cc65/libsrc/apple2/ser/a2.gs.s

751 lines
24 KiB
ArmAsm

;
; Serial driver for the Apple IIgs Zilog Z8530.
;
; Colin Leroy-Mira <colin@colino.net>, 2023
;
; This software is licensed under the same license as cc65,
; the zlib license (see LICENSE file).
;
; Documentation from http://www.applelogic.org/files/Z8530UM.pdf (pages
; referred to where applicable)
; and https://gswv.apple2.org.za/a2zine/Utils/Z8530_SCCsamples_info.txt
.setcpu "65816"
.include "zeropage.inc"
.include "ser-kernel.inc"
.include "ser-error.inc"
.macpack module
; ------------------------------------------------------------------------
; Header. Includes jump table
.ifdef __APPLE2ENH__
module_header _a2e_gs_ser
.else
module_header _a2_gs_ser
.endif
; Driver signature
.byte $73, $65, $72 ; "ser"
.byte SER_API_VERSION ; Serial API version number
; Library reference
.addr $0000
; Jump table
.addr SER_INSTALL
.addr SER_UNINSTALL
.addr SER_OPEN
.addr SER_CLOSE
.addr SER_GET
.addr SER_PUT
.addr SER_STATUS
.addr SER_IOCTL
.addr SER_IRQ
;----------------------------------------------------------------------------
; Global variables
.bss
RecvHead: .res 1 ; Head of receive buffer
RecvTail: .res 1 ; Tail of receive buffer
RecvFreeCnt: .res 1 ; Number of bytes in receive buffer
SendHead: .res 1 ; Head of send buffer
SendTail: .res 1 ; Tail of send buffer
SendFreeCnt: .res 1 ; Number of bytes in send buffer
Stopped: .res 1 ; Flow-stopped flag
RtsOff: .res 1
HSType: .res 1 ; Flow-control type
RecvBuf: .res 256 ; Receive buffers: 256 bytes
SendBuf: .res 256 ; Send buffers: 256 bytes
CurClockSource: .res 1 ; Whether to use BRG or RTxC for clock
.data
Opened: .byte $00 ; 1 when opened
Channel: .byte $00 ; Channel B by default
CurChanIrqFlags:.byte $00
SerFlagOrig: .byte $00
RxBitTable: .byte %00000000 ; SER_BITS_5, in WR_RX_CTRL (WR3)
.byte %10000000 ; SER_BITS_6 (Ref page 5-7)
.byte %01000000 ; SER_BITS_7
.byte %11000000 ; SER_BITS_8
TxBitTable: .byte %00000000 ; SER_BITS_5, in WR_TX_CTRL (WR5)
.byte %01000000 ; SER_BITS_6 (Ref page 5-9)
.byte %00100000 ; SER_BITS_7
.byte %01100000 ; SER_BITS_8
.rodata
ClockMultiplier:.byte %01000000 ; Clock x16 (300-57600bps, WR4, ref page 5-8)
.byte %10000000 ; Clock x32 (115200bps, ref page 5-8)
ClockSource: .byte %01010000 ; Use baud rate generator (ch. B) (WR11, page 5-17)
.byte %00000000 ; Use RTxC (115200bps) (ch. B)
.byte %11010000 ; Use baud rate generator (ch. A)
.byte %10000000 ; Use RTxC (115200bps) (ch. A)
