mirror of
https://github.com/cc65/cc65.git
synced 2025-02-09 17:33:00 +00:00
721 lines
21 KiB
C
721 lines
21 KiB
C
/*****************************************************************************/
|
|
/* */
|
|
/* expr.c */
|
|
/* */
|
|
/* Expression evaluation for the ld65 linker */
|
|
/* */
|
|
/* */
|
|
/* */
|
|
/* (C) 1998-2012, Ullrich von Bassewitz */
|
|
/* Roemerstrasse 52 */
|
|
/* D-70794 Filderstadt */
|
|
/* EMail: uz@cc65.org */
|
|
/* */
|
|
/* */
|
|
/* This software is provided 'as-is', without any expressed or implied */
|
|
/* warranty. In no event will the authors be held liable for any damages */
|
|
/* arising from the use of this software. */
|
|
/* */
|
|
/* Permission is granted to anyone to use this software for any purpose, */
|
|
/* including commercial applications, and to alter it and redistribute it */
|
|
/* freely, subject to the following restrictions: */
|
|
/* */
|
|
/* 1. The origin of this software must not be misrepresented; you must not */
|
|
/* claim that you wrote the original software. If you use this software */
|
|
/* in a product, an acknowledgment in the product documentation would be */
|
|
/* appreciated but is not required. */
|
|
/* 2. Altered source versions must be plainly marked as such, and must not */
|
|
/* be misrepresented as being the original software. */
|
|
/* 3. This notice may not be removed or altered from any source */
|
|
/* distribution. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
|
|
|
|
/* common */
|
|
#include "check.h"
|
|
#include "exprdefs.h"
|
|
#include "xmalloc.h"
|
|
|
|
/* ld65 */
|
|
#include "global.h"
|
|
#include "error.h"
|
|
#include "fileio.h"
|
|
#include "memarea.h"
|
|
#include "segments.h"
|
|
#include "expr.h"
|
|
|
|
|
|
|
|
/*****************************************************************************/
|
|
/* Code */
|
|
/*****************************************************************************/
|
|
|
|
|
|
|
|
ExprNode* NewExprNode (ObjData* O, unsigned char Op)
|
|
/* Create a new expression node */
|
|
{
|
|
/* Allocate fresh memory */
|
|
ExprNode* N = xmalloc (sizeof (ExprNode));
|
|
N->Op = Op;
|
|
N->Left = 0;
|
|
N->Right = 0;
|
|
N->Obj = O;
|
|
N->V.IVal = 0;
|
|
|
|
return N;
|
|
}
|
|
|
|
|
|
|
|
static void FreeExprNode (ExprNode* E)
|
|
/* Free a node */
|
|
{
|
|
/* Free the memory */
|
|
xfree (E);
|
|
}
|
|
|
|
|
|
|
|
void FreeExpr (ExprNode* Root)
|
|
/* Free the expression, Root is pointing to. */
|
|
{
|
|
if (Root) {
|
|
FreeExpr (Root->Left);
|
|
FreeExpr (Root->Right);
|
|
FreeExprNode (Root);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
int IsConstExpr (ExprNode* Root)
|
|
/* Return true if the given expression is a constant expression, that is, one
|
|
** with no references to external symbols.
|
|
*/
|
|
{
|
|
int Const;
|
|
Export* E;
|
|
Section* S;
|
|
MemoryArea* M;
|
|
|
|
if (EXPR_IS_LEAF (Root->Op)) {
|
|
switch (Root->Op) {
|
|
|
|
case EXPR_LITERAL:
|
|
return 1;
|
|
|
|
case EXPR_SYMBOL:
|
|
/* Get the referenced export */
|
|
E = GetExprExport (Root);
|
|
/* If this export has a mark set, we've already encountered it.
