (In->RegY) && /* Value of Y is known */
CE_IsKnownImm (E, In->RegY) && /* Value to be loaded is known */
(N = CS_GetNextEntry (S, I)) != 0 && /* There is a next entry */
!CE_UseLoadFlags (N)) { /* Which does not use the flags */
Delete = 1;
}
break;
case OP65_STA:
/* If we store into a known zero page location, and this
** location does already contain the value to be stored,
** remove the store.
*/
if (RegValIsKnown (In->RegA) && /* Value of A is known */
E->AM == AM65_ZP && /* Store into zp */
In->RegA == ZPRegVal (E->Chg, In)) { /* Value identical */
Delete = 1;
}
break;
case OP65_STX:
/* If we store into a known zero page location, and this
** location does already contain the value to be stored,
** remove the store.
*/
if (RegValIsKnown (In->RegX) && /* Value of A is known */
E->AM == AM65_ZP && /* Store into zp */
In->RegX == ZPRegVal (E->Chg, In)) { /* Value identical */
Delete = 1;
/* If the value in the X register is known and the same as
** that in the A register, replace the store by a STA. The
** optimizer will then remove the load instruction for X
** later. STX does support the zeropage,y addressing mode,
** so be sure to check for that.
*/
} else if (RegValIsKnown (In->RegX) &&
In->RegX == In->RegA &&
E->AM != AM65_ABSY &&
E->AM != AM65_ZPY) {
/* Use the A register instead */
NewOPC = OP65_STA;
}
break;
case OP65_STY:
/* If we store into a known zero page location, and this
** location does already contain the value to be stored,
** remove the store.
*/
if (RegValIsKnown (In->RegY) && /* Value of Y is known */
E->AM == AM65_ZP && /* Store into zp */
In->RegY == ZPRegVal (E->Chg, In)) { /* Value identical */
Delete = 1;
/* If the value in the Y register is known and the same as
** that in the A register, replace the store by a STA. The
** optimizer will then remove the load instruction for Y
** later. If replacement by A is not possible try a
** replacement by X, but check for invalid addressing modes
** in this case.
*/
} else if (RegValIsKnown (In->RegY)) {
if (In->RegY == In->RegA) {
NewOPC = OP65_STA;
} else if (In->RegY == In->RegX &&
E->AM != AM65_ABSX &&
E->AM != AM65_ZPX) {
NewOPC = OP65_STX;
}
}
break;
case OP65_STZ:
/* If we store into a known zero page location, and this
** location does already contain the value to be stored,
** remove the store.
*/
if ((CPUIsets[CPU] & CPU_ISET_65SC02) != 0 && E->AM == AM65_ZP) {
if (ZPRegVal (E->Chg, In) == 0) {
Delete = 1;
}
}
break;
case OP65_TAX:
if (RegValIsKnown (In->RegA) &&
In->RegA == In->RegX &&
(N = CS_GetNextEntry (S, I)) != 0 &&
!CE_UseLoadFlags (N)) {
/* Value is identical and not followed by a branch */
Delete = 1;
}
break;
case OP65_TAY:
if (RegValIsKnown (In->RegA) &&
In->RegA == In->RegY &&
(N = CS_GetNextEntry (S, I)) != 0 &&
!CE_UseLoadFlags (N)) {
/* Value is identical and not followed by a branch */
Delete = 1;
}
break;
case OP65_TXA:
if (RegValIsKnown (In->RegX) &&
In->RegX == In->RegA &&
(N = CS_GetNextEntry (S, I)) != 0 &&
!CE_UseLoadFlags (N)) {
/* Value is identical and not followed by a branch */
Delete = 1;
}
break;
case OP65_TYA:
if (RegValIsKnown (In->RegY) &&
In->RegY == In->RegA &&
(N = CS_GetNextEntry (S, I)) != 0 &&
!CE_UseLoadFlags (N)) {
/* Value is identical and not followed by a branch */
Delete = 1;
}
break;
default:
break;
}
/* Delete the entry if requested */
if (Delete) {
/* Register value is not used, remove the load */
CS_DelEntry (S, I);
/* Remember, we had changes */
++Changes;
} else {
if (NewOPC != OP65_INVALID) {
/* Replace the opcode */
CE_ReplaceOPC (E, NewOPC);
/* Remember, we had changes */
++Changes;
}
/* Next entry */
++I;
}
}
/* Return the number of changes made */
return Changes;
}
unsigned OptStoreLoad (CodeSeg* S)
/* Remove a store followed by a load from the same location. */
{
unsigned Changes = 0;
/* Walk over the entries */
unsigned I = 0;
while (I < CS_GetEntryCount (S)) {
CodeEntry* N;
CodeEntry* X;
/* Get next entry */
CodeEntry* E = CS_GetEntry (S, I);
