cc65/src/cc65/codeent.c

2608 lines
80 KiB
C

/*****************************************************************************/
/* */
/* codeent.c */
/* */
/* Code segment entry */
/* */
/* */
/* */
/* (C) 2001-2009, Ullrich von Bassewitz */
/* Roemerstrasse 52 */
/* D-70794 Filderstadt */
/* EMail: uz@cc65.org */
/* */
/* */
/* This software is provided 'as-is', without any expressed or implied */
/* warranty. In no event will the authors be held liable for any damages */
/* arising from the use of this software. */
/* */
/* Permission is granted to anyone to use this software for any purpose, */
/* including commercial applications, and to alter it and redistribute it */
/* freely, subject to the following restrictions: */
/* */
/* 1. The origin of this software must not be misrepresented; you must not */
/* claim that you wrote the original software. If you use this software */
/* in a product, an acknowledgment in the product documentation would be */
/* appreciated but is not required. */
/* 2. Altered source versions must be plainly marked as such, and must not */
/* be misrepresented as being the original software. */
/* 3. This notice may not be removed or altered from any source */
/* distribution. */
/* */
/*****************************************************************************/
#include <errno.h>
#include <limits.h>
#include <stdlib.h>
/* common */
#include "chartype.h"
#include "check.h"
#include "debugflag.h"
#include "xmalloc.h"
#include "xsprintf.h"
/* cc65 */
#include "asmlabel.h"
#include "codeent.h"
#include "codeinfo.h"
#include "codelab.h"
#include "error.h"
#include "global.h"
#include "ident.h"
#include "opcodes.h"
#include "output.h"
#include "reginfo.h"
/*****************************************************************************/
/* Data */
/*****************************************************************************/
/* Empty argument */
static char EmptyArg[] = "";
/*****************************************************************************/
/* Helper functions */
/*****************************************************************************/
static void FreeArg (char* Arg)
/* Free a code entry argument */
{
if (Arg != EmptyArg) {
xfree (Arg);
}
}
static char* GetArgCopy (const char* Arg)
/* Create an argument copy for assignment */
{
if (Arg && Arg[0] != '\0') {
/* Create a copy */
return xstrdup (Arg);
} else {
/* Use the empty argument string */
return EmptyArg;
}
}
static void FreeParsedArg (char* ArgBase)
/* Free a code entry parsed argument */
{
if (ArgBase != 0 && ArgBase != EmptyArg) {
xfree (ArgBase);
}
}
static void SetUseChgInfo (CodeEntry* E, const OPCDesc* D)
/* Set the Use and Chg in E */
{
const ZPInfo* Info;
/* If this is a subroutine call, or a jump to an external function,
** lookup the information about this function and use it. The jump itself
** does not change any registers, so we don't need to use the data from D.
*/
if ((E->Info & (OF_UBRA | OF_CALL)) != 0 && E->JumpTo == 0) {
/* A subroutine call or jump to external symbol (function exit) */
GetFuncInfo (E->Arg, &E->Use, &E->Chg);
} else {
/* Some other instruction. Use the values from the opcode description
** plus addressing mode info.
*/
E->Use = D->Use | GetAMUseInfo (E->AM);
E->Chg = D->Chg;
/* Check for special zero page registers used */
switch (E->AM) {
case AM65_ACC:
if (E->OPC == OP65_ASL || E->OPC == OP65_DEC ||
E->OPC == OP65_INC || E->OPC == OP65_LSR ||
E->OPC == OP65_ROL || E->OPC == OP65_ROR) {
/* A is changed by these insns */
E->Chg |= REG_A;
}
break;
case AM65_ZP:
case AM65_ABS:
/* Be conservative: */
case AM65_ZPX:
case AM65_ABSX:
case AM65_ABSY:
Info = GetZPInfo (E->Arg);
if (Info && Info->ByteUse != REG_NONE) {
if (E->OPC == OP65_ASL || E->OPC == OP65_DEC ||
E->OPC == OP65_INC || E->OPC == OP65_LSR ||
E->OPC == OP65_ROL || E->OPC == OP65_ROR ||
E->OPC == OP65_TRB || E->OPC == OP65_TSB) {
/* The zp loc is both, input and output */
E->Chg |= Info->ByteUse;
E->Use |= Info->ByteUse;
} else if ((E->Info & OF_STORE) != 0) {
/* Just output */
E->Chg |= Info->ByteUse;
} else {
/* Input only */
E->Use |= Info->ByteUse;
}
}
break;
case AM65_ZPX_IND:
case AM65_ZP_INDY:
case AM65_ZP_IND:
Info = GetZPInfo (E->Arg);
if (Info && Info->ByteUse != REG_NONE) {
/* These addressing modes will never change the zp loc */
E->Use |= Info->WordUse;
if ((E->Use & REG_SP) != 0) {
E->Use |= SLV_IND;
}
}
break;
default:
/* Keep gcc silent */
break;
}
/* Append processor flags as well as special usages */
switch (E->OPC) {
case OP65_ADC:
case OP65_SBC:
E->Use |= PSTATE_C;
E->Chg |= PSTATE_CZVN;
break;
case OP65_ROL:
case OP65_ROR:
E->Use |= PSTATE_C;
E->Chg |= PSTATE_CZN;
break;
case OP65_ASL:
case OP65_LSR:
E->Chg |= PSTATE_CZN;
break;
case OP65_CMP:
case OP65_CPX:
case OP65_CPY:
E->Chg |= PSTATE_CZN;
break;
case OP65_BIT:
E->Chg |= PSTATE_ZVN;
if (E->AM != AM65_IMM) {
E->Chg &= ~(PSTATE_V | PSTATE_N);
}
break;
case OP65_BRK:
E->Chg |= PSTATE_B;
break;
case OP65_CLC:
case OP65_SEC:
E->Chg |= PSTATE_C;
break;
case OP65_CLD:
case OP65_SED:
E->Chg |= PSTATE_D;
break;
case OP65_CLI:
case OP65_SEI:
E->Chg |= PSTATE_I;
break;
case OP65_CLV:
E->Chg |= PSTATE_V;
break;
case OP65_TRB:
case OP65_TSB:
E->Chg |= PSTATE_Z;
break;
case OP65_BCC:
case OP65_BCS:
case OP65_JCC:
case OP65_JCS:
E->Use |= PSTATE_C;
break;
case OP65_BEQ:
case OP65_BNE:
case OP65_JEQ:
case OP65_JNE:
E->Use |= PSTATE_Z;
break;
case OP65_BMI:
case OP65_BPL:
case OP65_JMI:
case OP65_JPL:
E->Use |= PSTATE_N;
break;
case OP65_BVC:
case OP65_BVS:
case OP65_JVC:
case OP65_JVS:
E->Use |= PSTATE_V;
break;
case OP65_BRA:
case OP65_JMP:
break;
case OP65_AND:
case OP65_EOR:
case OP65_ORA:
case OP65_DEA:
case OP65_DEC:
case OP65_DEX:
case OP65_DEY:
case OP65_INA:
case OP65_INC:
case OP65_INX:
case OP65_INY:
case OP65_LDA:
case OP65_LDX:
case OP65_LDY:
case OP65_TAX:
case OP65_TAY:
case OP65_TXA:
case OP65_TYA:
E->Chg |= PSTATE_ZN;
break;
case OP65_TSX:
E->Use |= SLV_SP65;
E->Chg |= PSTATE_ZN;
break;
case OP65_TXS:
E->Chg |= SLV_SP65;
break;
case OP65_PLA:
case OP65_PLX:
case OP65_PLY:
E->Use |= SLV_SP65;
E->Chg |= SLV_PL65 | PSTATE_ZN;
break;
case OP65_PLP:
E->Use |= SLV_SP65;
E->Chg |= SLV_PL65 | PSTATE_ALL;
break;
case OP65_PHA:
case OP65_PHX:
case OP65_PHY:
E->Use |= SLV_SP65;
E->Chg |= SLV_PH65;
break;
case OP65_PHP:
E->Use |= SLV_SP65 | PSTATE_ALL;
E->Chg |= SLV_PH65;
break;
case OP65_RTI:
E->Chg |= PSTATE_ALL;
break;
case OP65_RTS:
break;
case OP65_STA:
case OP65_STX:
case OP65_STY:
case OP65_STZ:
case OP65_JSR:
case OP65_NOP:
default:
break;
}
}
}
/*****************************************************************************/
/* Code */
/*****************************************************************************/
int ParseOpcArgStr (const char* Arg, unsigned short* ArgInfo, struct StrBuf* Name, long* Offset)
/* Break the opcode argument string into a symbol name/label part plus an offset.
** Both parts are optional, but if there are any characters in the string that
** can't be parsed, it's an failure.
** The caller is responsible for managing the StrBuf.
** Return whether parsing succeeds or not.
*/
{
unsigned short Flags = 0;
const char* OffsetPart = 0;
const char* NameEnd = 0;
int Negative = 0;
int Parentheses = 0;
unsigned long NumVal = 0;
long long AccOffset = 0;
char* End; /* Used for checking errors */
if (ArgInfo != 0) {
*ArgInfo = 0;
}
*Offset = 0;
/* A numeric address is treated as an unnamed address with the numeric part as the offset */
if (IsDigit (Arg[0]) || Arg[0] == '$') {
/* A call to a numeric address */
SB_Clear (Name);
SB_Terminate (Name);
OffsetPart = Arg;
} else {
/* <, >, ^ */
if (Arg[0] == '<') {
Flags |= AIF_LOBYTE;
} else if (Arg[0] == '>') {
Flags |= AIF_HIBYTE;
} else if (Arg[0] == '^') {
Flags |= AIF_BANKBYTE;
}
if ((Flags & (AIF_FAR)) != 0) {
/* Skip this char */
++Arg;
}
/* Skip spaces */
while (Arg[0] == ' ') {
++Arg;
}
/* Strip parentheses off if exist */
if (Arg[0] == '(') {
/* Skip this char */
++Arg;
End = strchr (Arg, ')');
if (End == 0 || End[1] != '\0') {
/* Not closed at the end, bail out */
*Offset = 0;
if (ArgInfo != 0) {
*ArgInfo = Flags | AIF_FAILURE;
}
return 0;
}
/* Found */
Parentheses = 1;
/* Skip spaces */
while (Arg[0] == ' ') {
++Arg;
}
}
/* If the symbol name starts with an underline, it is an external symbol.