BrgEnabled: .byte %00000001 ; Baud rate generator on (WR14, page 5-19)
.byte %00000000 ; BRG Off
ChanIrqFlags: .byte %00000101 ; ANDed (RX/special IRQ, ch. B) (page 5-25)
.byte %00101000 ; ANDed (RX/special IRQ, ch. A)
ChanIrqMask: .byte %00000111 ; Ch. B IRQ flags mask
.byte %00111000 ; Ch. A IRQ flags mask
BaudTable: ; bit7 = 1 means setting is invalid
; Indexes cc65 RS232 SER_BAUD enum
; into WR12/13 register values
; (Ref page 5-18 and 5-19)
.word $FFFF ; SER_BAUD_45_5
.word $FFFF ; SER_BAUD_50
.word $FFFF ; SER_BAUD_75
.word $FFFF ; SER_BAUD_110
.word $FFFF ; SER_BAUD_134_5
.word $FFFF ; SER_BAUD_150
.word $017E ; SER_BAUD_300
.word $FFFF ; SER_BAUD_600
.word $005E ; SER_BAUD_1200
.word $FFFF ; SER_BAUD_1800
.word $002E ; SER_BAUD_2400
.word $FFFF ; SER_BAUD_3600
.word $0016 ; SER_BAUD_4800
.word $FFFF ; SER_BAUD_7200
.word $000A ; SER_BAUD_9600
.word $0004 ; SER_BAUD_19200
.word $0001 ; SER_BAUD_38400
.word $0000 ; SER_BAUD_57600
.word $0000 ; SER_BAUD_115200 (constant unused at that speed)
.word $FFFF ; SER_BAUD_230400
; About the speed selection: either we use the baud rate generator:
; - Load the time constants from BaudTable into WR12/WR13
; - Setup the TX/RX clock source to BRG (ClockSource into WR11)
; - Setup the clock multiplier (WR4)
; - Enable the baud rate generator (WR14)
; In this case, the baud rate will be:
; rate = crystal_clock/(2+BRG_time_constant))/(2*clock_multiplier)
; Example: (3686400/(2+0x0004)) / (2*16) = 19200 bps
;
; Or we don't use the baud rate generator:
; - Setup the TX/RX clock source to RTxC
; - Setup the clock multiplier
; - Disable the baud rate generator
; - WR12 and 13 are ignored
; In this case, the baud rate will be:
; rate = crystal_clock/clock_multiplier
; Example: 3686400/32 = 115200 bps
StopTable: .byte %00000100 ; SER_STOP_1, in WR_TX_RX_CTRL (WR4)
.byte %00001100 ; SER_STOP_2 (Ref page 5-8)
ParityTable: .byte %00000000 ; SER_PAR_NONE, in WR_TX_RX_CTRL (WR4)
.byte %00000001 ; SER_PAR_ODD (Ref page 5-8)
.byte %00000011 ; SER_PAR_EVEN
.byte $FF ; SER_PAR_MARK
.byte $FF ; SER_PAR_SPACE
; ------------------------------------------------------------------------
; Addresses
SCCAREG := $C039
SCCBREG := $C038
SCCADATA := $C03B
SCCBDATA := $C03A
; We're supposed to get SerFlag's address using GetAddr on ROMs 1 and 3.
; (https://archive.org/details/IIgs_2523018_SCC_Access, page 9)
; But, it's the same value as on ROM0. As we don't expect a ROM 4 anytime
; soon with a different value, let's keep it simple.