/* Check if it is a store instruction followed by a load from the
** same address which is itself not followed by a conditional branch.
*/
if ((E->Info & OF_STORE) != 0 &&
(N = CS_GetNextEntry (S, I)) != 0 &&
!CE_HasLabel (N) &&
E->AM == N->AM &&
((E->OPC == OP65_STA && N->OPC == OP65_LDA) ||
(E->OPC == OP65_STX && N->OPC == OP65_LDX) ||
(E->OPC == OP65_STY && N->OPC == OP65_LDY)) &&
strcmp (E->Arg, N->Arg) == 0 &&
(X = CS_GetNextEntry (S, I+1)) != 0 &&
!CE_UseLoadFlags (X)) {
/* Register has already the correct value, remove the load */
CS_DelEntry (S, I+1);
/* Remember, we had changes */
++Changes;
}
/* Next entry */
++I;
}
/* Return the number of changes made */
return Changes;
}
unsigned OptLoadStoreLoad (CodeSeg* S)
/* Search for the sequence
**
** ld. xx
** st. yy
** ld. xx
**
** and remove the useless load.
*/
{
unsigned Changes = 0;
/* Walk over the entries */
unsigned I = 0;
while (I < CS_GetEntryCount (S)) {
CodeEntry* L[3];
/* Get next entry */
L[0] = CS_GetEntry (S, I);
/* Check for the sequence */
if ((L[0]->OPC == OP65_LDA ||
L[0]->OPC == OP65_LDX ||
L[0]->OPC == OP65_LDY) &&
(L[0]->AM == AM65_ABS || L[0]->AM == AM65_ZP) &&
!CS_RangeHasLabel (S, I+1, 3) &&
CS_GetEntries (S, L+1, I+1, 2) &&
(L[1]->OPC == OP65_STA ||
L[1]->OPC == OP65_STX ||
L[1]->OPC == OP65_STY) &&
L[2]->OPC == L[0]->OPC &&
L[2]->AM == L[0]->AM &&
strcmp (L[0]->Arg, L[2]->Arg) == 0) {
/* Remove the second load */
CS_DelEntries (S, I+2, 1);
/* Remember, we had changes */
++Changes;
}
/* Next entry */
++I;
}
/* Return the number of changes made */
return Changes;
}
unsigned OptTransfers1 (CodeSeg* S)
/* Remove transfers from one register to another and back */
{
unsigned Changes = 0;
/* Walk over the entries */
unsigned I = 0;
while (I < CS_GetEntryCount (S)) {
CodeEntry* N;
CodeEntry* X;
CodeEntry* P;
/* Get next entry */
CodeEntry* E = CS_GetEntry (S, I);
/* Check if we have two transfer instructions */
if ((E->Info & OF_XFR) != 0 &&
(N = CS_GetNextEntry (S, I)) != 0 &&
!CE_HasLabel (N) &&
(N->Info & OF_XFR) != 0) {
/* Check if it's a transfer and back */
if ((E->OPC == OP65_TAX && N->OPC == OP65_TXA && !RegXUsed (S, I+2)) ||
(E->OPC == OP65_TAY && N->OPC == OP65_TYA && !RegYUsed (S, I+2)) ||
(E->OPC == OP65_TXA && N->OPC == OP65_TAX && !RegAUsed (S, I+2)) ||
(E->OPC == OP65_TYA && N->OPC == OP65_TAY && !RegAUsed (S, I+2))) {
/* If the next insn is a conditional branch, check if the insn
** preceeding the first xfr will set the flags right, otherwise we
** may not remove the sequence.
*/
if ((X = CS_GetNextEntry (S, I+1)) == 0) {
goto NextEntry;
}
if (CE_UseLoadFlags (X)) {
if (I == 0) {
/* No preceeding entry */
goto NextEntry;
}
P = CS_GetEntry (S, I-1);
if ((P->Info & OF_SETF) == 0) {
/* Does not set the flags */
goto NextEntry;
}
}
/* Remove both transfers */
CS_DelEntry (S, I+1);
CS_DelEntry (S, I);
/* Remember, we had changes */
++Changes;
}
}
NextEntry:
/* Next entry */
++I;
}
/* Return the number of changes made */
return Changes;
}
unsigned OptTransfers2 (CodeSeg* S)
