llvm-6502/lib/CodeGen/AsmPrinter/AsmPrinter.cpp

1904 lines
65 KiB
C++
Raw Normal View History

//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the AsmPrinter class.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Constants.h"
#include "llvm/Module.h"
#include "llvm/CodeGen/GCMetadataPrinter.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/DwarfWriter.h"
#include "llvm/Analysis/DebugInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCSection.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/Mangler.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include <cerrno>
using namespace llvm;
static cl::opt<cl::boolOrDefault>
AsmVerbose("asm-verbose", cl::desc("Add comments to directives."),
cl::init(cl::BOU_UNSET));
char AsmPrinter::ID = 0;
AsmPrinter::AsmPrinter(formatted_raw_ostream &o, TargetMachine &tm,
const MCAsmInfo *T, bool VDef)
: MachineFunctionPass(&ID), FunctionNumber(0), O(o),
TM(tm), MAI(T), TRI(tm.getRegisterInfo()),
OutContext(*new MCContext()),
// FIXME: Pass instprinter to streamer.
OutStreamer(*createAsmStreamer(OutContext, O, *T, 0)),
LastMI(0), LastFn(0), Counter(~0U),
PrevDLT(0, 0, ~0U, ~0U) {
DW = 0; MMI = 0;
switch (AsmVerbose) {
case cl::BOU_UNSET: VerboseAsm = VDef; break;
case cl::BOU_TRUE: VerboseAsm = true; break;
case cl::BOU_FALSE: VerboseAsm = false; break;
}
}
AsmPrinter::~AsmPrinter() {
for (gcp_iterator I = GCMetadataPrinters.begin(),
E = GCMetadataPrinters.end(); I != E; ++I)
delete I->second;
delete &OutStreamer;
delete &OutContext;
}
TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
return TM.getTargetLowering()->getObjFileLowering();
}
/// getCurrentSection() - Return the current section we are emitting to.
const MCSection *AsmPrinter::getCurrentSection() const {
return OutStreamer.getCurrentSection();
}
void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
MachineFunctionPass::getAnalysisUsage(AU);
AU.addRequired<GCModuleInfo>();
if (VerboseAsm)
AU.addRequired<MachineLoopInfo>();
}
bool AsmPrinter::doInitialization(Module &M) {
// Initialize TargetLoweringObjectFile.
const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
.Initialize(OutContext, TM);
Mang = new Mangler(M, MAI->getGlobalPrefix(), MAI->getPrivateGlobalPrefix(),
MAI->getLinkerPrivateGlobalPrefix());
if (MAI->doesAllowQuotesInName())
Mang->setUseQuotes(true);
if (MAI->doesAllowNameToStartWithDigit())
Mang->setSymbolsCanStartWithDigit(true);
// Allow the target to emit any magic that it wants at the start of the file.
EmitStartOfAsmFile(M);
if (MAI->hasSingleParameterDotFile()) {
/* Very minimal debug info. It is ignored if we emit actual
debug info. If we don't, this at least helps the user find where
a function came from. */
O << "\t.file\t\"" << M.getModuleIdentifier() << "\"\n";
}
GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
assert(MI && "AsmPrinter didn't require GCModuleInfo?");
for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
MP->beginAssembly(O, *this, *MAI);
if (!M.getModuleInlineAsm().empty())
O << MAI->getCommentString() << " Start of file scope inline assembly\n"
<< M.getModuleInlineAsm()
<< '\n' << MAI->getCommentString()
<< " End of file scope inline assembly\n";
MMI = getAnalysisIfAvailable<MachineModuleInfo>();
if (MMI)
MMI->AnalyzeModule(M);
DW = getAnalysisIfAvailable<DwarfWriter>();
if (DW)
DW->BeginModule(&M, MMI, O, this, MAI);
return false;
}
bool AsmPrinter::doFinalization(Module &M) {
// Emit global variables.
for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I)
PrintGlobalVariable(I);
// Emit final debug information.
if (MAI->doesSupportDebugInformation() || MAI->doesSupportExceptionHandling())
DW->EndModule();
// If the target wants to know about weak references, print them all.
if (MAI->getWeakRefDirective()) {
// FIXME: This is not lazy, it would be nice to only print weak references
// to stuff that is actually used. Note that doing so would require targets
// to notice uses in operands (due to constant exprs etc). This should
// happen with the MC stuff eventually.