|
|
** This means that the export is used to define it's own value,
|
|
** which in turn means, that we have a circular reference.
|
|
*/
|
|
if (ExportHasMark (E)) {
|
|
CircularRefError (E);
|
|
Const = 0;
|
|
} else {
|
|
MarkExport (E);
|
|
Const = IsConstExport (E);
|
|
UnmarkExport (E);
|
|
}
|
|
return Const;
|
|
|
|
case EXPR_SECTION:
|
|
/* A section expression is const if the segment it is in is
|
|
** not relocatable and already placed.
|
|
*/
|
|
S = GetExprSection (Root);
|
|
M = S->Seg->MemArea;
|
|
return M != 0 && (M->Flags & MF_PLACED) != 0 && !M->Relocatable;
|
|
|
|
case EXPR_SEGMENT:
|
|
/* A segment is const if it is not relocatable and placed */
|
|
M = Root->V.Seg->MemArea;
|
|
return M != 0 && (M->Flags & MF_PLACED) != 0 && !M->Relocatable;
|
|
|
|
case EXPR_MEMAREA:
|
|
/* A memory area is const if it is not relocatable and placed */
|
|
return !Root->V.Mem->Relocatable &&
|
|
(Root->V.Mem->Flags & MF_PLACED);
|
|
|
|
default:
|
|
/* Anything else is not const */
|
|
return 0;
|
|
|
|
}
|
|
|
|
} else if (EXPR_IS_UNARY (Root->Op)) {
|
|
|
|
SegExprDesc D;
|
|
|
|
/* Special handling for the BANK pseudo function */
|
|
switch (Root->Op) {
|
|
|
|
case EXPR_BANK:
|
|
/* Get segment references for the expression */
|
|
GetSegExprVal (Root->Left, &D);
|
|
|
|
/* The expression is const if the expression contains exactly
|
|
** one segment that is assigned to a memory area which has a
|
|
** bank attribute that is constant.
|
|
*/
|
|
return (D.TooComplex == 0 &&
|
|
D.Seg != 0 &&
|
|
D.Seg->MemArea != 0 &&
|
|
D.Seg->MemArea->BankExpr != 0 &&
|
|
IsConstExpr (D.Seg->MemArea->BankExpr));
|
|
|
|
default:
|
|
/* All others handled normal */
|
|
return IsConstExpr (Root->Left);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* We must handle shortcut boolean expressions here */
|
|
switch (Root->Op) {
|
|
|
|
case EXPR_BOOLAND:
|
|
if (IsConstExpr (Root->Left)) {
|
|
/* lhs is const, if it is zero, don't eval right */
|
|
if (GetExprVal (Root->Left) == 0) {
|
|
return 1;
|
|
} else {
|
|
return IsConstExpr (Root->Right);
|
|
}
|
|
} else {
|
|
/* lhs not const --> tree not const */
|
|
return 0;
|
|
}
|
|
break;
|
|
|
|
case EXPR_BOOLOR:
|
|
if (IsConstExpr (Root->Left)) {
|
|
/* lhs is const, if it is not zero, don't eval right */
|
|
if (GetExprVal (Root->Left) != 0) {
|
|
return 1;
|
|
} else {
|
|
return IsConstExpr (Root->Right);
|
|
}
|
|
} else {
|
|
/* lhs not const --> tree not const */
|
|
return 0;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
/* All others are handled normal */
|
|
return IsConstExpr (Root->Left) && IsConstExpr (Root->Right);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
Import* GetExprImport (ExprNode* Expr)
|
|
/* Get the import data structure for a symbol expression node */
|
|
{
|
|
/* Check that this is really a symbol */
|
|
PRECONDITION (Expr->Op == EXPR_SYMBOL);
|
|
|
|
/* If we have an object file, get the import from it, otherwise
|
|
** (internally generated expressions), get the import from the
|
|
** import pointer.
|
|
*/
|
|
if (Expr->Obj) {
|
|
/* Return the Import */
|
|
return GetObjImport (Expr->Obj, Expr->V.ImpNum);
|
|
} else {
|
|
return Expr->V.Imp;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
Export* GetExprExport (ExprNode* Expr)
|
|
/* Get the exported symbol for a symbol expression node */
|
|
{
|
|
/* Check that this is really a symbol */
|
|
PRECONDITION (Expr->Op == EXPR_SYMBOL);
|
|
|
|
/* Return the export for an import*/
|
|
return GetExprImport (Expr)->Exp;
|
|
}
|
|
|
|
|
|
|
|
Section* GetExprSection (ExprNode* Expr)
|
|
/* Get the segment for a section expression node */
|
|
{
|
|
/* Check that this is really a section node */
|
|
PRECONDITION (Expr->Op == EXPR_SECTION);