/* Replace loads followed by a register transfer by a load with the second
** register if possible.
*/
{
unsigned Changes = 0;
/* Walk over the entries */
unsigned I = 0;
while (I < CS_GetEntryCount (S)) {
CodeEntry* N;
/* Get next entry */
CodeEntry* E = CS_GetEntry (S, I);
/* Check if we have a load followed by a transfer where the loaded
** register is not used later.
*/
if ((E->Info & OF_LOAD) != 0 &&
(N = CS_GetNextEntry (S, I)) != 0 &&
!CE_HasLabel (N) &&
(N->Info & OF_XFR) != 0 &&
(GetRegInfo (S, I+2, E->Chg & REG_ALL) & E->Chg & REG_ALL) == 0) {
CodeEntry* X = 0;
if (E->OPC == OP65_LDA && N->OPC == OP65_TAX) {
/* LDA/TAX - check for the right addressing modes */
if (E->AM == AM65_IMM ||
E->AM == AM65_ZP ||
E->AM == AM65_ABS ||
E->AM == AM65_ABSY) {
/* Replace */
X = NewCodeEntry (OP65_LDX, E->AM, E->Arg, 0, N->LI);
}
} else if (E->OPC == OP65_LDA && N->OPC == OP65_TAY) {
/* LDA/TAY - check for the right addressing modes */
if (E->AM == AM65_IMM ||
E->AM == AM65_ZP ||
E->AM == AM65_ZPX ||
E->AM == AM65_ABS ||
E->AM == AM65_ABSX) {
/* Replace */
X = NewCodeEntry (OP65_LDY, E->AM, E->Arg, 0, N->LI);
}
} else if (E->OPC == OP65_LDY && N->OPC == OP65_TYA) {
/* LDY/TYA. LDA supports all addressing modes LDY does */
X = NewCodeEntry (OP65_LDA, E->AM, E->Arg, 0, N->LI);
} else if (E->OPC == OP65_LDX && N->OPC == OP65_TXA) {
/* LDX/TXA. LDA doesn't support zp,y, so we must map it to
** abs,y instead.
*/
am_t AM = (E->AM == AM65_ZPY)? AM65_ABSY : E->AM;
X = NewCodeEntry (OP65_LDA, AM, E->Arg, 0, N->LI);
}
/* If we have a load entry, add it and remove the old stuff */
if (X) {
CS_InsertEntry (S, X, I+2);
CS_DelEntries (S, I, 2);
++Changes;
--I; /* Correct for one entry less */
}
}
/* Next entry */
++I;
}
/* Return the number of changes made */
return Changes;
}
unsigned OptTransfers3 (CodeSeg* S)
/* Replace a register transfer followed by a store of the second register by a
** store of the first register if this is possible.
*/
{
unsigned Changes = 0;
unsigned UsedRegs = REG_NONE; /* Track used registers */
unsigned Xfer = 0; /* Index of transfer insn */
unsigned Store = 0; /* Index of store insn */
CodeEntry* XferEntry = 0; /* Pointer to xfer insn */
CodeEntry* StoreEntry = 0; /* Pointer to store insn */
enum {
Initialize,
Search,
FoundXfer,
FoundStore
} State = Initialize;
/* Walk over the entries. Look for a xfer instruction that is followed by
** a store later, where the value of the register is not used later.
*/
unsigned I = 0;
while (I < CS_GetEntryCount (S)) {
/* Get next entry */
CodeEntry* E = CS_GetEntry (S, I);
switch (State) {
case Initialize:
/* Clear the list of used registers */
UsedRegs = REG_NONE;
/* FALLTHROUGH */
case Search:
if (E->Info & OF_XFR) {
/* Found start of sequence */
Xfer = I;
XferEntry = E;
State = FoundXfer;
}
break;
case FoundXfer:
/* If we find a conditional jump, abort the sequence, since
** handling them makes things really complicated.
*/
if (E->Info & OF_CBRA) {
/* Switch back to searching */
I = Xfer;
State = Initialize;
/* Does this insn use the target register of the transfer? */
} else if ((E->Use & XferEntry->Chg) != 0) {
/* It it's a store instruction, and the block is a basic
** block, proceed. Otherwise restart
*/
if ((E->Info & OF_STORE) != 0 &&
CS_IsBasicBlock (S, Xfer, I)) {
Store = I;
StoreEntry = E;
State = FoundStore;
} else {
I = Xfer;
State = Initialize;