SER_FLAG := $E10104
; ------------------------------------------------------------------------
; Channels
CHANNEL_B = 0
CHANNEL_A = 1
; ------------------------------------------------------------------------
; Write registers, read registers, and values that interest us
WR_INIT_CTRL = 0
RR_INIT_STATUS = 0
INIT_CTRL_CLEAR_EIRQ = %00010000
INIT_CTRL_CLEAR_ERR = %00110000
INIT_STATUS_READY = %00000100
INIT_STATUS_RTS = %00100000
WR_TX_RX_MODE_CTRL = 1
TX_RX_MODE_OFF = %00000000
TX_RX_MODE_RXIRQ = %00010001
WR_RX_CTRL = 3 ; (Ref page 5-7)
RR_RX_STATUS = 9 ; Corresponding status register
RX_CTRL_ON = %00000001 ; ORed, Rx enabled
RX_CTRL_OFF = %11111110 ; ANDed,Rx disabled
WR_TX_RX_CTRL = 4
RR_TX_RX_STATUS = 4
WR_TX_CTRL = 5 ; (Ref page 5-9)
RR_TX_STATUS = 5 ; Corresponding status register
TX_CTRL_ON = %00001000 ; ORed, Tx enabled
TX_CTRL_OFF = %11110111 ; ANDed,Tx disabled
TX_DTR_ON = %01111111 ; ANDed,DTR ON (high)
TX_DTR_OFF = %10000000 ; ORed, DTR OFF
TX_RTS_ON = %00000010 ; ORed, RTS ON (low)
TX_RTS_OFF = %11111101 ; ANDed, RTS OFF
WR_MASTER_IRQ_RST = 9 ; (Ref page 5-14)
MASTER_IRQ_SHUTDOWN = %00000010 ; STA'd
MASTER_IRQ_MIE_RST = %00001010 ; STA'd
MASTER_IRQ_SET = %00011001 ; STA'd
WR_CLOCK_CTRL = 11 ; (Ref page 5-17)
WR_BAUDL_CTRL = 12 ; (Ref page 5-18)
WR_BAUDH_CTRL = 13 ; (Ref page 5-19)
WR_MISC_CTRL = 14 ; (Ref page 5-19)
WR_IRQ_CTRL = 15 ; (Ref page 5-20)
IRQ_CLEANUP_EIRQ = %00001000
RR_SPEC_COND_STATUS = 1 ; (Ref page 5-23)
SPEC_COND_FRAMING_ERR = %01000000
SPEC_COND_OVERRUN_ERR = %00100000
RR_IRQ_STATUS = 2 ; (Ref page 5-24)
IRQ_MASQ = %01110000 ; ANDed
IRQ_RX = %00100000
IRQ_SPECIAL = %01100000
RR_INTR_PENDING_STATUS = 3 ; (Ref page 5-25)
INTR_IS_RX = %00100100 ; ANDed (RX IRQ, channel A or B)
.code
; Read register value to A.
; Input: X as channel
; Y as register
; Output: A
readSSCReg:
cpx #0
bne ReadAreg
sty SCCBREG
lda SCCBREG
rts
ReadAreg:
sty SCCAREG
lda SCCAREG
rts
; Write value of A to a register.
; Input: X as channel
; Y as register
writeSCCReg:
cpx #0
bne WriteAreg
sty SCCBREG
sta SCCBREG
rts
WriteAreg:
sty SCCAREG
sta SCCAREG
rts
;----------------------------------------------------------------------------
; SER_INSTALL: Is called after the driver is loaded into memory. If possible,
; check if the hardware is present. Must return an SER_ERR_xx code in a/x.
;
; Since we don't have to manage the IRQ vector on the Apple II, this is
; actually the same as:
;
; SER_UNINSTALL: Is called before the driver is removed from memory.
; No return code required (the driver is removed from memory on return).
;
; and:
;
; SER_CLOSE: Close the port and disable interrupts. Called without parameters.
; Must return an SER_ERR_xx code in a/x.
SER_INSTALL:
SER_UNINSTALL:
SER_CLOSE:
; Check if this is a IIgs (Apple II Miscellaneous TechNote #7,
; Apple II Family Identification)
sec
bit $C082
jsr $FE1F
bit $C080
bcc IIgs
lda #SER_ERR_NO_DEVICE ; Not a IIgs
ldx #$00 ; Promote char return value
rts
IIgs:
ldx Opened ; Check for open port
beq :+
ldx Channel
; Deactivate interrupts
sei
ldy #WR_MASTER_IRQ_RST
lda #MASTER_IRQ_SHUTDOWN
jsr writeSCCReg
ldy #WR_TX_RX_MODE_CTRL
lda #TX_RX_MODE_OFF
jsr writeSCCReg
; Reset SerFlag to what it was
lda SerFlagOrig
sta SER_FLAG
lda SCCBDATA
; Clear external interrupts (twice)
ldy #WR_INIT_CTRL
lda #INIT_CTRL_CLEAR_EIRQ
jsr writeSCCReg
jsr writeSCCReg
; Reset MIE for firmware use
ldy #WR_MASTER_IRQ_RST
lda #MASTER_IRQ_MIE_RST
jsr writeSCCReg
ldx #$00
stx Opened ; Mark port as closed
cli
: txa ; Promote char return value
rts
getClockSource:
.assert SER_PARAMS::BAUDRATE = 0, error
lda (ptr1) ; Baudrate index - cc65 value
cmp #SER_BAUD_115200
lda #$00
adc #$00
sta CurClockSource ; 0 = BRG, 1 = RTxC
rts
;----------------------------------------------------------------------------
; SER_OPEN: A pointer to a ser_params structure is passed in ptr1.