|
|
|
|
/* If we have an object file, get the section from it, otherwise
|
|
** (internally generated expressions), get the section from the
|
|
** section pointer.
|
|
*/
|
|
if (Expr->Obj) {
|
|
/* Return the export */
|
|
return CollAt (&Expr->Obj->Sections, Expr->V.SecNum);
|
|
} else {
|
|
return Expr->V.Sec;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
long GetExprVal (ExprNode* Expr)
|
|
/* Get the value of a constant expression */
|
|
{
|
|
long Right;
|
|
long Left;
|
|
long Val;
|
|
Section* S;
|
|
Export* E;
|
|
SegExprDesc D;
|
|
|
|
switch (Expr->Op) {
|
|
|
|
case EXPR_LITERAL:
|
|
return Expr->V.IVal;
|
|
|
|
case EXPR_SYMBOL:
|
|
/* Get the referenced export */
|
|
E = GetExprExport (Expr);
|
|
/* If this export has a mark set, we've already encountered it.
|
|
** This means that the export is used to define it's own value,
|
|
** which in turn means, that we have a circular reference.
|
|
*/
|
|
if (ExportHasMark (E)) {
|
|
CircularRefError (E);
|
|
Val = 0;
|
|
} else {
|
|
MarkExport (E);
|
|
Val = GetExportVal (E);
|
|
UnmarkExport (E);
|
|
}
|
|
return Val;
|
|
|
|
case EXPR_SECTION:
|
|
S = GetExprSection (Expr);
|
|
return S->Offs + S->Seg->PC;
|
|
|
|
case EXPR_SEGMENT:
|
|
return Expr->V.Seg->PC;
|
|
|
|
case EXPR_MEMAREA:
|
|
return Expr->V.Mem->Start;
|
|
|
|
case EXPR_PLUS:
|
|
return GetExprVal (Expr->Left) + GetExprVal (Expr->Right);
|
|
|
|
case EXPR_MINUS:
|
|
return GetExprVal (Expr->Left) - GetExprVal (Expr->Right);
|
|
|
|
case EXPR_MUL:
|
|
return GetExprVal (Expr->Left) * GetExprVal (Expr->Right);
|
|
|
|
case EXPR_DIV:
|
|
Left = GetExprVal (Expr->Left);
|
|
Right = GetExprVal (Expr->Right);
|
|
if (Right == 0) {
|
|
Error ("Division by zero");
|
|
}
|
|
return Left / Right;
|
|
|
|
case EXPR_MOD:
|
|
Left = GetExprVal (Expr->Left);
|
|
Right = GetExprVal (Expr->Right);
|
|
if (Right == 0) {
|
|
Error ("Modulo operation with zero");
|
|
}
|
|
return Left % Right;
|
|
|
|
case EXPR_OR:
|
|
return GetExprVal (Expr->Left) | GetExprVal (Expr->Right);
|
|
|
|
case EXPR_XOR:
|
|
return GetExprVal (Expr->Left) ^ GetExprVal (Expr->Right);
|
|
|
|
case EXPR_AND:
|
|
return GetExprVal (Expr->Left) & GetExprVal (Expr->Right);
|
|
|
|
case EXPR_SHL:
|
|
return GetExprVal (Expr->Left) << GetExprVal (Expr->Right);
|
|
|
|
case EXPR_SHR:
|
|
return GetExprVal (Expr->Left) >> GetExprVal (Expr->Right);
|
|
|
|
case EXPR_EQ:
|
|
return (GetExprVal (Expr->Left) == GetExprVal (Expr->Right));
|
|
|
|
case EXPR_NE:
|
|
return (GetExprVal (Expr->Left) != GetExprVal (Expr->Right));
|
|
|
|
case EXPR_LT:
|
|
return (GetExprVal (Expr->Left) < GetExprVal (Expr->Right));
|
|
|
|
case EXPR_GT:
|
|
return (GetExprVal (Expr->Left) > GetExprVal (Expr->Right));
|
|
|
|
case EXPR_LE:
|
|
return (GetExprVal (Expr->Left) <= GetExprVal (Expr->Right));
|
|
|
|
case EXPR_GE:
|
|
return (GetExprVal (Expr->Left) >= GetExprVal (Expr->Right));
|