}
/* Does this insn change the target register of the transfer? */
} else if (E->Chg & XferEntry->Chg & ~PSTATE_ZN) {
/* We *may* add code here to remove the transfer, but I'm
** currently not sure about the consequences, so I won't
** do that and bail out instead.
*/
I = Xfer;
State = Initialize;
/* Does this insn have a label? */
} else if (CE_HasLabel (E)) {
/* Too complex to handle - bail out */
I = Xfer;
State = Initialize;
} else {
/* Track used registers */
UsedRegs |= E->Use;
}
break;
case FoundStore:
/* We are at the instruction behind the store. If the register
** isn't used later, and we have an address mode match, we can
** replace the transfer by a store and remove the store here.
*/
if ((GetRegInfo (S, I, XferEntry->Chg & REG_ALL) &
XferEntry->Chg & REG_ALL) == 0 &&
(StoreEntry->AM == AM65_ABS ||
StoreEntry->AM == AM65_ZP) &&
(StoreEntry->AM != AM65_ZP ||
(StoreEntry->Chg & UsedRegs) == 0) &&
!MemAccess (S, Xfer+1, Store-1, StoreEntry)) {
/* Generate the replacement store insn */
CodeEntry* X = 0;
switch (XferEntry->OPC) {
case OP65_TXA:
X = NewCodeEntry (OP65_STX,
StoreEntry->AM,
StoreEntry->Arg,
0,
StoreEntry->LI);
break;
case OP65_TAX:
X = NewCodeEntry (OP65_STA,
StoreEntry->AM,
StoreEntry->Arg,
0,
StoreEntry->LI);
break;
case OP65_TYA:
X = NewCodeEntry (OP65_STY,
StoreEntry->AM,
StoreEntry->Arg,
0,
StoreEntry->LI);
break;
case OP65_TAY:
X = NewCodeEntry (OP65_STA,
StoreEntry->AM,
StoreEntry->Arg,
0,
StoreEntry->LI);
break;
default:
break;
}
/* If we have a replacement store, change the code */
if (X) {
/* Insert after the xfer insn */
CS_InsertEntry (S, X, Xfer+1);
/* Remove the xfer instead */
CS_DelEntry (S, Xfer);
/* Remove the final store */
CS_DelEntry (S, Store);
/* Correct I so we continue with the next insn */
I -= 2;
/* Remember we had changes */
++Changes;
} else {
/* Restart after last xfer insn */
I = Xfer;
}
} else {
/* Restart after last xfer insn */
I = Xfer;
}
State = Initialize;
break;
}
/* Next entry */
++I;
}
/* Return the number of changes made */
return Changes;
}
unsigned OptTransfers4 (CodeSeg* S)
/* Replace a load of a register followed by a transfer insn of the same register
** by a load of the second register if possible.
*/
{
unsigned Changes = 0;
unsigned Load = 0; /* Index of load insn */
unsigned Xfer = 0; /* Index of transfer insn */
CodeEntry* LoadEntry = 0; /* Pointer to load insn */
CodeEntry* XferEntry = 0; /* Pointer to xfer insn */
enum {
Search,
FoundLoad,
FoundXfer
} State = Search;
/* Walk over the entries. Look for a load instruction that is followed by
** a load later.
*/
unsigned I = 0;
while (I < CS_GetEntryCount (S)) {
/* Get next entry */
CodeEntry* E = CS_GetEntry (S, I);
switch (State) {
case Search:
if (E->Info & OF_LOAD) {
/* Found start of sequence */
Load = I;
LoadEntry = E;
State = FoundLoad;
}
break;
case FoundLoad:
/* If we find a conditional jump, abort the sequence, since
** handling them makes things really complicated.
*/
if (E->Info & OF_CBRA) {
/* Switch back to searching */
I = Load;
State = Search;
/* Does this insn use the target register of the load? */
} else if ((E->Use & LoadEntry->Chg) != 0) {
/* It it's a xfer instruction, and the block is a basic
** block, proceed. Otherwise restart
*/
if ((E->Info & OF_XFR) != 0 &&
CS_IsBasicBlock (S, Load, I)) {
Xfer = I;
XferEntry = E;
State = FoundXfer;
} else {
I = Load;
State = Search;
}
/* Does this insn change the target register of the load? */
} else if (E->Chg & LoadEntry->Chg & ~PSTATE_ZN) {
/* We *may* add code here to remove the load, but I'm
** currently not sure about the consequences, so I won't
** do that and bail out instead.
*/
I = Load;
State = Search;
}
break;
case FoundXfer:
/* We are at the instruction behind the xfer. If the register
** isn't used later, and we have an address mode match, we can
** replace the transfer by a load and remove the initial load.
*/
if ((GetRegInfo (S, I, LoadEntry->Chg & REG_ALL) &
LoadEntry->Chg & REG_ALL) == 0 &&
(LoadEntry->AM == AM65_ABS ||
LoadEntry->AM == AM65_ZP ||
LoadEntry->AM == AM65_IMM) &&
!MemAccess (S, Load+1, Xfer-1, LoadEntry)) {
/* Generate the replacement load insn */
CodeEntry* X = 0;
switch (XferEntry->OPC) {
case OP65_TXA:
case OP65_TYA:
X = NewCodeEntry (OP65_LDA,
LoadEntry->AM,
LoadEntry->Arg,
0,
LoadEntry->LI);
break;
case OP65_TAX:
X = NewCodeEntry (OP65_LDX,
LoadEntry->AM,
LoadEntry->Arg,
0,
LoadEntry->LI);
break;
case OP65_TAY:
X = NewCodeEntry (OP65_LDY,
LoadEntry->AM,
LoadEntry->Arg,
0,
LoadEntry->LI);
break;
default:
break;
}
/* If we have a replacement load, change the code */
if (X) {
/* Insert after the xfer insn */
CS_InsertEntry (S, X, Xfer+1);
/* Remove the xfer instead */
CS_DelEntry (S, Xfer);
/* Remove the initial load */
CS_DelEntry (S, Load);
/* Correct I so we continue with the next insn */
I -= 2;
/* Remember we had changes */
++Changes;
} else {
/* Restart after last xfer insn */
I = Xfer;
}
} else {
/* Restart after last xfer insn */
I = Xfer;
}
State = Search;
break;
}
/* Next entry */
++I;
}
/* Return the number of changes made */
return Changes;
}
unsigned OptPushPop1 (CodeSeg* S)
/* Remove a PHA/PLA sequence were A not used later */
{
unsigned Changes = 0;
unsigned Push = 0; /* Index of push insn */
unsigned Pop = 0; /* Index of pop insn */
unsigned ChgA = 0; /* Flag for A changed */
enum {
Searching,
FoundPush,
FoundPop
} State = Searching;
/* Walk over the entries. Look for a push instruction that is followed by
** a pop later, where the pop is not followed by an conditional branch,
** and where the value of the A register is not used later on.
** Look out for the following problems:
**
** - There may be another PHA/PLA inside the sequence: Restart it.
** - If the PLA has a label, all jumps to this label must be inside
** the sequence, otherwise we cannot remove the PHA/PLA.
*/
unsigned I = 0;
while (I < CS_GetEntryCount (S)) {
CodeEntry* X;
CodeEntry* N;
/* Get next entry */
CodeEntry* E = CS_GetEntry (S, I);
switch (State) {
case Searching:
if (E->OPC == OP65_PHA) {
/* Found start of sequence */
Push = I;
ChgA = 0;
State = FoundPush;
}
break;
case FoundPush:
if (E->OPC == OP65_PHA) {
/* Inner push/pop, restart */
Push = I;
ChgA = 0;
} else if (E->OPC == OP65_PLA) {
/* Found a matching pop */
Pop = I;
/* Check that the block between Push and Pop is a basic
** block (one entry, one exit). Otherwise ignore it.
*/
if (CS_IsBasicBlock (S, Push, Pop)) {
State = FoundPop;
} else {
/* Go into searching mode again */
State = Searching;
}
} else if (E->Chg & REG_A) {
ChgA = 1;
}
break;
case FoundPop:
/* We're at the instruction after the PLA.