; Must return an SER_ERR_xx code in a/x.
SER_OPEN:
sei
; Check if the handshake setting is valid
ldy #SER_PARAMS::HANDSHAKE ; Handshake
lda (ptr1),y
cmp #SER_HS_SW ; Not supported
beq InvParam
sta HSType ; Store flow control type
; Initialize buffers
ldy #$00
sty Stopped
sty RecvHead
sty RecvTail
sty SendHead
sty SendTail
dey ; Y = 255
sty RecvFreeCnt
sty SendFreeCnt
ldx Channel
ldy #RR_INIT_STATUS ; Hit rr0 once to sync up
jsr readSSCReg
ldy #WR_MISC_CTRL ; WR14: Turn everything off
lda #$00
jsr writeSCCReg
jsr getClockSource ; Should we use BRG or RTxC?
ldy #SER_PARAMS::STOPBITS ; WR4 setup: clock mult., stop & parity
lda (ptr1),y ; Stop bits
tay
lda StopTable,y ; Get value
pha
ldy #SER_PARAMS::PARITY
lda (ptr1),y ; Parity bits
tay
pla
ora ParityTable,y ; Get value
bmi InvParam
ldy CurClockSource ; Clock multiplier
ora ClockMultiplier,y
ldy #WR_TX_RX_CTRL
jsr writeSCCReg ; End of WR4 setup
ldy CurClockSource ; WR11 setup: clock source
cpx #CHANNEL_B
beq SetClock
iny ; Shift to get correct ClockSource val
iny ; depending on our channel
SetClock:
lda ClockSource,y
ldy #WR_CLOCK_CTRL
jsr writeSCCReg ; End of WR11 setup
lda ChanIrqFlags,x ; Store which IRQ bits we'll check
sta CurChanIrqFlags
SetBaud:
.assert SER_PARAMS::BAUDRATE = 0, error
lda (ptr1) ; Baudrate index - cc65 value
asl
tay
lda BaudTable,y ; Get low byte of register value
bpl BaudOK ; Verify baudrate is supported
InvParam:
lda #SER_ERR_INIT_FAILED
ldy #$00 ; Mark port closed
bra SetupOut
BaudOK:
phy ; WR12 setup: BRG time constant, low byte
ldy #WR_BAUDL_CTRL ; Setting WR12 & 13 is useless if we're using
jsr writeSCCReg ; RTxC, but doing it anyway makes code smaller
ply
iny
lda BaudTable,y ; WR13 setup: BRG time constant, high byte
ldy #WR_BAUDH_CTRL
jsr writeSCCReg
ldy CurClockSource ; WR14 setup: BRG enabling
lda BrgEnabled,y
ldy #WR_MISC_CTRL ; Time to turn this thing on
jsr writeSCCReg
ldy #SER_PARAMS::DATABITS ; WR3 setup: RX data bits
lda (ptr1),y
tay
lda RxBitTable,y
ora #RX_CTRL_ON ; and turn receiver on
phy
ldy #WR_RX_CTRL
jsr writeSCCReg ; End of WR3 setup
ply
lda TxBitTable,y ; WR5 setup: TX data bits
ora #TX_CTRL_ON ; and turn transmitter on
and #TX_DTR_ON ; and turn DTR on
sta RtsOff ; Save value for flow control
ora #TX_RTS_ON ; and turn RTS on
ldy #WR_TX_CTRL
jsr writeSCCReg ; End of WR5 setup
ldy #WR_IRQ_CTRL ; WR15 setup: IRQ
lda #IRQ_CLEANUP_EIRQ
jsr writeSCCReg
ldy #WR_INIT_CTRL ; WR0 setup: clear existing IRQs
lda #INIT_CTRL_CLEAR_EIRQ
jsr writeSCCReg ; Clear (write twice)