|
|
|
case EXPR_BOOLAND:
|
|
return GetExprVal (Expr->Left) && GetExprVal (Expr->Right);
|
|
|
|
case EXPR_BOOLOR:
|
|
return GetExprVal (Expr->Left) || GetExprVal (Expr->Right);
|
|
|
|
case EXPR_BOOLXOR:
|
|
return (GetExprVal (Expr->Left) != 0) ^ (GetExprVal (Expr->Right) != 0);
|
|
|
|
case EXPR_MAX:
|
|
Left = GetExprVal (Expr->Left);
|
|
Right = GetExprVal (Expr->Right);
|
|
return (Left > Right)? Left : Right;
|
|
|
|
case EXPR_MIN:
|
|
Left = GetExprVal (Expr->Left);
|
|
Right = GetExprVal (Expr->Right);
|
|
return (Left < Right)? Left : Right;
|
|
|
|
case EXPR_UNARY_MINUS:
|
|
return -GetExprVal (Expr->Left);
|
|
|
|
case EXPR_NOT:
|
|
return ~GetExprVal (Expr->Left);
|
|
|
|
case EXPR_SWAP:
|
|
Left = GetExprVal (Expr->Left);
|
|
return ((Left >> 8) & 0x00FF) | ((Left << 8) & 0xFF00);
|
|
|
|
case EXPR_BOOLNOT:
|
|
return !GetExprVal (Expr->Left);
|
|
|
|
case EXPR_BANK:
|
|
GetSegExprVal (Expr->Left, &D);
|
|
if (D.TooComplex || D.Seg == 0) {
|
|
Error ("Argument for .BANK is not segment relative or too complex");
|
|
}
|
|
if (D.Seg->MemArea == 0) {
|
|
Error ("Segment '%s' is referenced by .BANK but "
|
|
"not assigned to a memory area",
|
|
GetString (D.Seg->Name));
|
|
}
|
|
if (D.Seg->MemArea->BankExpr == 0) {
|
|
Error ("Memory area '%s' is referenced by .BANK but "
|
|
"has no BANK attribute",
|
|
GetString (D.Seg->MemArea->Name));
|
|
}
|
|
return GetExprVal (D.Seg->MemArea->BankExpr);
|
|
|
|
case EXPR_BYTE0:
|
|
return GetExprVal (Expr->Left) & 0xFF;
|
|
|
|
case EXPR_BYTE1:
|
|
return (GetExprVal (Expr->Left) >> 8) & 0xFF;
|
|
|
|
case EXPR_BYTE2:
|
|
return (GetExprVal (Expr->Left) >> 16) & 0xFF;
|
|
|
|
case EXPR_BYTE3:
|
|
return (GetExprVal (Expr->Left) >> 24) & 0xFF;
|
|
|
|
case EXPR_WORD0:
|
|
return GetExprVal (Expr->Left) & 0xFFFF;
|
|
|
|
case EXPR_WORD1:
|
|
return (GetExprVal (Expr->Left) >> 16) & 0xFFFF;
|
|
|
|
case EXPR_FARADDR:
|
|
return GetExprVal (Expr->Left) & 0xFFFFFF;
|
|
|
|
case EXPR_DWORD:
|
|
return GetExprVal (Expr->Left) & 0xFFFFFFFF;
|
|
|
|
case EXPR_NEARADDR:
|
|
/* Assembler was expected to validate this truncation. */
|
|
return GetExprVal (Expr->Left) & 0xFFFF;
|
|
|
|
default:
|
|
Internal ("Unknown expression Op type: %u", Expr->Op);
|
|
/* NOTREACHED */
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
static void GetSegExprValInternal (ExprNode* Expr, SegExprDesc* D, int Sign)
|
|
/* Check if the given expression consists of a segment reference and only
|
|
** constant values, additions and subtractions. If anything else is found,
|
|
** set D->TooComplex to true.
|
|
** Internal, recursive routine.
|
|
*/
|
|
{
|
|
Export* E;
|
|
|
|
switch (Expr->Op) {
|
|
|
|
case EXPR_LITERAL:
|
|
D->Val += (Sign * Expr->V.IVal);
|
|
break;
|
|
|
|
case EXPR_SYMBOL:
|
|
/* Get the referenced export */
|
|
E = GetExprExport (Expr);
|
|
/* If this export has a mark set, we've already encountered it.