** If the symbol does not start with an underline, it may be a built-in
** symbol.
*/
if (Arg[0] == '_') {
Flags |= AIF_EXTERNAL;
} else {
Flags |= AIF_BUILTIN;
}
/* Rip off the offset if present. */
OffsetPart = strchr (Arg, '+');
if (OffsetPart == 0) {
OffsetPart = strchr (Arg, '-');
}
if (OffsetPart != 0) {
/* Get the real arg name */
NameEnd = strchr (Arg, ' ');
if (NameEnd == 0 || NameEnd > OffsetPart) {
NameEnd = OffsetPart;
}
SB_CopyBuf (Name, Arg, NameEnd - Arg);
SB_Terminate (Name);
} else {
/* No offset */
if (Parentheses == 0) {
SB_CopyStr (Name, Arg);
} else {
SB_CopyBuf (Name, Arg, End - Arg);
}
SB_Terminate (Name);
}
if ((Flags & AIF_EXTERNAL) == 0) {
if (SB_GetLen (Name) > 0) {
Flags |= AIF_HAS_NAME;
/* See if the name is a local label */
if (IsLocalLabelName (SB_GetConstBuf (Name))) {
Flags |= AIF_LOCAL;
}
}
} else {
if (SB_GetLen (Name) <= 0) {
/* Invalid external name */
Flags &= ~AIF_EXTERNAL;
*Offset = 0;
if (ArgInfo != 0) {
*ArgInfo = Flags | AIF_FAILURE;
}
return 0;
}
Flags |= AIF_HAS_NAME;
}
/* A byte size expression with no parentheses but an offset is not
** handled correctly for now, so just bail out in such cases.
*/
if ((Flags & AIF_FAR) != 0 &&
Parentheses == 0 &&
OffsetPart != 0 &&
OffsetPart[0] != '\0') {
/* Bail out */
*Offset = 0;
if (ArgInfo != 0) {
*ArgInfo = Flags | AIF_FAILURE;
}
return 0;
}
}
/* Get the offset */
while (OffsetPart != 0 &&
OffsetPart[0] != '\0' &&
OffsetPart[0] != ')') {
/* Skip spaces */
while (OffsetPart[0] == ' ') {
++OffsetPart;
}
Negative = 0;
if (OffsetPart[0] == '+') {
++OffsetPart;
} else if (OffsetPart[0] == '-') {
Negative = 1;
++OffsetPart;
}
/* Skip spaces */
while (OffsetPart[0] == ' ') {
++OffsetPart;
}
/* Determine the base and convert the value. strtol/strtoul is not
** exactly what we want here, but it's cheap and may be replaced by
** something fancier later.
*/
if (OffsetPart[0] == '$') {
/* Base 16 hexedemical */
NumVal = strtoul (OffsetPart+1, &End, 16);
} else if (OffsetPart[0] != '%') {
/* Base 10 decimal */
NumVal = strtoul (OffsetPart, &End, 10);
} else {
/* Base 2 binary */
NumVal = strtoul (OffsetPart+1, &End, 2);
}
/* Check if the conversion was successful */
if (*End != '\0' && *End != ' ' && *End != '+' && *End != '-' && *End != ')') {
/* Could not convert */
*Offset = 0;
if (ArgInfo != 0) {
*ArgInfo = Flags | AIF_FAILURE;
}
return 0;
}
/* Check for out of range result */
if (NumVal == ULONG_MAX && errno == ERANGE) {
/* Could not convert */
*Offset = 0;
if (ArgInfo != 0) {
*ArgInfo = Flags | AIF_FAILURE;
}
return 0;
}
/* This argument does have an offset */
Flags |= AIF_HAS_OFFSET;
if (Negative) {
AccOffset -= (long long)NumVal;
} else {
AccOffset += (long long)NumVal;
}
/* See if there are more */
Arg = OffsetPart;
OffsetPart = strchr (Arg, '+');
if (OffsetPart == 0) {
OffsetPart = strchr (Arg, '-');
}
}
if (AccOffset > LONG_MAX || AccOffset < LONG_MIN) {
/* Could not convert */
*Offset = 0;
if (ArgInfo != 0) {
*ArgInfo = Flags | AIF_FAILURE;
}
return 0;
}
*Offset = (long)AccOffset;
if (ArgInfo != 0) {
*ArgInfo = Flags & ~AIF_FAILURE;
}
return 1;
}
const char* MakeHexArg (unsigned Num)
/* Convert Num into a string in the form $XY, suitable for passing it as an
** argument to NewCodeEntry, and return a pointer to the string.
** BEWARE: The function returns a pointer to a static buffer, so the value is
** gone if you call it twice (and apart from that it's not thread and signal
** safe).
*/
{
static char Buf[16];
xsprintf (Buf, sizeof (Buf), "$%02X", (unsigned char) Num);
return Buf;
}
void PreparseArg (CodeEntry* E)
/* Parse the argument string and memorize the result for the code entry */
{
StrBuf B = AUTO_STRBUF_INITIALIZER;
/* Parse the argument string */
if (ParseOpcArgStr (E->Arg, &E->ArgInfo, &B, &E->ArgOff)) {
E->ArgBase = SB_GetBuf (&B);
if ((E->ArgInfo & (AIF_HAS_NAME | AIF_HAS_OFFSET)) == AIF_HAS_OFFSET) {
E->Flags |= CEF_NUMARG;
/* Use the new numerical value */
E->Num = E->ArgOff;
}
} else {
/* Parsing fails. Issue an error/warning so that this could be spotted and fixed. */
E->ArgBase = EmptyArg;
SB_Done (&B);
if (Debug) {
Warning ("Parsing argument \"%s\" failed!", E->Arg);
}
}
}
CodeEntry* NewCodeEntry (opc_t OPC, am_t AM, const char* Arg,
CodeLabel* JumpTo, LineInfo* LI)
/* Create a new code entry, initialize and return it */
{
/* Get the opcode description */
const OPCDesc* D = GetOPCDesc (OPC);
/* Allocate memory */
CodeEntry* E = xmalloc (sizeof (CodeEntry));
/* Initialize the fields */
E->OPC = D->OPC;
E->AM = AM;
E->Size = GetInsnSize (E->OPC, E->AM);
E->Arg = GetArgCopy (Arg);
E->Flags = 0;
E->Info = D->Info;
E->ArgInfo = 0;
E->JumpTo = JumpTo;
E->LI = UseLineInfo (LI);
E->RI = 0;
/* Parse the argument string if it's given */
if (Arg == 0 || Arg[0] == '\0') {
E->ArgBase = EmptyArg;
} else {
PreparseArg (E);
}
SetUseChgInfo (E, D);
InitCollection (&E->Labels);
/* If we have a label given, add this entry to the label */
if (JumpTo) {
CollAppend (&JumpTo->JumpFrom, E);
}
/* Return the initialized struct */
return E;
}
void FreeCodeEntry (CodeEntry* E)
/* Free the given code entry */
{
/* Free the argument base string if we have one */
FreeParsedArg (E->ArgBase);
/* Free the string argument if we have one */
FreeArg (E->Arg);
/* Cleanup the collection */
DoneCollection (&E->Labels);
/* Release the line info */
ReleaseLineInfo (E->LI);
/* Delete the register info */
CE_FreeRegInfo (E);
/* Free the entry */
xfree (E);
}
void CE_ReplaceOPC (CodeEntry* E, opc_t OPC)
/* Replace the opcode of the instruction. This will also replace related info,
** Size, Use and Chg, but it will NOT update any arguments or labels.
*/
{
/* Get the opcode descriptor */
const OPCDesc* D = GetOPCDesc (OPC);
/* Replace the opcode */
E->OPC = OPC;
E->Info = D->Info;
E->Size = GetInsnSize (E->OPC, E->AM);
SetUseChgInfo (E, D);
}
int CodeEntriesAreEqual (const CodeEntry* E1, const CodeEntry* E2)
/* Check if both code entries are equal */
{
return (E1->OPC == E2->OPC && E1->AM == E2->AM && strcmp (E1->Arg, E2->Arg) == 0);
}
void CE_AttachLabel (CodeEntry* E, CodeLabel* L)
/* Attach the label to the entry */
{
/* Add it to the entries label list */
CollAppend (&E->Labels, L);
/* Tell the label about it's owner */
L->Owner = E;
}
void CE_ClearJumpTo (CodeEntry* E)
/* Clear the JumpTo entry and the argument (which contained the name of the
** label). Note: The function will not clear the backpointer from the label,
** so use it with care.
*/
{
/* Clear the JumpTo entry */
E->JumpTo = 0;
/* Clear the argument */
CE_SetArg (E, 0);
}
void CE_MoveLabel (CodeLabel* L, CodeEntry* E)
/* Move the code label L from it's former owner to the code entry E. */
{
/* Delete the label from the owner */
CollDeleteItem (&L->Owner->Labels, L);
/* Set the new owner */
CollAppend (&E->Labels, L);
L->Owner = E;
}
void CE_SetArg (CodeEntry* E, const char* Arg)
/* Replace the whole argument by the new one. */
{
/* Free the old parsed argument base */
FreeParsedArg (E->ArgBase);
/* Free the old argument */
FreeArg (E->Arg);
/* Assign the new one */
E->Arg = GetArgCopy (Arg);
/* Parse the new argument string */
PreparseArg (E);
/* Update the Use and Chg in E */
SetUseChgInfo (E, GetOPCDesc (E->OPC));
}
void CE_SetArgBaseAndOff (CodeEntry* E, const char* ArgBase, long ArgOff)
/* Replace the new argument base and offset. Argument base is always applied.