jsr writeSCCReg
ldy #WR_TX_RX_MODE_CTRL ; WR1 setup: Activate RX IRQ
lda #TX_RX_MODE_RXIRQ
jsr writeSCCReg
lda SCCBREG ; WR9 setup: Activate master IRQ
ldy #WR_MASTER_IRQ_RST
lda #MASTER_IRQ_SET
jsr writeSCCReg
lda SER_FLAG ; Get SerFlag's current value
sta SerFlagOrig ; and save it
ora ChanIrqMask,x ; Tell firmware which channel IRQs we want
sta SER_FLAG
ldy #$01 ; Mark port opened
lda #SER_ERR_OK
SetupOut:
ldx #$00 ; Promote char return value
sty Opened
cli
rts
;----------------------------------------------------------------------------
; SER_GET: Will fetch a character from the receive buffer and store it into the
; variable pointed to by ptr1. If no data is available, SER_ERR_NO_DATA is
; returned.
SER_GET:
ldx Channel
lda RecvFreeCnt ; Check for buffer empty
cmp #$FF
beq NoData
ldy Stopped ; Check for flow stopped
beq :+
cmp #63 ; Enough free?
bcc :+
stz Stopped ; Release flow control
lda RtsOff
ora #TX_RTS_ON
ldy #WR_TX_CTRL
jsr writeSCCReg
: ldy RecvHead ; Get byte from buffer
lda RecvBuf,y
inc RecvHead
inc RecvFreeCnt
sta (ptr1)
lda #SER_ERR_OK
.assert SER_ERR_OK = 0, error
tax
rts
NoData:
lda #SER_ERR_NO_DATA
ldx #$00 ; Promote char return value
rts
;----------------------------------------------------------------------------
; SER_PUT: Output character in A.
; Must return an SER_ERR_xx code in a/x.
SER_PUT:
ldx Channel
ldy SendFreeCnt ; Anything to send first?
iny ; Y = $FF?
beq :+
pha
lda #$00 ; TryHard = false
jsr TryToSend
pla
: ldy SendFreeCnt ; Do we have room to store byte?
bne :+
lda #SER_ERR_OVERFLOW
ldx #$00
rts
: ldy SendTail ; Put byte into send buffer & send
sta SendBuf,y
inc SendTail
dec SendFreeCnt
lda #$FF ; TryHard = true
jsr TryToSend
lda #SER_ERR_OK
.assert SER_ERR_OK = 0, error
tax
rts
;----------------------------------------------------------------------------
; SER_STATUS: Return the status in the variable pointed to by ptr1.
; Must return an SER_ERR_xx code in a/x.
; We provide the read register 0, containing interesting info like
; INIT_STATUS_READY (hardware handshake status) or INIT_STATUS_RTS
; (ready to send).
SER_STATUS:
ldx Channel
ldy #RR_INIT_STATUS
jsr readSSCReg
ldx #$00
sta (ptr1)
.assert SER_ERR_OK = 0, error
txa
rts
;----------------------------------------------------------------------------
; SER_IOCTL: Driver defined entry point. The wrapper will pass a pointer to ioctl
; specific data in ptr1, and the ioctl code in A.
; Sets communication channel A or B (A = 1, B = 0)
; Must return an SER_ERR_xx code in a/x.