// Print out module-level global variables here.
for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I) {
if (I->hasExternalWeakLinkage())
O << MAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n';
}
for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
if (I->hasExternalWeakLinkage())
O << MAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n';
}
}
if (MAI->getSetDirective()) {
O << '\n';
for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
I != E; ++I) {
std::string Name = Mang->getMangledName(I);
const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal());
std::string Target = Mang->getMangledName(GV);
if (I->hasExternalLinkage() || !MAI->getWeakRefDirective())
O << "\t.globl\t" << Name << '\n';
else if (I->hasWeakLinkage())
O << MAI->getWeakRefDirective() << Name << '\n';
else if (!I->hasLocalLinkage())
llvm_unreachable("Invalid alias linkage");
printVisibility(Name, I->getVisibility());
O << MAI->getSetDirective() << ' ' << Name << ", " << Target << '\n';
}
}
GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
assert(MI && "AsmPrinter didn't require GCModuleInfo?");
for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
MP->finishAssembly(O, *this, *MAI);
// If we don't have any trampolines, then we don't require stack memory
// to be executable. Some targets have a directive to declare this.
Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
if (MAI->getNonexecutableStackDirective())
O << MAI->getNonexecutableStackDirective() << '\n';
// Allow the target to emit any magic that it wants at the end of the file,
// after everything else has gone out.
EmitEndOfAsmFile(M);
delete Mang; Mang = 0;
DW = 0; MMI = 0;
OutStreamer.Finish();
return false;
}
void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
// What's my mangled name?
CurrentFnName = Mang->getMangledName(MF.getFunction());
IncrementFunctionNumber();
if (VerboseAsm)
LI = &getAnalysis<MachineLoopInfo>();
}
Fix some significant problems with constant pools that resulted in unnecessary paddings between constant pool entries, larger than necessary alignments (e.g. 8 byte alignment for .literal4 sections), and potentially other issues. 1. ConstantPoolSDNode alignment field is log2 value of the alignment requirement. This is not consistent with other SDNode variants. 2. MachineConstantPool alignment field is also a log2 value. 3. However, some places are creating ConstantPoolSDNode with alignment value rather than log2 values. This creates entries with artificially large alignments, e.g. 256 for SSE vector values. 4. Constant pool entry offsets are computed when they are created. However, asm printer group them by sections. That means the offsets are no longer valid. However, asm printer uses them to determine size of padding between entries. 5. Asm printer uses expensive data structure multimap to track constant pool entries by sections. 6. Asm printer iterate over SmallPtrSet when it's emitting constant pool entries. This is non-deterministic. Solutions: 1. ConstantPoolSDNode alignment field is changed to keep non-log2 value. 2. MachineConstantPool alignment field is also changed to keep non-log2 value. 3. Functions that create ConstantPool nodes are passing in non-log2 alignments. 4. MachineConstantPoolEntry no longer keeps an offset field. It's replaced with an alignment field. Offsets are not computed when constant pool entries are created. They are computed on the fly in asm printer and JIT. 5. Asm printer uses cheaper data structure to group constant pool entries. 6. Asm printer compute entry offsets after grouping is done. 7. Change JIT code to compute entry offsets on the fly. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66875 91177308-0d34-0410-b5e6-96231b3b80d8
2009-03-13 07:51:59 +00:00
namespace {
// SectionCPs - Keep track the alignment, constpool entries per Section.
struct SectionCPs {
const MCSection *S;
Fix some significant problems with constant pools that resulted in unnecessary paddings between constant pool entries, larger than necessary alignments (e.g. 8 byte alignment for .literal4 sections), and potentially other issues. 1. ConstantPoolSDNode alignment field is log2 value of the alignment requirement. This is not consistent with other SDNode variants. 2. MachineConstantPool alignment field is also a log2 value. 3. However, some places are creating ConstantPoolSDNode with alignment value rather than log2 values. This creates entries with artificially large alignments, e.g. 256 for SSE vector values. 4. Constant pool entry offsets are computed when they are created. However, asm printer group them by sections. That means the offsets are no longer valid. However, asm printer uses them to determine size of padding between entries. 5. Asm printer uses expensive data structure multimap to track constant pool entries by sections. 6. Asm printer iterate over SmallPtrSet when it's emitting constant pool entries. This is non-deterministic. Solutions: 1. ConstantPoolSDNode alignment field is changed to keep non-log2 value. 2. MachineConstantPool alignment field is also changed to keep non-log2 value. 3. Functions that create ConstantPool nodes are passing in non-log2 alignments. 4. MachineConstantPoolEntry no longer keeps an offset field. It's replaced with an alignment field. Offsets are not computed when constant pool entries are created. They are computed on the fly in asm printer and JIT. 5. Asm printer uses cheaper data structure to group constant pool entries. 6. Asm printer compute entry offsets after grouping is done. 7. Change JIT code to compute entry offsets on the fly. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66875 91177308-0d34-0410-b5e6-96231b3b80d8