** Argument offset is applied if and only if E has the AIF_HAS_OFFSET flag set.
*/
{
if (ArgBase != 0 && ArgBase[0] != '\0') {
/* The argument base is not blank */
char Buf[IDENTSIZE + 16];
char* Str = Buf;
size_t Len = strlen (ArgBase) + 16;
if (Len >= sizeof (Buf)) {
Str = xmalloc (Len);
}
if ((E->ArgInfo & AIF_FAR) == 0) {
if (CE_HasArgOffset (E)) {
sprintf (Str, "%s%+ld", ArgBase, ArgOff);
} else {
sprintf (Str, "%s", ArgBase);
}
CE_SetArg (E, Str);
} else {
/* A byte expression */
const char* Expr = "";
if ((E->ArgInfo & AIF_FAR) == AIF_LOBYTE) {
Expr = "<";
} else if ((E->ArgInfo & AIF_FAR) == AIF_HIBYTE) {
Expr = ">";
} else if ((E->ArgInfo & AIF_FAR) == AIF_BANKBYTE) {
Expr = "^";
} else {
Internal ("Invalid byte size flag in CE_SetArgBaseAndOff");
}
if (CE_HasArgOffset (E)) {
sprintf (Str, "%s(%s%+ld)", Expr, ArgBase, ArgOff);
} else {
sprintf (Str, "%s(%s)", Expr, ArgBase);
}
}
CE_SetArg (E, Str);
if (Str != Buf) {
xfree (Str);
}
} else {
/* The argument has no base */
if ((E->ArgInfo & AIF_HAS_OFFSET) != 0) {
/* This is a numeric argument */
E->Flags |= CEF_NUMARG;
CE_SetNumArg (E, ArgOff);
} else {
/* Empty argument */
CE_SetArg (E, EmptyArg);
}
}
}
void CE_SetArgBase (CodeEntry* E, const char* ArgBase)
/* Replace the argument base by the new one.
** The entry must have an existing base.
*/
{
/* Check that the entry has a base name */
CHECK (CE_HasArgBase (E));
CE_SetArgBaseAndOff (E, ArgBase, E->ArgOff);
}
void CE_SetArgOffset (CodeEntry* E, long ArgOff)
/* Replace the argument offset by the new one */
{
CE_SetArgBaseAndOff (E, E->ArgBase, ArgOff);
}
void CE_SetNumArg (CodeEntry* E, long Num)
/* Set a new numeric argument for the given code entry that must already
** have a numeric argument.
*/
{
char Buf[16];
/* Check that the entry has a numerical argument */
CHECK (CE_HasNumArg (E));
/* Make the new argument string */
if (E->Size == 2) {
Num &= 0xFF;
xsprintf (Buf, sizeof (Buf), "$%02X", (unsigned) Num);
} else if (E->Size == 3 || E->Size == 5) {
Num &= 0xFFFF;
xsprintf (Buf, sizeof (Buf), "$%04X", (unsigned) Num);
} else {
Internal ("Invalid instruction size in CE_SetNumArg");
}
/* Replace the whole argument by the new one */
CE_SetArg (E, Buf);
}
int CE_IsArgStrParsed (const CodeEntry* E)
/* Return true if the argument of E was successfully parsed last time */
{
return (E->ArgInfo & AIF_FAILURE) == 0;
}
int CE_HasArgBase (const CodeEntry* E)
/* Return true if the argument of E has a non-blank base name */
{
return (E->ArgInfo & AIF_HAS_NAME) != 0 && E->ArgBase[0] != '\0';
}
int CE_HasArgOffset (const CodeEntry* E)
/* Return true if the argument of E has a non-zero offset */
{
return (E->ArgInfo & AIF_HAS_OFFSET) != 0 && E->ArgOff != 0;
}
int CE_IsConstImm (const CodeEntry* E)
/* Return true if the argument of E is a constant immediate value */
{
return (E->AM == AM65_IMM && CE_HasNumArg (E));
}
int CE_IsKnownImm (const CodeEntry* E, unsigned long Num)
/* Return true if the argument of E is a constant immediate value that is
** equal to Num.
*/
{
return (E->AM == AM65_IMM && CE_HasNumArg (E) && E->Num == Num);
}
int CE_UseLoadFlags (CodeEntry* E)
/* Return true if the instruction uses any flags that are set by a load of
** a register (N and Z).
*/
{
/* Follow unconditional branches, but beware of endless loops. After this,
** E will point to the first entry that is not a branch.
*/
if (E->Info & OF_UBRA) {
Collection C = AUTO_COLLECTION_INITIALIZER;
/* Follow the chain */
while (E->Info & OF_UBRA) {
/* Remember the entry so we can detect loops */
CollAppend (&C, E);
/* Check the target */
if (E->JumpTo == 0 || CollIndex (&C, E->JumpTo->Owner) >= 0) {
/* Unconditional jump to external symbol, or endless loop. */
DoneCollection (&C);
return 0; /* Flags not used */
}
/* Follow the chain */
E = E->JumpTo->Owner;
}
/* Delete the collection */
DoneCollection (&C);
}
/* A branch will use the flags */
if (E->Info & OF_FBRA) {
return 1;
}
/* Call of a boolean transformer routine will also use the flags */
if (E->OPC == OP65_JSR) {
/* Get the condition that is evaluated and check it */
switch (FindBoolCmpCond (E->Arg)) {
case CMP_EQ:
case CMP_NE:
case CMP_GT:
case CMP_GE:
case CMP_LT:
case CMP_LE:
case CMP_UGT:
case CMP_ULE:
/* Will use the N or Z flags */
return 1;
case CMP_UGE: /* Uses only carry */
case CMP_ULT: /* Dito */
default: /* No bool transformer subroutine */
return 0;
}
}
/* PHP will use all flags */
if (E->OPC == OP65_PHP) {
return 1;
}
/* Anything else */
return 0;
}
void CE_FreeRegInfo (CodeEntry* E)
/* Free an existing register info struct */
{
if (E->RI) {
FreeRegInfo (E->RI);
E->RI = 0;
}
}
static void DeduceZ (RegContents* C, short Val)
/* Auto-set Z flag */
{
if (RegValIsUnknown (Val)) {
C->PFlags |= UNKNOWN_PFVAL_Z;
} else {
C->PFlags &= ~UNKNOWN_PFVAL_Z;
if (Val == 0) {
C->PFlags |= PFVAL_Z;
}
}
}
static void DeduceZN (RegContents* C, short Val)
/* Auto-set Z/N flags */
{
if (RegValIsUnknown (Val)) {
C->PFlags |= UNKNOWN_PFVAL_ZN;
} else {
C->PFlags &= ~UNKNOWN_PFVAL_ZN;
if (Val == 0) {
C->PFlags |= PFVAL_Z;
} else if (Val & PFVAL_N) {
C->PFlags |= PFVAL_N;
}
}
}
static short KnownOpADCDeduceCZVN (RegContents* Out, RegContents* In, short Rhs)
/* Do the ADC and auto-set C/Z/V/N flags.
** Both operands and the C flag must be known.
*/
{
short SVal, UVal;
SVal = (signed char)(In->RegA & 0xFF) + (signed char)(Rhs & 0xFF);
UVal = (In->RegA & 0xFF) + (Rhs & 0xFF);
if (In->PFlags & PFVAL_C) {
++SVal;
++UVal;
}
Out->PFlags &= ~UNKNOWN_PFVAL_CZVN;
if (UVal > 0xFF) {
Out->PFlags |= PFVAL_C;
}
if (SVal < -128 || SVal > 127) {
Out->PFlags |= PFVAL_V;
}
DeduceZN (Out, UVal);
return UVal;
}
static short KnownOpSBCDeduceCZVN (RegContents* Out, RegContents* In, short Rhs)
/* Do the SBC and auto-set C/Z/V/N flags.
** Both operands and the C flag must be known.
*/
{
short SVal, UVal;
SVal = (signed char)(In->RegA & 0xFF) - (signed char)(Rhs & 0xFF);
UVal = (In->RegA & 0xFF) - (Rhs & 0xFF);
if ((In->PFlags & PFVAL_C) == 0) {
--SVal;
--UVal;
}
Out->PFlags &= ~UNKNOWN_PFVAL_CZVN;
if (UVal >= 0) {
Out->PFlags |= PFVAL_C;
}
if (SVal < -128 || SVal > 127) {
Out->PFlags |= PFVAL_V;
}
DeduceZN (Out, UVal);
return UVal;
}
static short KnownOpCmpDeduceCZN (RegContents* C, short Lhs, short Rhs)
/* Do the CMP and auto-set C/Z/N flags.