** Check for the following conditions:
** - If this instruction is a store of A that doesn't use
** another register, if the instruction does not have a
** label, and A is not used later, we may replace the PHA
** by the store and remove pla if several other conditions
** are met.
** - If this instruction is not a conditional branch, and A
** is either unused later, or not changed by the code
** between push and pop, we may remove PHA and PLA.
*/
if (E->OPC == OP65_STA &&
(E->AM == AM65_ABS || E->AM == AM65_ZP) &&
!CE_HasLabel (E) &&
((N = CS_GetNextEntry (S, I)) == 0 ||
(!CE_UseLoadFlags (N) &&
!RegAUsed (S, I+1))) &&
!MemAccess (S, Push+1, Pop-1, E)) {
/* Insert a STA after the PHA */
X = NewCodeEntry (OP65_STA, E->AM, E->Arg, E->JumpTo, E->LI);
CS_InsertEntry (S, X, Push+1);
/* Remove the PHA instead */
CS_DelEntry (S, Push);
/* Remove the PLA/STA sequence */
CS_DelEntries (S, Pop, 2);
/* Correct I so we continue with the next insn */
I -= 2;
/* Remember we had changes */
++Changes;
} else if (!CE_UseLoadFlags (E) &&
(!RegAUsed (S, I) || !ChgA)) {
/* We can remove the PHA and PLA instructions */
CS_DelEntry (S, Pop);
CS_DelEntry (S, Push);
/* Correct I so we continue with the next insn */
I -= 2;
/* Remember we had changes */
++Changes;
}
/* Go into search mode again */
State = Searching;
break;
}
/* Next entry */
++I;
}
/* Return the number of changes made */
return Changes;
}
unsigned OptPushPop2 (CodeSeg* S)
/* Remove a PHP/PLP sequence were no processor flags changed inside */
{
unsigned Changes = 0;
unsigned Push = 0; /* Index of push insn */
unsigned Pop = 0; /* Index of pop insn */
enum {
Searching,
FoundPush,
FoundPop
} State = Searching;
/* Walk over the entries. Look for a push instruction that is followed by
** a pop later, where the pop is not followed by an conditional branch,
** and where the value of the A register is not used later on.
** Look out for the following problems:
**
** - There may be another PHP/PLP inside the sequence: Restart it.
** - All jumps inside the sequence must not go outside the sequence,
** otherwise it would be too complicated to remove the PHP/PLP.
*/
unsigned I = 0;
while (I < CS_GetEntryCount (S)) {
/* Get next entry */
CodeEntry* E = CS_GetEntry (S, I);
switch (State) {
case Searching:
if (E->OPC == OP65_PHP) {
/* Found start of sequence */
Push = I;
State = FoundPush;
}
break;
case FoundPush:
if (E->OPC == OP65_PHP) {
/* Inner push/pop, restart */
Push = I;
} else if (E->OPC == OP65_PLP) {
/* Found a matching pop */
Pop = I;
/* Check that the block between Push and Pop is a basic
** block (one entry, one exit). Otherwise ignore it.
*/
if (CS_IsBasicBlock (S, Push, Pop)) {
State = FoundPop;
} else {
/* Go into searching mode again */
State = Searching;
}
} else if ((E->Info & OF_BRA) == 0 &&
(E->Info & OF_STORE) == 0 &&
E->OPC != OP65_NOP &&
E->OPC != OP65_TSX) {
/* Don't bother skipping dead code */
State = Searching;
}
break;
case FoundPop:
/* We can remove the PHP and PLP instructions */
CS_DelEntry (S, Pop);
CS_DelEntry (S, Push);
/* Correct I so we continue with THIS insn */
I -= 3;
/* Remember we had changes */
++Changes;
/* Go into search mode again */
State = Searching;
break;
}
/* Next entry */
++I;
}
/* Return the number of changes made */
return Changes;
}
unsigned OptPrecalc (CodeSeg* S)
/* Replace immediate operations with the accu where the current contents are
** known by a load of the final value.
*/
{
unsigned Changes = 0;
unsigned I;
/* Walk over the entries */
I = 0;
while (I < CS_GetEntryCount (S)) {
/* Get next entry */
CodeEntry* E = CS_GetEntry (S, I);
/* Get pointers to the input and output registers of the insn */
const RegContents* Out = &E->RI->Out;
const RegContents* In = &E->RI->In;
/* Argument for LDn and flag */
const char* Arg = 0;
opc_t OPC = OP65_LDA;
/* Handle the different instructions */
switch (E->OPC) {
case OP65_LDA:
if (E->AM != AM65_IMM && RegValIsKnown (Out->RegA)) {
/* Result of load is known */
Arg = MakeHexArg (Out->RegA);
}
break;
case OP65_LDX:
if (E->AM != AM65_IMM && RegValIsKnown (Out->RegX)) {
/* Result of load is known but register is X */
Arg = MakeHexArg (Out->RegX);
OPC = OP65_LDX;
}
break;
case OP65_LDY:
if (E->AM != AM65_IMM && RegValIsKnown (Out->RegY)) {
/* Result of load is known but register is Y */
Arg = MakeHexArg (Out->RegY);
OPC = OP65_LDY;
}
break;
case OP65_ADC:
case OP65_SBC:
if (CE_IsKnownImm (E, 0x00)) {
/* If this is an operation with an immediate operand of zero,
** and the Z/N flags reflect the current states of the content
** in A, then the operation won't give us any results we don't
** already have (including the flags) as long as the C flag is
** set normally (cleared for ADC and set for SBC) for the
** operation. So we can remove the operation if it is the
** normal case or the result in A is not used later.
** Something like this is generated as a result of a compare
** where parts of the values are known to be zero.
** The only situation where we need to leave things as they
** are is when an indeterminate V flag is being tested later,
** because ADC/SBC #0 always clears it.
*/
int CondC = PStatesAreKnown (In->PFlags, PSTATE_C) &&
((E->OPC == OP65_ADC && (In->PFlags & PFVAL_C) == 0) ||
(E->OPC == OP65_SBC && (In->PFlags & PFVAL_C) != 0));
int CondV = PStatesAreKnown (In->PFlags, PSTATE_V) && (In->PFlags & PFVAL_V) == 0;
int CondZN = (In->ZNRegs & ZNREG_A) != 0;
unsigned R = 0;
if (CondC) {
R = (CondV ? 0 : PSTATE_V) | (CondZN ? 0 : PSTATE_ZN);
} else {
R = REG_A | PSTATE_CZVN;
}
if (R != 0) {
/* Collect info on all flags in one round to save time */
R = GetRegInfo (S, I + 1, R);
}
CondV = (CondC && CondV) || (R & PSTATE_V) == 0;
CondZN = (CondC && CondZN) || (R & PSTATE_ZN) == 0;
/* This is done last as it could change the info used by the two above */
CondC = CondC || (R & (REG_A | PSTATE_C)) == 0;
if (CondC && CondV && CondZN) {
/* ?+0, ?-0 or result unused -> remove */
CS_DelEntry (S, I);
++Changes;
}
} else if (E->OPC == OP65_ADC && In->RegA == 0) {
/* 0 + arg. In this case we need only care about the C/V flags and
** let the load set the Z/N flags properly.
*/
int CondC = PStatesAreClear (In->PFlags, PSTATE_C);
int CondV = PStatesAreClear (In->PFlags, PSTATE_V);
unsigned R = (CondC ? 0 : REG_A | PSTATE_C) | (CondC && CondV ? 0 : PSTATE_V);
if (R) {
R = GetRegInfo (S, I + 1, R);
}
CondV = (CondC && CondV) || (R & PSTATE_V) == 0;
CondC = CondC || (R & (REG_A | PSTATE_C)) == 0;
if (CondC && CondV) {
/* 0 + arg -> replace with lda arg */
CE_ReplaceOPC (E, OP65_LDA);
++Changes;
}
}
break;
case OP65_AND:
if (CE_IsKnownImm (E, 0xFF) &&
((In->ZNRegs & ZNREG_A) != 0 ||
(GetRegInfo (S, I + 1, PSTATE_ZN) & PSTATE_ZN) == 0)) {
/* AND with 0xFF, remove */
CS_DelEntry (S, I);
++Changes;
} else if (CE_IsKnownImm (E, 0x00)) {
/* AND with 0x00, replace by lda #$00 */
Arg = MakeHexArg (0x00);
} else if (RegValIsKnown (Out->RegA)) {
/* Accu AND zp with known contents */
Arg = MakeHexArg (Out->RegA);
} else if (In->RegA == 0xFF) {
/* AND but A contains 0xFF - replace by lda */
CE_ReplaceOPC (E, OP65_LDA);
++Changes;
}
break;
case OP65_ORA:
if (CE_IsKnownImm (E, 0x00) &&
((In->ZNRegs & ZNREG_A) != 0 ||
(GetRegInfo (S, I + 1, PSTATE_ZN) & PSTATE_ZN) == 0)) {
/* ORA with zero, remove */
CS_DelEntry (S, I);
++Changes;
} else if (CE_IsKnownImm (E, 0xFF)) {
/* ORA with 0xFF, replace by lda #$ff */
Arg = MakeHexArg (0xFF);
} else if (RegValIsKnown (Out->RegA)) {
/* Accu AND zp with known contents */
Arg = MakeHexArg (Out->RegA);
} else if (In->RegA == 0) {
/* ORA but A contains 0x00 - replace by lda */
CE_ReplaceOPC (E, OP65_LDA);
++Changes;
}
break;
case OP65_EOR:
if (CE_IsKnownImm (E, 0x00) &&
((In->ZNRegs & ZNREG_A) != 0 ||
(GetRegInfo (S, I + 1, PSTATE_ZN) & PSTATE_ZN) == 0)) {
/* EOR with zero, remove */
CS_DelEntry (S, I);
++Changes;
} else if (RegValIsKnown (Out->RegA)) {
/* Accu op zp with known contents */
Arg = MakeHexArg (Out->RegA);
} else if (In->RegA == 0) {
/* EOR but A contains 0x00 - replace by lda */
CE_ReplaceOPC (E, OP65_LDA);
++Changes;
}
break;
default:
break;
}
/* Check if we have to replace the insn by LDA */
if (Arg) {
CodeEntry* X = NewCodeEntry (OPC, AM65_IMM, Arg, 0, E->LI);
CS_InsertEntry (S, X, I+1);
CS_DelEntry (S, I);
++Changes;
}
/* Next entry */
++I;
}
/* Return the number of changes made */
return Changes;
}
unsigned OptShiftBack (CodeSeg* S)