|
|
** This means that the export is used to define it's own value,
|
|
** which in turn means, that we have a circular reference.
|
|
*/
|
|
if (ExportHasMark (E)) {
|
|
CircularRefError (E);
|
|
} else {
|
|
MarkExport (E);
|
|
GetSegExprValInternal (E->Expr, D, Sign);
|
|
UnmarkExport (E);
|
|
}
|
|
break;
|
|
|
|
case EXPR_SECTION:
|
|
if (D->Seg) {
|
|
/* We cannot handle more than one segment reference in o65 */
|
|
D->TooComplex = 1;
|
|
} else {
|
|
/* Get the section from the expression */
|
|
Section* S = GetExprSection (Expr);
|
|
/* Remember the segment reference */
|
|
D->Seg = S->Seg;
|
|
/* Add the offset of the section to the constant value */
|
|
D->Val += Sign * (S->Offs + D->Seg->PC);
|
|
}
|
|
break;
|
|
|
|
case EXPR_SEGMENT:
|
|
if (D->Seg) {
|
|
/* We cannot handle more than one segment reference in o65 */
|
|
D->TooComplex = 1;
|
|
} else {
|
|
/* Remember the segment reference */
|
|
D->Seg = Expr->V.Seg;
|
|
/* Add the offset of the segment to the constant value */
|
|
D->Val += (Sign * D->Seg->PC);
|
|
}
|
|
break;
|
|
|
|
case EXPR_PLUS:
|
|
GetSegExprValInternal (Expr->Left, D, Sign);
|
|
GetSegExprValInternal (Expr->Right, D, Sign);
|
|
break;
|
|
|
|
case EXPR_MINUS:
|
|
GetSegExprValInternal (Expr->Left, D, Sign);
|
|
GetSegExprValInternal (Expr->Right, D, -Sign);
|
|
break;
|
|
|
|
default:
|
|
/* Expression contains illegal operators */
|
|
D->TooComplex = 1;
|
|
break;
|
|
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void GetSegExprVal (ExprNode* Expr, SegExprDesc* D)
|
|
/* Check if the given expression consists of a segment reference and only
|
|
** constant values, additions and subtractions. If anything else is found,
|
|
** set D->TooComplex to true. The function will initialize D.
|
|
*/
|
|
{
|
|
/* Initialize the given structure */
|
|
D->Val = 0;
|
|
D->TooComplex = 0;
|
|
D->Seg = 0;
|
|
|
|
/* Call our recursive calculation routine */
|
|
GetSegExprValInternal (Expr, D, 1);
|
|
}
|
|
|
|
|
|
|
|
ExprNode* LiteralExpr (long Val, ObjData* O)
|
|
/* Return an expression tree that encodes the given literal value */
|
|
{
|
|
ExprNode* Expr = NewExprNode (O, EXPR_LITERAL);
|
|
Expr->V.IVal = Val;
|
|
return Expr;
|
|
}
|
|
|
|
|
|
|
|
ExprNode* MemoryExpr (MemoryArea* Mem, long Offs, ObjData* O)
|
|
/* Return an expression tree that encodes an offset into a memory area */
|
|
{
|
|
ExprNode* Root;
|
|
|
|
ExprNode* Expr = NewExprNode (O, EXPR_MEMAREA);
|
|
Expr->V.Mem = Mem;
|
|
|
|
if (Offs != 0) {
|
|
Root = NewExprNode (O, EXPR_PLUS);
|
|
Root->Left = Expr;
|
|
Root->Right = LiteralExpr (Offs, O);
|
|
} else {
|
|
Root = Expr;
|
|
}
|
|
|
|
return Root;
|
|
}
|
|
|
|
|
|
|
|
ExprNode* SegmentExpr (Segment* Seg, long Offs, ObjData* O)
|
|
/* Return an expression tree that encodes an offset into a segment */
|
|
{
|
|
ExprNode* Root;
|