** Both operands must be known.
*/
{
short Val = (Lhs & 0xFF) - (Rhs & 0xFF);
C->PFlags &= ~UNKNOWN_PFVAL_C;
if (Val >= 0) {
C->PFlags |= PFVAL_C;
}
DeduceZN (C, Val);
return Val;
}
static short AnyOpASLDeduceCZN (RegContents* C, short Shiftee)
/* Do the ASL and auto-set C/Z/N flags */
{
if (RegValIsKnown (Shiftee)) {
C->PFlags &= ~UNKNOWN_PFVAL_C;
if (Shiftee & 0x80U) {
C->PFlags |= PFVAL_C;
}
Shiftee = (Shiftee << 1) & 0xFF;
}
DeduceZN (C, Shiftee);
return Shiftee;
}
static short AnyOpLSRDeduceCZN (RegContents* C, short Shiftee)
/* Do the LSR and auto-set C/Z/N flags */
{
if (RegValIsKnown (Shiftee)) {
C->PFlags &= ~UNKNOWN_PFVAL_C;
if (Shiftee & 0x01U) {
C->PFlags |= PFVAL_C;
}
Shiftee = (Shiftee >> 1) & 0xFF;
}
DeduceZN (C, Shiftee);
return Shiftee;
}
static short AnyOpROLDeduceCZN (RegContents* C, short PFlags, short Shiftee)
/* Do the ROL and auto-set C/Z/N flags */
{
if (RegValIsKnown (Shiftee) && PStatesAreKnown (PFlags, PSTATE_C)) {
C->PFlags &= ~UNKNOWN_PFVAL_C;
if (Shiftee & 0x80U) {
C->PFlags |= PFVAL_C;
}
Shiftee = (Shiftee << 1) & 0xFF;
if (PFlags & PFVAL_C) {
Shiftee |= 0x01U;
}
} else {
Shiftee = UNKNOWN_REGVAL;
}
DeduceZN (C, Shiftee);
return Shiftee;
}
static short AnyOpRORDeduceCZN (RegContents* C, short PFlags, short Shiftee)
/* Do the ROR and auto-set C/Z/N flags */
{
if (RegValIsKnown (Shiftee) && PStatesAreKnown (PFlags, PSTATE_C)) {
C->PFlags &= ~UNKNOWN_PFVAL_C;
if (Shiftee & 0x01U) {
C->PFlags |= PFVAL_C;
}
Shiftee = (Shiftee >> 1) & 0xFF;
if (PFlags & PFVAL_C) {
Shiftee |= 0x80U;
}
} else {
Shiftee = UNKNOWN_REGVAL;
}
DeduceZN (C, Shiftee);
return Shiftee;
}
static void BranchDeduceOnProcessorFlag (RegContents* True, RegContents* False, unsigned short PTrueFlag)
/* Auto-set the corresponding C/Z/V/N flag output for both True/Flase code flows */
{
PTrueFlag &= 0xFF;
unsigned short Mask = ~(PTrueFlag * 0x0101U) & 0xFFFFU;
True->PFlags &= Mask;
True->PFlags |= PTrueFlag;
False->PFlags &= Mask;
}
static int MightAffectKnownZP (CodeEntry* E, RegContents* In)
/* TODO: This is supposed to check if any builtin ZP could be affected.
** It simply returns TRUE in most cases for now.
*/
{
unsigned Index = 0;
if (E->AM == AM65_ZP ||
E->AM == AM65_ABS ||
(E->AM == AM65_ZPX && RegValIsKnown (In->RegX) && (Index = In->RegX & 0xFF)) ||
(E->AM == AM65_ZPY && RegValIsKnown (In->RegY) && (Index = In->RegY & 0xFF)) ||
(E->AM == AM65_ABSX && RegValIsKnown (In->RegX) && (Index = In->RegX & 0xFF)) ||
(E->AM == AM65_ABSY && RegValIsKnown (In->RegY) && (Index = In->RegY & 0xFF))) {
return 1;
} else if ((E->AM == AM65_ZP_IND) ||
(E->AM == AM65_ZPX_IND && RegValIsKnown (In->RegX) && (Index = In->RegX & 0xFF)) ||
(E->AM == AM65_ZP_INDY && RegValIsKnown (In->RegY) && (Index = In->RegY & 0xFF))) {
return 1;
}
return 1;
}
void CE_GenRegInfo (CodeEntry* E, RegContents* InputRegs)
/* Generate register info for this instruction. If an old info exists, it is
** overwritten.
*/
{
/* Pointers to the register contents */
RegContents* In;
RegContents* Out;
RegContents* BranchOut;
/* Function register usage */
unsigned Use, Chg;
/* Value in question */
short Val = UNKNOWN_REGVAL;
/* If we don't have a register info struct, allocate one. */
if (E->RI == 0) {
E->RI = NewRegInfo (InputRegs);
} else {
if (InputRegs) {
E->RI->In = *InputRegs;
} else {
RC_Invalidate (&E->RI->In);
}
E->RI->Out2 = E->RI->Out = E->RI->In;
}
/* Get pointers to the register contents */
In = &E->RI->In;
Out = &E->RI->Out;
BranchOut = &E->RI->Out2;
/* Handle the different instructions */
switch (E->OPC) {
case OP65_ADC:
Out->RegA = UNKNOWN_REGVAL;
Out->PFlags |= UNKNOWN_PFVAL_CZVN;
Out->ZNRegs = ZNREG_A;
if (PStatesAreKnown (In->PFlags, PSTATE_C) &&
RegValIsKnown (In->RegA)) {
if (CE_IsConstImm (E)) {
Out->RegA = KnownOpADCDeduceCZVN (Out, In, (short) E->Num);
} else if (E->AM == AM65_ZP) {
switch (GetKnownReg (E->Use & REG_ZP, In)) {
case REG_TMP1:
Out->RegA = KnownOpADCDeduceCZVN (Out, In, In->Tmp1);
break;
case REG_PTR1_LO:
Out->RegA = KnownOpADCDeduceCZVN (Out, In, In->Ptr1Lo);
break;
case REG_PTR1_HI:
Out->RegA = KnownOpADCDeduceCZVN (Out, In, In->Ptr1Hi);
break;
case REG_SREG_LO:
Out->RegA = KnownOpADCDeduceCZVN (Out, In, In->SRegLo);
break;
case REG_SREG_HI:
Out->RegA = KnownOpADCDeduceCZVN (Out, In, In->SRegHi);
break;
default:
break;
}
}
}
break;
case OP65_AND:
Out->RegA = UNKNOWN_REGVAL;
Out->ZNRegs = ZNREG_A;
if (RegValIsKnown (In->RegA)) {
if (CE_IsConstImm (E)) {
Out->RegA = In->RegA & (short) E->Num;
} else if (E->AM == AM65_ZP) {
switch (GetKnownReg (E->Use & REG_ZP, In)) {
case REG_TMP1:
Out->RegA = In->RegA & In->Tmp1;
break;
case REG_PTR1_LO:
Out->RegA = In->RegA & In->Ptr1Lo;
break;
case REG_PTR1_HI:
Out->RegA = In->RegA & In->Ptr1Hi;
break;
case REG_SREG_LO:
Out->RegA = In->RegA & In->SRegLo;
break;
case REG_SREG_HI:
Out->RegA = In->RegA & In->SRegHi;
break;
default:
break;
}
}
} else if (CE_IsKnownImm (E, 0)) {
/* A and $00 does always give zero */
Out->RegA = 0;
}
DeduceZN (Out, Out->RegA);
break;
case OP65_ASL:
Out->PFlags |= UNKNOWN_PFVAL_CZN;
Out->ZNRegs = ZNREG_NONE;
if (E->AM == AM65_ACC) {
Out->RegA = AnyOpASLDeduceCZN (Out, In->RegA);
Out->ZNRegs = ZNREG_A;
} else if (E->AM == AM65_ZP) {
switch (GetKnownReg (E->Chg & REG_ZP, In)) {
case REG_TMP1:
Out->Tmp1 = AnyOpASLDeduceCZN (Out, In->Tmp1);
Out->ZNRegs = ZNREG_TMP1;
break;
case REG_PTR1_LO:
Out->Ptr1Lo = AnyOpASLDeduceCZN (Out, In->Ptr1Lo);
Out->ZNRegs = ZNREG_PTR1_LO;
break;
case REG_PTR1_HI:
Out->Ptr1Hi = AnyOpASLDeduceCZN (Out, In->Ptr1Hi);
Out->ZNRegs = ZNREG_PTR1_HI;
break;
case REG_SREG_LO:
Out->SRegLo = AnyOpASLDeduceCZN (Out, In->SRegLo);
Out->ZNRegs = ZNREG_SREG_LO;
break;
case REG_SREG_HI:
Out->SRegHi = AnyOpASLDeduceCZN (Out, In->SRegHi);
Out->ZNRegs = ZNREG_SREG_HI;
break;
}
} else if (MightAffectKnownZP (E, In)) {
/* Invalidates all ZP registers */
RC_InvalidateZP (Out);
}
break;
case OP65_BCC:
BranchDeduceOnProcessorFlag (Out, BranchOut, PFVAL_C);
break;
case OP65_BCS:
BranchDeduceOnProcessorFlag (BranchOut, Out, PFVAL_C);
break;
case OP65_BEQ:
BranchDeduceOnProcessorFlag (BranchOut, Out, PFVAL_Z);
break;
case OP65_BIT:
Out->ZNRegs = ZNREG_NONE;
if (E->AM == AM65_ZP) {
switch (GetKnownReg (E->Chg & REG_ZP, In)) {
case REG_TMP1:
Val = In->Tmp1;
break;
case REG_PTR1_LO:
Val = In->Ptr1Lo;
break;
case REG_PTR1_HI:
Val = In->Ptr1Hi;
break;
case REG_SREG_LO:
Val = In->SRegLo;
break;
case REG_SREG_HI:
Val = In->SRegHi;
break;
}
} else if (CE_IsConstImm (E)) {
/* 65C02 special */
Val = (short) E->Num;
}
/* BIT is unique with regards to the Z/V/N flags:
** - The Z is set/cleared according to whether the AND result is zero.
** - The V is coped directly from Bit 6 of the orginal argument.
** - The N is coped directly from Bit 7 of the orginal argument.
** Note the V/N flags are not affected in imm addressing mode supported by 65c02!
*/
if (E->AM == AM65_IMM) {
if (RegValIsKnown (Val)) {
Out->PFlags &= ~(UNKNOWN_PFVAL_V | UNKNOWN_PFVAL_N);
if (Val & PFVAL_V) {
Out->PFlags |= PFVAL_V;
}
Out->PFlags &= ~UNKNOWN_PFVAL_V;
if (Val & PFVAL_V) {
Out->PFlags |= PFVAL_V;
}
} else {
Out->PFlags |= UNKNOWN_PFVAL_V | UNKNOWN_PFVAL_N;
}
}
if ((RegValIsKnown (Val) && RegValIsKnown (In->RegA))) {
Val &= In->RegA;
} else if (((RegValIsKnown (Val) && Val == 0) ||
(RegValIsKnown (In->RegA) && In->RegA == 0))) {
Val = 0;
}
DeduceZ (Out, Val);
break;
case OP65_BMI:
BranchDeduceOnProcessorFlag (BranchOut, Out, PFVAL_N);
break;
case OP65_BNE:
BranchDeduceOnProcessorFlag (Out, BranchOut, PFVAL_Z);
break;
case OP65_BPL:
BranchDeduceOnProcessorFlag (Out, BranchOut, PFVAL_N);
break;
case OP65_BRA:
break;
case OP65_BRK:
Out->PFlags &= ~UNKNOWN_PFVAL_B;
Out->PFlags |= PFVAL_B;
break;
case OP65_BVC:
BranchDeduceOnProcessorFlag (Out, BranchOut, PFVAL_V);
break;
case OP65_BVS:
BranchDeduceOnProcessorFlag (BranchOut, Out, PFVAL_V);
break;
case OP65_CLC:
Out->PFlags &= ~UNKNOWN_PFVAL_C;
break;
case OP65_CLD:
Out->PFlags &= ~UNKNOWN_PFVAL_D;
break;
case OP65_CLI:
Out->PFlags &= ~UNKNOWN_PFVAL_I;
break;
case OP65_CLV:
Out->PFlags &= ~UNKNOWN_PFVAL_V;
break;
case OP65_CMP:
Out->PFlags |= UNKNOWN_PFVAL_CZN;
Out->ZNRegs = ZNREG_NONE;
if (RegValIsKnown (In->RegA)) {
if (CE_IsConstImm (E)) {
KnownOpCmpDeduceCZN (Out, In->RegA, (short)E->Num);
} else if (E->AM == AM65_ZP) {
switch (GetKnownReg (E->Use & REG_ZP, In)) {
case REG_TMP1:
KnownOpCmpDeduceCZN (Out, In->RegA, In->Tmp1);
break;
case REG_PTR1_LO:
KnownOpCmpDeduceCZN (Out, In->RegA, In->Ptr1Lo);
break;
case REG_PTR1_HI:
KnownOpCmpDeduceCZN (Out, In->RegA, In->Ptr1Hi);
break;
case REG_SREG_LO:
KnownOpCmpDeduceCZN (Out, In->RegA, In->SRegLo);
break;
case REG_SREG_HI:
KnownOpCmpDeduceCZN (Out, In->RegA, In->SRegHi);
break;
default:
break;
}
}
}
break;
case OP65_CPX:
Out->PFlags |= UNKNOWN_PFVAL_CZN;
Out->ZNRegs = ZNREG_NONE;
if (RegValIsKnown (In->RegX)) {
if (CE_IsConstImm (E)) {
KnownOpCmpDeduceCZN (Out, In->RegX, (short)E->Num);
} else if (E->AM == AM65_ZP) {
switch (GetKnownReg (E->Use & REG_ZP, In)) {
case REG_TMP1:
KnownOpCmpDeduceCZN (Out, In->RegX, In->Tmp1);
break;
case REG_PTR1_LO:
KnownOpCmpDeduceCZN (Out, In->RegX, In->Ptr1Lo);
break;
case REG_PTR1_HI:
KnownOpCmpDeduceCZN (Out, In->RegX, In->Ptr1Hi);
break;
case REG_SREG_LO:
KnownOpCmpDeduceCZN (Out, In->RegX, In->SRegLo);
break;
case REG_SREG_HI:
KnownOpCmpDeduceCZN (Out, In->RegX, In->SRegHi);
break;
default:
break;
}
}
}
break;
case OP65_CPY:
Out->PFlags |= UNKNOWN_PFVAL_CZN;
Out->ZNRegs = ZNREG_NONE;
if (RegValIsKnown (In->RegY)) {
if (CE_IsConstImm (E)) {
KnownOpCmpDeduceCZN (Out, In->RegY, (short)E->Num);
} else if (E->AM == AM65_ZP) {
switch (GetKnownReg (E->Use & REG_ZP, In)) {
case REG_TMP1:
KnownOpCmpDeduceCZN (Out, In->RegY, In->Tmp1);
break;
case REG_PTR1_LO:
KnownOpCmpDeduceCZN (Out, In->RegY, In->Ptr1Lo);
break;
case REG_PTR1_HI:
KnownOpCmpDeduceCZN (Out, In->RegY, In->Ptr1Hi);
break;
case REG_SREG_LO:
KnownOpCmpDeduceCZN (Out, In->RegY, In->SRegLo);
break;
case REG_SREG_HI:
KnownOpCmpDeduceCZN (Out, In->RegY, In->SRegHi);
break;
default:
break;
}
}
}
break;
case OP65_DEA:
Out->ZNRegs = ZNREG_A;
if (RegValIsKnown (In->RegA)) {
Out->RegA = (In->RegA - 1) & 0xFF;
}
DeduceZN (Out, Out->RegA);
break;
case OP65_DEC:
Out->ZNRegs = ZNREG_NONE;
if (E->AM == AM65_ACC) {
if (RegValIsKnown (In->RegA)) {
Val = Out->RegA = (In->RegA - 1) & 0xFF;
}
Out->ZNRegs = ZNREG_A;
} else if (E->AM == AM65_ZP) {
switch (GetKnownReg (E->Chg & REG_ZP, In)) {
case REG_TMP1:
Val = Out->Tmp1 = (In->Tmp1 - 1) & 0xFF;
Out->ZNRegs = ZNREG_TMP1;
break;
case REG_PTR1_LO:
Val = Out->Ptr1Lo = (In->Ptr1Lo - 1) & 0xFF;
Out->ZNRegs = ZNREG_PTR1_LO;
break;
case REG_PTR1_HI:
Val = Out->Ptr1Hi = (In->Ptr1Hi - 1) & 0xFF;
Out->ZNRegs = ZNREG_PTR1_HI;
break;
case REG_SREG_LO:
Val = Out->SRegLo = (In->SRegLo - 1) & 0xFF;
Out->ZNRegs = ZNREG_SREG_LO;
break;
case REG_SREG_HI:
Val = Out->SRegHi = (In->SRegHi - 1) & 0xFF;
Out->ZNRegs = ZNREG_SREG_HI;
break;
}
} else if (MightAffectKnownZP (E, In)) {
/* Invalidates all ZP registers */
RC_InvalidateZP (Out);
}
DeduceZN (Out, Val);
break;
case OP65_DEX:
Out->ZNRegs = ZNREG_X;
if (RegValIsKnown (In->RegX)) {
Out->RegX = (In->RegX - 1) & 0xFF;
}
DeduceZN (Out, Out->RegX);
break;
case OP65_DEY:
Out->ZNRegs = ZNREG_Y;
if (RegValIsKnown (In->RegY)) {
Out->RegY = (In->RegY - 1) & 0xFF;
}
DeduceZN (Out, Out->RegY);
break;
case OP65_EOR:
Out->RegA = UNKNOWN_REGVAL;
Out->ZNRegs = ZNREG_A;
if (RegValIsKnown (In->RegA)) {
if (CE_IsConstImm (E)) {
Out->RegA = In->RegA ^ (short) E->Num;
} else if (E->AM == AM65_ZP) {
switch (GetKnownReg (E->Use & REG_ZP, In)) {
case REG_TMP1:
Out->RegA = In->RegA ^ In->Tmp1;
break;
case REG_PTR1_LO:
Out->RegA = In->RegA ^ In->Ptr1Lo;
break;
case REG_PTR1_HI:
Out->RegA = In->RegA ^ In->Ptr1Hi;
break;
case REG_SREG_LO:
Out->RegA = In->RegA ^ In->SRegLo;
break;
case REG_SREG_HI:
Out->RegA = In->RegA ^ In->SRegHi;
break;
default:
break;
}
}
}
DeduceZN (Out, Out->RegA);
break;
case OP65_INA:
Out->ZNRegs = ZNREG_A;
if (RegValIsKnown (In->RegA)) {
Out->RegA = (In->RegA + 1) & 0xFF;
}
DeduceZN (Out, Out->RegA);
break;
case OP65_INC:
Out->ZNRegs = ZNREG_NONE;
if (E->AM == AM65_ACC) {
if (RegValIsKnown (In->RegA)) {
Val = Out->RegA = (In->RegA + 1) & 0xFF;
}
Out->ZNRegs = ZNREG_A;
} else if (E->AM == AM65_ZP) {
switch (GetKnownReg (E->Chg & REG_ZP, 0)) {
case REG_TMP1:
Val = Out->Tmp1 = (In->Tmp1 + 1) & 0xFF;
Out->ZNRegs = ZNREG_TMP1;
break;
case REG_PTR1_LO:
Val = Out->Ptr1Lo = (In->Ptr1Lo + 1) & 0xFF;
Out->ZNRegs = ZNREG_PTR1_LO;
break;
case REG_PTR1_HI:
Val = Out->Ptr1Hi = (In->Ptr1Hi + 1) & 0xFF;
Out->ZNRegs = ZNREG_PTR1_HI;
break;
case REG_SREG_LO:
Val = Out->SRegLo = (In->SRegLo + 1) & 0xFF;