SER_IOCTL:
ora ptr1+1 ; Check data msb and code to be 0
bne :+
ldx ptr1 ; Check data lsb to be 0 or 1
bmi :+
cpx #$02
bcs :+
stx Channel
.assert SER_ERR_OK = 0, error
tax
rts
: lda #SER_ERR_INV_IOCTL
ldx #$00 ; Promote char return value
rts
;----------------------------------------------------------------------------
; SER_IRQ: Called from the builtin runtime IRQ handler as a subroutine. All
; registers are already saved, no parameters are passed, but the carry flag
; is clear on entry. The routine must return with carry set if the interrupt
; was handled, otherwise with carry clear.
SER_IRQ:
ldy #RR_INTR_PENDING_STATUS ; IRQ status is always in A reg
sty SCCAREG
lda SCCAREG
and CurChanIrqFlags ; Is this ours?
beq Done
and #INTR_IS_RX ; Is this an RX irq?
beq CheckSpecial
ldx Channel
beq ReadBdata
lda SCCADATA
bra ReadDone
ReadBdata:
lda SCCBDATA ; Get byte
ReadDone:
ldx RecvFreeCnt ; Check if we have free space left
beq Flow ; Jump if no space in receive buffer
ldy RecvTail ; Load buffer pointer
sta RecvBuf,y ; Store received byte in buffer
inc RecvTail ; Increment buffer pointer
dec RecvFreeCnt ; Decrement free space counter
cpx #33
bcc Flow ; Assert flow control if buffer space low
rts ; Interrupt handled (carry already set)
CheckSpecial:
; Always check IRQ special flags from Channel B (Ref page 5-24)
ldy #RR_IRQ_STATUS
sty SCCBREG
lda SCCBREG
and #IRQ_MASQ
cmp #IRQ_SPECIAL
beq Special
; Clear exint
ldx Channel
ldy #WR_INIT_CTRL
lda #INIT_CTRL_CLEAR_EIRQ
jsr writeSCCReg
sec
rts
Flow: lda HSType ; Don't touch if no flow control
beq IRQDone
ldx Channel ; Assert flow control if buffer space too low
ldy #WR_TX_CTRL
lda RtsOff
jsr writeSCCReg
sta Stopped
IRQDone:sec ; Interrupt handled
Done: rts
Special:ldx Channel
ldy #RR_SPEC_COND_STATUS
jsr readSSCReg
tax
and #SPEC_COND_FRAMING_ERR
bne BadChar
txa
and #SPEC_COND_OVERRUN_ERR
beq BadChar
ldy #WR_INIT_CTRL
lda #INIT_CTRL_CLEAR_ERR
jsr writeSCCReg
sec
rts
BadChar:
cpx #CHANNEL_B
beq BadCharB
lda SCCADATA
bra BadCharDone
BadCharB:
lda SCCBDATA ; Remove char in error
BadCharDone:
sec
rts
;----------------------------------------------------------------------------
; Try to send a byte. Internal routine. A = TryHard, X = Channel
TryToSend:
sta tmp1 ; Remember tryHard flag
Again: lda SendFreeCnt ; Anything to send?
cmp #$FF
beq Quit ; No
lda Stopped ; Check for flow stopped
bne Quit ; Bail out if it is
Wait:
ldy #RR_INIT_STATUS
jsr readSSCReg ; Check that we're ready to send
tay
and #INIT_STATUS_READY
beq NotReady
tya
and #INIT_STATUS_RTS ; Ready to send
bne Send
NotReady:
bit tmp1 ; Keep trying if must try hard
bmi Wait
Quit: rts
Send: ldy SendHead ; Send byte
lda SendBuf,y
cpx #CHANNEL_B
beq WriteBdata
sta SCCADATA
bra WriteDone
WriteBdata:
sta SCCBDATA
WriteDone:
inc SendHead
inc SendFreeCnt
jmp Again ; Continue flushing TX buffer