|
|
|
ExprNode* Expr = NewExprNode (O, EXPR_SEGMENT);
|
|
Expr->V.Seg = Seg;
|
|
|
|
if (Offs != 0) {
|
|
Root = NewExprNode (O, EXPR_PLUS);
|
|
Root->Left = Expr;
|
|
Root->Right = LiteralExpr (Offs, O);
|
|
} else {
|
|
Root = Expr;
|
|
}
|
|
|
|
return Root;
|
|
}
|
|
|
|
|
|
|
|
ExprNode* SectionExpr (Section* Sec, long Offs, ObjData* O)
|
|
/* Return an expression tree that encodes an offset into a section */
|
|
{
|
|
ExprNode* Root;
|
|
|
|
ExprNode* Expr = NewExprNode (O, EXPR_SECTION);
|
|
Expr->V.Sec = Sec;
|
|
|
|
if (Offs != 0) {
|
|
Root = NewExprNode (O, EXPR_PLUS);
|
|
Root->Left = Expr;
|
|
Root->Right = LiteralExpr (Offs, O);
|
|
} else {
|
|
Root = Expr;
|
|
}
|
|
|
|
return Root;
|
|
}
|
|
|
|
|
|
|
|
ExprNode* ReadExpr (FILE* F, ObjData* O)
|
|
/* Read an expression from the given file */
|
|
{
|
|
ExprNode* Expr;
|
|
|
|
/* Read the node tag and handle NULL nodes */
|
|
unsigned char Op = Read8 (F);
|
|
if (Op == EXPR_NULL) {
|
|
return 0;
|
|
}
|
|
|
|
/* Create a new node */
|
|
Expr = NewExprNode (O, Op);
|
|
|
|
/* Check the tag and handle the different expression types */
|
|
if (EXPR_IS_LEAF (Op)) {
|
|
switch (Op) {
|
|
|
|
case EXPR_LITERAL:
|
|
Expr->V.IVal = Read32Signed (F);
|
|
break;
|
|
|
|
case EXPR_SYMBOL:
|
|
/* Read the import number */
|
|
Expr->V.ImpNum = ReadVar (F);
|
|
break;
|
|
|
|
case EXPR_SECTION:
|
|
/* Read the section number */
|
|
Expr->V.SecNum = ReadVar (F);
|
|
break;
|
|
|
|
default:
|
|
Error ("Invalid expression op: %02X", Op);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* Not a leaf node */
|
|
Expr->Left = ReadExpr (F, O);
|
|
Expr->Right = ReadExpr (F, O);
|
|
|
|
}
|
|
|
|
/* Return the tree */
|
|
return Expr;
|
|
}
|
|
|
|
|
|
|
|
int EqualExpr (ExprNode* E1, ExprNode* E2)
|
|
/* Check if two expressions are identical. */
|
|
{
|
|
/* If one pointer is NULL, both must be NULL */
|
|
if ((E1 == 0) ^ (E2 == 0)) {
|
|
return 0;
|
|
}
|
|
if (E1 == 0) {
|
|
return 1;
|
|
}
|
|
|
|
/* Both pointers not NULL, check OP */
|
|
if (E1->Op != E2->Op) {
|
|
return 0;
|
|
}
|
|
|
|
/* OPs are identical, check data for leafs, or subtrees */
|
|
switch (E1->Op) {
|
|
|
|
case EXPR_LITERAL:
|
|
/* Value must be identical */
|
|
return (E1->V.IVal == E2->V.IVal);
|
|
|
|
case EXPR_SYMBOL:
|
|
/* Import must be identical */
|
|
return (GetExprImport (E1) == GetExprImport (E2));
|
|
|
|
case EXPR_SECTION:
|
|
/* Section must be identical */
|
|
return (GetExprSection (E1) == GetExprSection (E2));
|
|
|
|
case EXPR_SEGMENT:
|
|
/* Segment must be identical */
|
|
return (E1->V.Seg == E2->V.Seg);
|
|
|
|
case EXPR_MEMAREA:
|
|
/* Memory area must be identical */
|
|
return (E1->V.Mem == E2->V.Mem);
|
|
|
|
default:
|
|
/* Not a leaf node */
|
|
return EqualExpr (E1->Left, E2->Left) && EqualExpr (E1->Right, E2->Right);
|
|
}
|
|
|
|
}
|