Out->ZNRegs = ZNREG_SREG_LO;
break;
case REG_SREG_HI:
Val = Out->SRegHi = (In->SRegHi + 1) & 0xFF;
Out->ZNRegs = ZNREG_SREG_HI;
break;
}
} else if (MightAffectKnownZP (E, In)) {
/* Invalidates all ZP registers */
RC_InvalidateZP (Out);
}
DeduceZN (Out, Val);
break;
case OP65_INX:
Out->ZNRegs = ZNREG_X;
if (RegValIsKnown (In->RegX)) {
Out->RegX = (In->RegX + 1) & 0xFF;
}
DeduceZN (Out, Out->RegX);
break;
case OP65_INY:
Out->ZNRegs = ZNREG_Y;
if (RegValIsKnown (In->RegY)) {
Out->RegY = (In->RegY + 1) & 0xFF;
}
DeduceZN (Out, Out->RegY);
break;
case OP65_JCC:
BranchDeduceOnProcessorFlag (Out, BranchOut, PFVAL_C);
break;
case OP65_JCS:
BranchDeduceOnProcessorFlag (BranchOut, Out, PFVAL_C);
break;
case OP65_JEQ:
BranchDeduceOnProcessorFlag (BranchOut, Out, PFVAL_Z);
break;
case OP65_JMI:
BranchDeduceOnProcessorFlag (BranchOut, Out, PFVAL_N);
break;
case OP65_JMP:
break;
case OP65_JNE:
BranchDeduceOnProcessorFlag (Out, BranchOut, PFVAL_Z);
break;
case OP65_JPL:
BranchDeduceOnProcessorFlag (Out, BranchOut, PFVAL_N);
break;
case OP65_JSR:
Out->ZNRegs = ZNREG_NONE;
/* Get the code info for the function */
GetFuncInfo (E->Arg, &Use, &Chg);
if (Chg & REG_A) {
Out->RegA = UNKNOWN_REGVAL;
}
if (Chg & REG_X) {
Out->RegX = UNKNOWN_REGVAL;
}
if (Chg & REG_Y) {
Out->RegY = UNKNOWN_REGVAL;
}
if (Chg & REG_TMP1) {
Out->Tmp1 = UNKNOWN_REGVAL;
}
if (Chg & REG_PTR1_LO) {
Out->Ptr1Lo = UNKNOWN_REGVAL;
}
if (Chg & REG_PTR1_HI) {
Out->Ptr1Hi = UNKNOWN_REGVAL;
}
if (Chg & REG_SREG_LO) {
Out->SRegLo = UNKNOWN_REGVAL;
}
if (Chg & REG_SREG_HI) {
Out->SRegHi = UNKNOWN_REGVAL;
}
/* FIXME: Quick hack to set flags on process status: */
Out->PFlags |= ((Chg & PSTATE_ALL) >> PSTATE_BITS_SHIFT) * 0x0101U;
/* ## FIXME: Quick hack for some known functions: */
if (strcmp (E->Arg, "complax") == 0) {
if (RegValIsKnown (In->RegA)) {
Out->RegA = (In->RegA ^ 0xFF);
}
if (RegValIsKnown (In->RegX)) {
Out->RegX = (In->RegX ^ 0xFF);
}
} else if (strncmp (E->Arg, "asrax", 5) == 0 ||
strncmp (E->Arg, "shrax", 5) == 0) {
if (RegValIsKnown (In->RegX)) {
if (In->RegX == 0x00 || In->RegX == 0xFF) {
Out->RegX = In->RegX;
}
}
} else if (strcmp (E->Arg, "tosandax") == 0) {
if (RegValIsKnown (In->RegA) && In->RegA == 0) {
Out->RegA = 0;
}
if (RegValIsKnown (In->RegX) && In->RegX == 0) {
Out->RegX = 0;
}
} else if (strcmp (E->Arg, "tosaslax") == 0) {
if (RegValIsKnown (In->RegA) && (In->RegA & 0x0F) >= 8) {
Out->RegA = 0;
}
} else if (strcmp (E->Arg, "tosorax") == 0) {
if (RegValIsKnown (In->RegA) && In->RegA == 0xFF) {
Out->RegA = 0xFF;
}
if (RegValIsKnown (In->RegX) && In->RegX == 0xFF) {
Out->RegX = 0xFF;
}
} else if (strcmp (E->Arg, "tosshlax") == 0) {
if (RegValIsKnown (In->RegA) && (In->RegA & 0x0F) >= 8) {
Out->RegA = 0;
}
} else if (strcmp (E->Arg, "tosshrax") == 0) {
if (RegValIsKnown (In->RegA) && (In->RegA & 0x0F) >= 8) {
Out->RegX = 0;
}
} else if (strcmp (E->Arg, "bcastax") == 0 ||
strcmp (E->Arg, "bnegax") == 0 ||
FindBoolCmpCond (E->Arg) != CMP_INV ||
FindTosCmpCond (E->Arg) != CMP_INV) {
/* Result is boolean value, so X is zero on output */
Out->RegX = 0;
}
break;
case OP65_JVC:
BranchDeduceOnProcessorFlag (Out, BranchOut, PFVAL_V);
break;
case OP65_JVS:
BranchDeduceOnProcessorFlag (BranchOut, Out, PFVAL_V);
break;
case OP65_LDA:
Out->RegA = UNKNOWN_REGVAL;
Out->ZNRegs = ZNREG_A;
if (CE_IsConstImm (E)) {
Out->RegA = (unsigned char) E->Num;
} else if (E->AM == AM65_ZP) {
switch (GetKnownReg (E->Use & REG_ZP, In)) {
case REG_TMP1:
Out->RegA = In->Tmp1;
break;
case REG_PTR1_LO:
Out->RegA = In->Ptr1Lo;
break;
case REG_PTR1_HI:
Out->RegA = In->Ptr1Hi;
break;
case REG_SREG_LO:
Out->RegA = In->SRegLo;
break;
case REG_SREG_HI:
Out->RegA = In->SRegHi;
break;
default:
break;
}
}
DeduceZN (Out, Out->RegA);
break;
case OP65_LDX:
Out->RegX = UNKNOWN_REGVAL;
Out->ZNRegs = ZNREG_X;
if (CE_IsConstImm (E)) {
Out->RegX = (unsigned char) E->Num;
} else if (E->AM == AM65_ZP) {
switch (GetKnownReg (E->Use & REG_ZP, In)) {
case REG_TMP1:
Out->RegX = In->Tmp1;
break;
case REG_PTR1_LO:
Out->RegX = In->Ptr1Lo;
break;
case REG_PTR1_HI:
Out->RegX = In->Ptr1Hi;
break;
case REG_SREG_LO:
Out->RegX = In->SRegLo;
break;
case REG_SREG_HI:
Out->RegX = In->SRegHi;
break;
default:
break;
}
}
DeduceZN (Out, Out->RegX);
break;
case OP65_LDY:
Out->RegY = UNKNOWN_REGVAL;
Out->ZNRegs = ZNREG_Y;
if (CE_IsConstImm (E)) {
Out->RegY = (unsigned char) E->Num;
} else if (E->AM == AM65_ZP) {
switch (GetKnownReg (E->Use & REG_ZP, In)) {
case REG_TMP1:
Out->RegY = In->Tmp1;
break;
case REG_PTR1_LO:
Out->RegY = In->Ptr1Lo;
break;
case REG_PTR1_HI:
Out->RegY = In->Ptr1Hi;
break;
case REG_SREG_LO:
Out->RegY = In->SRegLo;
break;
case REG_SREG_HI:
Out->RegY = In->SRegHi;
break;
default:
break;
}
}
DeduceZN (Out, Out->RegY);
break;
case OP65_LSR:
Out->PFlags |= UNKNOWN_PFVAL_CZN;
Out->ZNRegs = ZNREG_NONE;
if (E->AM == AM65_ACC) {
Out->RegA = AnyOpLSRDeduceCZN (Out, In->RegA);
Out->ZNRegs = ZNREG_A;
} else if (E->AM == AM65_ZP) {
switch (GetKnownReg (E->Chg & REG_ZP, 0)) {
case REG_TMP1:
Out->Tmp1 = AnyOpLSRDeduceCZN (Out, In->Tmp1);
Out->ZNRegs = ZNREG_TMP1;
break;
case REG_PTR1_LO:
Out->Ptr1Lo = AnyOpLSRDeduceCZN (Out, In->Ptr1Lo);
Out->ZNRegs = ZNREG_PTR1_LO;
break;
case REG_PTR1_HI:
Out->Ptr1Hi = AnyOpLSRDeduceCZN (Out, In->Ptr1Hi);
Out->ZNRegs = ZNREG_PTR1_HI;
break;
case REG_SREG_LO:
Out->SRegLo = AnyOpLSRDeduceCZN (Out, In->SRegLo);
Out->ZNRegs = ZNREG_SREG_LO;
break;
case REG_SREG_HI:
Out->SRegHi = AnyOpLSRDeduceCZN (Out, In->SRegHi);
Out->ZNRegs = ZNREG_SREG_HI;
break;
}
} else if (MightAffectKnownZP (E, In)) {
/* Invalidates all ZP registers */
RC_InvalidateZP (Out);
}
break;
case OP65_NOP:
break;
case OP65_ORA:
Out->RegA = UNKNOWN_REGVAL;
Out->ZNRegs = ZNREG_A;
if (RegValIsKnown (In->RegA)) {
if (CE_IsConstImm (E)) {
Out->RegA = In->RegA | (short) E->Num;
} else if (E->AM == AM65_ZP) {
switch (GetKnownReg (E->Use & REG_ZP, In)) {
case REG_TMP1:
Out->RegA = In->RegA | In->Tmp1;
break;
case REG_PTR1_LO:
Out->RegA = In->RegA | In->Ptr1Lo;
break;
case REG_PTR1_HI:
Out->RegA = In->RegA | In->Ptr1Hi;
break;
case REG_SREG_LO:
Out->RegA = In->RegA | In->SRegLo;
break;
case REG_SREG_HI:
Out->RegA = In->RegA | In->SRegHi;
break;
default:
break;
}
}
} else if (CE_IsKnownImm (E, 0xFF)) {
/* ORA with 0xFF does always give 0xFF */
Out->RegA = 0xFF;
}
DeduceZN (Out, Out->RegA);
break;
case OP65_PHA:
break;
case OP65_PHP:
break;
case OP65_PHX:
break;
case OP65_PHY:
break;
case OP65_PLA:
Out->RegA = UNKNOWN_REGVAL;
Out->PFlags |= UNKNOWN_PFVAL_ZN;
Out->ZNRegs = ZNREG_A;
break;
case OP65_PLP:
Out->PFlags = UNKNOWN_PFVAL_ALL;
Out->ZNRegs = ZNREG_NONE;
break;
case OP65_PLX:
Out->RegX = UNKNOWN_REGVAL;
Out->PFlags |= UNKNOWN_PFVAL_ZN;
Out->ZNRegs = ZNREG_X;
break;
case OP65_PLY:
Out->RegY = UNKNOWN_REGVAL;
Out->PFlags |= UNKNOWN_PFVAL_ZN;
Out->ZNRegs = ZNREG_Y;
break;
case OP65_ROL:
Out->PFlags |= UNKNOWN_PFVAL_CZN;
Out->ZNRegs = ZNREG_NONE;
if (E->AM == AM65_ACC) {
Out->RegA = AnyOpROLDeduceCZN (Out, In->PFlags, In->RegA);
Out->ZNRegs = ZNREG_A;
} else if (E->AM == AM65_ZP) {
switch (GetKnownReg (E->Chg & REG_ZP, 0)) {
case REG_TMP1:
Out->Tmp1 = AnyOpROLDeduceCZN (Out, In->PFlags, In->Tmp1);
Out->ZNRegs = ZNREG_TMP1;
break;
case REG_PTR1_LO:
Out->Ptr1Lo = AnyOpROLDeduceCZN (Out, In->PFlags, In->Ptr1Lo);
Out->ZNRegs = ZNREG_PTR1_LO;
break;
case REG_PTR1_HI:
Out->Ptr1Hi = AnyOpROLDeduceCZN (Out, In->PFlags, In->Ptr1Hi);
Out->ZNRegs = ZNREG_PTR1_HI;
break;
case REG_SREG_LO:
Out->SRegLo = AnyOpROLDeduceCZN (Out, In->PFlags, In->SRegLo);
Out->ZNRegs = ZNREG_SREG_LO;
break;
case REG_SREG_HI:
Out->SRegHi = AnyOpROLDeduceCZN (Out, In->PFlags, In->SRegHi);
Out->ZNRegs = ZNREG_SREG_HI;
break;
}
} else if (MightAffectKnownZP (E, In)) {
/* Invalidates all ZP registers */
RC_InvalidateZP (Out);
}
break;
case OP65_ROR:
Out->PFlags |= UNKNOWN_PFVAL_CZN;
Out->ZNRegs = ZNREG_NONE;
if (E->AM == AM65_ACC) {
Out->RegA = AnyOpRORDeduceCZN (Out, In->PFlags, In->RegA);
Out->ZNRegs = ZNREG_A;
} else if (E->AM == AM65_ZP) {
switch (GetKnownReg (E->Chg & REG_ZP, 0)) {
case REG_TMP1:
Out->Tmp1 = AnyOpRORDeduceCZN (Out, In->PFlags, In->Tmp1);
Out->ZNRegs = ZNREG_TMP1;
break;
case REG_PTR1_LO:
Out->Ptr1Lo = AnyOpRORDeduceCZN (Out, In->PFlags, In->Ptr1Lo);
Out->ZNRegs = ZNREG_PTR1_LO;
break;
case REG_PTR1_HI:
Out->Ptr1Hi = AnyOpRORDeduceCZN (Out, In->PFlags, In->Ptr1Hi);
Out->ZNRegs = ZNREG_PTR1_HI;
break;
case REG_SREG_LO:
Out->SRegLo = AnyOpRORDeduceCZN (Out, In->PFlags, In->SRegLo);
Out->ZNRegs = ZNREG_SREG_LO;
break;
case REG_SREG_HI:
Out->SRegHi = AnyOpRORDeduceCZN (Out, In->PFlags, In->SRegHi);
Out->ZNRegs = ZNREG_SREG_HI;
break;
}
} else if (MightAffectKnownZP (E, In)) {
/* Invalidates all ZP registers */
RC_InvalidateZP (Out);
}
break;
case OP65_RTI:
Out->PFlags |= UNKNOWN_PFVAL_ALL;
break;
case OP65_RTS:
break;
case OP65_SBC:
Out->RegA = UNKNOWN_REGVAL;
Out->PFlags |= UNKNOWN_PFVAL_CZVN;
Out->ZNRegs = ZNREG_A;
if (PStatesAreKnown (In->PFlags, PSTATE_C) &&
RegValIsKnown (In->RegA)) {
if (CE_IsConstImm (E)) {
Out->RegA = KnownOpSBCDeduceCZVN (Out, In, (short) E->Num);
}
else if (E->AM == AM65_ZP) {
switch (GetKnownReg(E->Use & REG_ZP, In)) {
case REG_TMP1:
Out->RegA = KnownOpSBCDeduceCZVN (Out, In, In->Tmp1);
break;
case REG_PTR1_LO:
Out->RegA = KnownOpSBCDeduceCZVN (Out, In, In->Ptr1Lo);
break;
case REG_PTR1_HI:
Out->RegA = KnownOpSBCDeduceCZVN (Out, In, In->Ptr1Hi);
break;
case REG_SREG_LO:
Out->RegA = KnownOpSBCDeduceCZVN (Out, In, In->SRegLo);
break;
case REG_SREG_HI:
Out->RegA = KnownOpSBCDeduceCZVN (Out, In, In->SRegHi);
break;
default:
break;
}
}
}
break;
case OP65_SEC:
Out->PFlags &= ~UNKNOWN_PFVAL_C;
Out->PFlags |= PFVAL_C;
break;
case OP65_SED:
Out->PFlags &= ~UNKNOWN_PFVAL_D;
Out->PFlags |= PFVAL_D;
break;
case OP65_SEI:
Out->PFlags &= ~UNKNOWN_PFVAL_I;
Out->PFlags |= PFVAL_I;
break;
case OP65_STA:
if (E->AM == AM65_ZP) {
switch (GetKnownReg (E->Chg & REG_ZP, 0)) {
case REG_TMP1:
Out->Tmp1 = In->RegA;
break;
case REG_PTR1_LO:
Out->Ptr1Lo = In->RegA;
break;
case REG_PTR1_HI:
Out->Ptr1Hi = In->RegA;
break;
case REG_SREG_LO:
Out->SRegLo = In->RegA;
break;
case REG_SREG_HI:
Out->SRegHi = In->RegA;
break;
}
} else if (MightAffectKnownZP (E, In)) {
/* Invalidates all ZP registers */
RC_InvalidateZP (Out);
}
break;
case OP65_STP:
break;
case OP65_STX:
if (E->AM == AM65_ZP) {
switch (GetKnownReg (E->Chg & REG_ZP, 0)) {
case REG_TMP1:
Out->Tmp1 = In->RegX;
break;
case REG_PTR1_LO:
Out->Ptr1Lo = In->RegX;
break;
case REG_PTR1_HI:
Out->Ptr1Hi = In->RegX;
break;
case REG_SREG_LO:
Out->SRegLo = In->RegX;
break;
case REG_SREG_HI:
Out->SRegHi = In->RegX;
break;
}
} else if (MightAffectKnownZP (E, In)) {
/* Invalidates all ZP registers */
RC_InvalidateZP (Out);
}
break;
case OP65_STY:
if (E->AM == AM65_ZP) {
switch (GetKnownReg (E->Chg & REG_ZP, 0)) {
case REG_TMP1:
Out->Tmp1 = In->RegY;
break;
case REG_PTR1_LO:
Out->Ptr1Lo = In->RegY;
break;
case REG_PTR1_HI:
Out->Ptr1Hi = In->RegY;
break;
case REG_SREG_LO:
Out->SRegLo = In->RegY;
break;
case REG_SREG_HI:
Out->SRegHi = In->RegY;
break;
}
} else if (MightAffectKnownZP (E, In)) {
/* Invalidates all ZP registers */
RC_InvalidateZP (Out);
}
break;
case OP65_STZ:
if (E->AM == AM65_ZP) {
switch (GetKnownReg (E->Chg & REG_ZP, 0)) {
case REG_TMP1:
Out->Tmp1 = 0;
break;
case REG_PTR1_LO:
Out->Ptr1Lo = 0;
break;
case REG_PTR1_HI:
Out->Ptr1Hi = 0;
break;
case REG_SREG_LO:
Out->SRegLo = 0;
break;
case REG_SREG_HI:
Out->SRegHi = 0;
break;
}
} else if (MightAffectKnownZP (E, In)) {
/* Invalidates all ZP registers */
RC_InvalidateZP (Out);
}
break;
case OP65_TAX:
Out->RegX = In->RegA;
Out->ZNRegs = ZNREG_AX;
DeduceZN (Out, Out->RegX);
break;
case OP65_TAY:
Out->RegY = In->RegA;
Out->ZNRegs = ZNREG_AY;
DeduceZN (Out, Out->RegY);
break;
case OP65_TRB:
Out->ZNRegs = ZNREG_NONE;
if (E->AM == AM65_ZP) {
if (RegValIsKnown (In->RegA)) {
switch (GetKnownReg (E->Chg & REG_ZP, In)) {
case REG_TMP1:
Val = Out->Tmp1 & In->RegA;
Out->Tmp1 &= ~In->RegA;
break;
case REG_PTR1_LO:
Val = Out->Ptr1Lo & In->RegA;
Out->Ptr1Lo &= ~In->RegA;
break;
case REG_PTR1_HI:
Val = Out->Ptr1Hi & In->RegA;
Out->Ptr1Hi &= ~In->RegA;
break;
case REG_SREG_LO:
Val = Out->SRegLo & In->RegA;