2009-03-13 07:51:59 +00:00
unsigned Alignment;
SmallVector<unsigned, 4> CPEs;
SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {};
Fix some significant problems with constant pools that resulted in unnecessary paddings between constant pool entries, larger than necessary alignments (e.g. 8 byte alignment for .literal4 sections), and potentially other issues. 1. ConstantPoolSDNode alignment field is log2 value of the alignment requirement. This is not consistent with other SDNode variants. 2. MachineConstantPool alignment field is also a log2 value. 3. However, some places are creating ConstantPoolSDNode with alignment value rather than log2 values. This creates entries with artificially large alignments, e.g. 256 for SSE vector values. 4. Constant pool entry offsets are computed when they are created. However, asm printer group them by sections. That means the offsets are no longer valid. However, asm printer uses them to determine size of padding between entries. 5. Asm printer uses expensive data structure multimap to track constant pool entries by sections. 6. Asm printer iterate over SmallPtrSet when it's emitting constant pool entries. This is non-deterministic. Solutions: 1. ConstantPoolSDNode alignment field is changed to keep non-log2 value. 2. MachineConstantPool alignment field is also changed to keep non-log2 value. 3. Functions that create ConstantPool nodes are passing in non-log2 alignments. 4. MachineConstantPoolEntry no longer keeps an offset field. It's replaced with an alignment field. Offsets are not computed when constant pool entries are created. They are computed on the fly in asm printer and JIT. 5. Asm printer uses cheaper data structure to group constant pool entries. 6. Asm printer compute entry offsets after grouping is done. 7. Change JIT code to compute entry offsets on the fly. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66875 91177308-0d34-0410-b5e6-96231b3b80d8
2009-03-13 07:51:59 +00:00
};
}
/// EmitConstantPool - Print to the current output stream assembly
/// representations of the constants in the constant pool MCP. This is
/// used to print out constants which have been "spilled to memory" by
/// the code generator.
///
void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) {
const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
if (CP.empty()) return;
// Calculate sections for constant pool entries. We collect entries to go into
// the same section together to reduce amount of section switch statements.
Fix some significant problems with constant pools that resulted in unnecessary paddings between constant pool entries, larger than necessary alignments (e.g. 8 byte alignment for .literal4 sections), and potentially other issues. 1. ConstantPoolSDNode alignment field is log2 value of the alignment requirement. This is not consistent with other SDNode variants. 2. MachineConstantPool alignment field is also a log2 value. 3. However, some places are creating ConstantPoolSDNode with alignment value rather than log2 values. This creates entries with artificially large alignments, e.g. 256 for SSE vector values. 4. Constant pool entry offsets are computed when they are created. However, asm printer group them by sections. That means the offsets are no longer valid. However, asm printer uses them to determine size of padding between entries. 5. Asm printer uses expensive data structure multimap to track constant pool entries by sections. 6. Asm printer iterate over SmallPtrSet when it's emitting constant pool entries. This is non-deterministic. Solutions: 1. ConstantPoolSDNode alignment field is changed to keep non-log2 value. 2. MachineConstantPool alignment field is also changed to keep non-log2 value. 3. Functions that create ConstantPool nodes are passing in non-log2 alignments. 4. MachineConstantPoolEntry no longer keeps an offset field. It's replaced with an alignment field. Offsets are not computed when constant pool entries are created. They are computed on the fly in asm printer and JIT. 5. Asm printer uses cheaper data structure to group constant pool entries. 6. Asm printer compute entry offsets after grouping is done. 7. Change JIT code to compute entry offsets on the fly. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66875 91177308-0d34-0410-b5e6-96231b3b80d8
2009-03-13 07:51:59 +00:00
SmallVector<SectionCPs, 4> CPSections;
for (unsigned i = 0, e = CP.size(); i != e; ++i) {
const MachineConstantPoolEntry &CPE = CP[i];