/* Remove a pair of shifts to the opposite directions if none of the bits of
** the register A or the Z/N flags modified by these shifts are used later.
*/
{
unsigned Changes = 0;
CodeEntry* E;
CodeEntry* N;
unsigned CheckStates;
/* Walk over the entries */
unsigned I = 0;
while (I < CS_GetEntryCount (S)) {
/* Get next entry */
E = CS_GetEntry (S, I);
/* Check if it's a register load or transfer insn */
if (E->OPC == OP65_ROL &&
(N = CS_GetNextEntry (S, I)) != 0 &&
(N->OPC == OP65_LSR ||
N->OPC == OP65_ROR) &&
!CE_HasLabel (N)) {
CheckStates = PSTATE_ZN;
if (N->OPC == OP65_LSR &&
!PStatesAreClear (E->RI->Out.PFlags, PSTATE_C)) {
CheckStates |= REG_A;
}
if ((GetRegInfo (S, I+2, CheckStates) & CheckStates) == 0) {
/* Remove the shifts */
CS_DelEntries (S, I, 2);
/* Remember, we had changes */
++Changes;
/* Continue with next insn */
continue;
}
}
/* Next entry */
++I;
}
/* Return the number of changes made */
return Changes;
}
unsigned OptSignExtended (CodeSeg* S)
/* Change
**
** lda xxx ; X is 0
** bpl L1
** dex/ldx #$FF
** L1: cpx #$00
** bpl L2
**
** or
**
** lda xxx ; X is 0
** bpl L1
** dex/ldx #$FF
** L1: cpx #$80
** bcc/bmi L2
**
** into
** lda xxx ; X is 0
** bpl L2
** dex/ldx #$FF
**
** provided the C flag isn't used later.
*/
{
unsigned Changes = 0;
CodeEntry* L[5];
CodeEntry* X;
unsigned CheckStates;
/* Walk over the entries */
unsigned I = 0;
while (I < CS_GetEntryCount (S)) {
/* Get next entry */
L[0] = CS_GetEntry (S, I);
/* Check if it's a register load or transfer insn */
if (L[0]->OPC == OP65_LDA &&
CS_GetEntries (S, L+1, I+1, 4) &&
!CS_RangeHasLabel (S, I+1, 2) &&
CE_GetLabelCount (L[3]) == 1 &&
L[1]->JumpTo == CE_GetLabel (L[3], 0) &&
(L[1]->Info & OF_CBRA) != 0 &&
GetBranchCond (L[1]->OPC) == BC_PL &&
RegValIsKnown (L[2]->RI->Out.RegX) &&
L[2]->RI->Out.RegX == 0xFF &&
L[2]->OPC != OP65_JSR &&
(L[2]->Chg & REG_AXY) == REG_X) {
/* We find a sign extention */
CheckStates = PSTATE_CZN;
if (L[3]->OPC == OP65_CPX &&
CE_IsConstImm (L[3]) &&
(L[4]->Info & OF_CBRA) != 0 &&
((L[3]->Num == 0x00 &&
GetBranchCond (L[4]->OPC) == BC_PL) ||
((L[3]->Num == 0x80 &&
GetBranchCond (L[4]->OPC) == BC_CC &&
GetBranchCond (L[4]->OPC) == BC_MI)))) {
/* Check if the processor states set by the CPX are unused later */
if ((GetRegInfo (S, I+5, CheckStates) & CheckStates) == 0) {
/* Change the target of the sign extention branch */
X = NewCodeEntry (OP65_JPL, L[4]->AM, L[4]->Arg, L[4]->JumpTo, L[4]->LI);
CS_InsertEntry (S, X, I+1);
CS_DelEntry (S, I+2);
/* Remove the old conditional branch */
CS_DelEntries (S, I+3, 2);
/* Remember, we had changes */
++Changes;
/* Continue with the current insn */
continue;
}
}
}
/* Next entry */
++I;
}
/* Return the number of changes made */
return Changes;
}