Out->SRegLo &= ~In->RegA;
break;
case REG_SREG_HI:
Val = Out->SRegHi & In->RegA;
Out->SRegHi &= ~In->RegA;
break;
}
} else {
switch (GetKnownReg (E->Chg & REG_ZP, 0)) {
case REG_TMP1:
Out->Tmp1 = UNKNOWN_REGVAL;
break;
case REG_PTR1_LO:
Out->Ptr1Lo = UNKNOWN_REGVAL;
break;
case REG_PTR1_HI:
Out->Ptr1Hi = UNKNOWN_REGVAL;
break;
case REG_SREG_LO:
Out->SRegLo = UNKNOWN_REGVAL;
break;
case REG_SREG_HI:
Out->SRegHi = UNKNOWN_REGVAL;
break;
}
}
} else if (MightAffectKnownZP (E, In)) {
/* Invalidates all ZP registers */
RC_InvalidateZP (Out);
}
DeduceZ (Out, Val);
break;
case OP65_TSB:
Out->ZNRegs = ZNREG_NONE;
if (E->AM == AM65_ZP) {
if (RegValIsKnown (In->RegA)) {
switch (GetKnownReg (E->Chg & REG_ZP, In)) {
case REG_TMP1:
Val = Out->Tmp1 & In->RegA;
Out->Tmp1 |= In->RegA;
break;
case REG_PTR1_LO:
Val = Out->Ptr1Lo & In->RegA;
Out->Ptr1Lo |= In->RegA;
break;
case REG_PTR1_HI:
Val = Out->Ptr1Hi & In->RegA;
Out->Ptr1Hi |= In->RegA;
break;
case REG_SREG_LO:
Val = Out->SRegLo & In->RegA;
Out->SRegLo |= In->RegA;
break;
case REG_SREG_HI:
Val = Out->SRegHi & In->RegA;
Out->SRegHi |= In->RegA;
break;
}
} else {
switch (GetKnownReg (E->Chg & REG_ZP, 0)) {
case REG_TMP1:
Out->Tmp1 = UNKNOWN_REGVAL;
break;
case REG_PTR1_LO:
Out->Ptr1Lo = UNKNOWN_REGVAL;
break;
case REG_PTR1_HI:
Out->Ptr1Hi = UNKNOWN_REGVAL;
break;
case REG_SREG_LO:
Out->SRegLo = UNKNOWN_REGVAL;
break;
case REG_SREG_HI:
Out->SRegHi = UNKNOWN_REGVAL;
break;
}
}
} else if (MightAffectKnownZP (E, In)) {
/* Invalidates all ZP registers */
RC_InvalidateZP (Out);
}
DeduceZ (Out, Val);
break;
case OP65_TSX:
Out->RegX = UNKNOWN_REGVAL;
Out->PFlags |= UNKNOWN_PFVAL_ZN;
Out->ZNRegs = ZNREG_X;
break;
case OP65_TXA:
Out->RegA = In->RegX;
Out->ZNRegs = ZNREG_AX;
DeduceZN (Out, Out->RegA);
break;
case OP65_TXS:
Out->ZNRegs = ZNREG_X;
DeduceZN (Out, In->RegX);
break;
case OP65_TYA:
Out->RegA = In->RegY;
Out->ZNRegs = ZNREG_AY;
DeduceZN (Out, Out->RegA);
break;
default:
break;
}
}
static char* RegInfoDesc (unsigned U, char* Buf)
/* Return a string containing register info */
{
Buf[0] = '\0';
strcat (Buf, U & REG_SREG_HI? "H" : "_");
strcat (Buf, U & REG_SREG_LO? "L" : "_");
strcat (Buf, U & REG_A? "A" : "_");
strcat (Buf, U & REG_X? "X" : "_");
strcat (Buf, U & REG_Y? "Y" : "_");
strcat (Buf, U & REG_TMP1? "T1" : "__");
strcat (Buf, U & REG_PTR1? "1" : "_");
strcat (Buf, U & REG_PTR2? "2" : "_");
strcat (Buf, U & REG_SAVE? "V" : "_");
strcat (Buf, U & REG_SP? "S" : "_");
sprintf (Buf + 10, "_%02X", (U & PSTATE_ALL) >> PSTATE_BITS_SHIFT);
return Buf;
}
static char* RegContentDesc (const RegContents* RC, char* Buf)
/* Return a string containing register contents */
{
char* B = Buf;
if (RegValIsUnknown (RC->RegA)) {
strcpy (B, "A:XX ");
} else {
sprintf (B, "A:%02X ", RC->RegA);
}
B += 5;
if (RegValIsUnknown (RC->RegX)) {
strcpy (B, "X:XX ");
} else {
sprintf (B, "X:%02X ", RC->RegX);
}
B += 5;
if (RegValIsUnknown (RC->RegY)) {
strcpy (B, "Y:XX ");
} else {
sprintf (B, "Y:%02X ", RC->RegY);
}
B += 5;
if (PStatesAreUnknown (RC->PFlags, PSTATE_C)) {
strcpy (B, "~");
} else {
strcpy (B, RC->PFlags & PFVAL_C ? "C" : "_");
}
B += 1;
if (PStatesAreUnknown (RC->PFlags, PSTATE_Z)) {
strcpy (B, "~");
} else {
strcpy (B, RC->PFlags & PFVAL_Z ? "Z" : "_");
}
B += 1;
if (PStatesAreUnknown (RC->PFlags, PSTATE_I)) {
strcpy (B, "~");
} else {
strcpy (B, RC->PFlags & PFVAL_I ? "I" : "_");
}
B += 1;
if (PStatesAreUnknown (RC->PFlags, PSTATE_D)) {
strcpy (B, "~");
} else {
strcpy (B, RC->PFlags & PFVAL_D ? "D" : "_");
}
B += 1;
if (PStatesAreUnknown (RC->PFlags, PSTATE_U)) {
strcpy (B, "~");
} else {
strcpy (B, RC->PFlags & PFVAL_U ? "U" : "_");
}
B += 1;
if (PStatesAreUnknown (RC->PFlags, PSTATE_B)) {
strcpy (B, "~");
} else {
strcpy (B, RC->PFlags & PFVAL_B ? "B" : "_");
}
B += 1;
if (PStatesAreUnknown (RC->PFlags, PSTATE_V)) {
strcpy (B, "~");
} else {
strcpy (B, RC->PFlags & PFVAL_V ? "V" : "_");
}
B += 1;
if (PStatesAreUnknown (RC->PFlags, PSTATE_N)) {
strcpy (B, "~");
} else {
strcpy (B, RC->PFlags & PFVAL_N ? "N" : "_");
}
B += 1;
return Buf;
}
void CE_Output (const CodeEntry* E)
/* Output the code entry to the output file */
{
const OPCDesc* D;
unsigned Chars;
int Space;
const char* Target;
/* If we have a label, print that */
unsigned LabelCount = CollCount (&E->Labels);
unsigned I;
for (I = 0; I < LabelCount; ++I) {
CL_Output (CollConstAt (&E->Labels, I));
}
/* Get the opcode description */
D = GetOPCDesc (E->OPC);
/* Print the mnemonic */
Chars = WriteOutput ("\t%s", D->Mnemo);
/* Space to leave before the operand */
Space = 9 - Chars;
/* Print the operand */
switch (E->AM) {
case AM65_IMP:
/* implicit */
break;
case AM65_ACC:
/* accumulator */
Chars += WriteOutput ("%*sa", Space, "");
break;
case AM65_IMM:
/* immidiate */
Chars += WriteOutput ("%*s#%s", Space, "", E->Arg);
break;
case AM65_ZP:
case AM65_ABS:
/* zeropage and absolute */
Chars += WriteOutput ("%*s%s", Space, "", E->Arg);
break;
case AM65_ZPX:
case AM65_ABSX:
/* zeropage,X and absolute,X */
Chars += WriteOutput ("%*s%s,x", Space, "", E->Arg);
break;
case AM65_ABSY:
/* absolute,Y */
Chars += WriteOutput ("%*s%s,y", Space, "", E->Arg);
break;
case AM65_ZPX_IND:
/* (zeropage,x) */
Chars += WriteOutput ("%*s(%s,x)", Space, "", E->Arg);
break;
case AM65_ZP_INDY:
/* (zeropage),y */
Chars += WriteOutput ("%*s(%s),y", Space, "", E->Arg);
break;
case AM65_ZP_IND:
/* (zeropage) */
Chars += WriteOutput ("%*s(%s)", Space, "", E->Arg);
break;
case AM65_BRA:
/* branch */
Target = E->JumpTo? E->JumpTo->Name : E->Arg;
Chars += WriteOutput ("%*s%s", Space, "", Target);
break;
default:
Internal ("Invalid addressing mode");
}
/* Print usage info if requested by the debugging flag */
if (Debug) {
char Use [128];
char Chg [128];
WriteOutput ("%*s; USE: %-15s CHG: %-15s SIZE: %u",
(int)(30-Chars), "",
RegInfoDesc (E->Use, Use),
RegInfoDesc (E->Chg, Chg),
E->Size);
if (E->RI) {
char RegIn[32];
char RegOut[32];
WriteOutput (" In %s Out %s",
RegContentDesc (&E->RI->In, RegIn),
RegContentDesc (&E->RI->Out, RegOut));
}
}
/* Terminate the line */
WriteOutput ("\n");
}