Fix some significant problems with constant pools that resulted in unnecessary paddings between constant pool entries, larger than necessary alignments (e.g. 8 byte alignment for .literal4 sections), and potentially other issues. 1. ConstantPoolSDNode alignment field is log2 value of the alignment requirement. This is not consistent with other SDNode variants. 2. MachineConstantPool alignment field is also a log2 value. 3. However, some places are creating ConstantPoolSDNode with alignment value rather than log2 values. This creates entries with artificially large alignments, e.g. 256 for SSE vector values. 4. Constant pool entry offsets are computed when they are created. However, asm printer group them by sections. That means the offsets are no longer valid. However, asm printer uses them to determine size of padding between entries. 5. Asm printer uses expensive data structure multimap to track constant pool entries by sections. 6. Asm printer iterate over SmallPtrSet when it's emitting constant pool entries. This is non-deterministic. Solutions: 1. ConstantPoolSDNode alignment field is changed to keep non-log2 value. 2. MachineConstantPool alignment field is also changed to keep non-log2 value. 3. Functions that create ConstantPool nodes are passing in non-log2 alignments. 4. MachineConstantPoolEntry no longer keeps an offset field. It's replaced with an alignment field. Offsets are not computed when constant pool entries are created. They are computed on the fly in asm printer and JIT. 5. Asm printer uses cheaper data structure to group constant pool entries. 6. Asm printer compute entry offsets after grouping is done. 7. Change JIT code to compute entry offsets on the fly. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66875 91177308-0d34-0410-b5e6-96231b3b80d8
2009-03-13 07:51:59 +00:00
unsigned Align = CPE.getAlignment();
SectionKind Kind;
switch (CPE.getRelocationInfo()) {
default: llvm_unreachable("Unknown section kind");
case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
case 1:
Kind = SectionKind::getReadOnlyWithRelLocal();
break;
case 0:
switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) {
case 4: Kind = SectionKind::getMergeableConst4(); break;
case 8: Kind = SectionKind::getMergeableConst8(); break;
case 16: Kind = SectionKind::getMergeableConst16();break;
default: Kind = SectionKind::getMergeableConst(); break;
}
}
const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
Fix some significant problems with constant pools that resulted in unnecessary paddings between constant pool entries, larger than necessary alignments (e.g. 8 byte alignment for .literal4 sections), and potentially other issues. 1. ConstantPoolSDNode alignment field is log2 value of the alignment requirement. This is not consistent with other SDNode variants. 2. MachineConstantPool alignment field is also a log2 value. 3. However, some places are creating ConstantPoolSDNode with alignment value rather than log2 values. This creates entries with artificially large alignments, e.g. 256 for SSE vector values. 4. Constant pool entry offsets are computed when they are created. However, asm printer group them by sections. That means the offsets are no longer valid. However, asm printer uses them to determine size of padding between entries. 5. Asm printer uses expensive data structure multimap to track constant pool entries by sections. 6. Asm printer iterate over SmallPtrSet when it's emitting constant pool entries. This is non-deterministic. Solutions: 1. ConstantPoolSDNode alignment field is changed to keep non-log2 value. 2. MachineConstantPool alignment field is also changed to keep non-log2 value. 3. Functions that create ConstantPool nodes are passing in non-log2 alignments. 4. MachineConstantPoolEntry no longer keeps an offset field. It's replaced with an alignment field. Offsets are not computed when constant pool entries are created. They are computed on the fly in asm printer and JIT. 5. Asm printer uses cheaper data structure to group constant pool entries. 6. Asm printer compute entry offsets after grouping is done. 7. Change JIT code to compute entry offsets on the fly. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66875 91177308-0d34-0410-b5e6-96231b3b80d8
2009-03-13 07:51:59 +00:00
// The number of sections are small, just do a linear search from the
// last section to the first.
bool Found = false;
unsigned SecIdx = CPSections.size();
while (SecIdx != 0) {
if (CPSections[--SecIdx].S == S) {
Found = true;
break;
}
}
if (!Found) {
SecIdx = CPSections.size();
CPSections.push_back(SectionCPs(S, Align));
}
if (Align > CPSections[SecIdx].Alignment)
CPSections[SecIdx].Alignment = Align;
CPSections[SecIdx].CPEs.push_back(i);
}
// Now print stuff into the calculated sections.
Fix some significant problems with constant pools that resulted in unnecessary paddings between constant pool entries, larger than necessary alignments (e.g. 8 byte alignment for .literal4 sections), and potentially other issues. 1. ConstantPoolSDNode alignment field is log2 value of the alignment requirement. This is not consistent with other SDNode variants. 2. MachineConstantPool alignment field is also a log2 value. 3. However, some places are creating ConstantPoolSDNode with alignment value rather than log2 values. This creates entries with artificially large alignments, e.g. 256 for SSE vector values. 4. Constant pool entry offsets are computed when they are created. However, asm printer group them by sections. That means the offsets are no longer valid. However, asm printer uses them to determine size of padding between entries. 5. Asm printer uses expensive data structure multimap to track constant pool entries by sections. 6. Asm printer iterate over SmallPtrSet when it's emitting constant pool entries. This is non-deterministic. Solutions: 1. ConstantPoolSDNode alignment field is changed to keep non-log2 value. 2. MachineConstantPool alignment field is also changed to keep non-log2 value. 3. Functions that create ConstantPool nodes are passing in non-log2 alignments. 4. MachineConstantPoolEntry no longer keeps an offset field. It's replaced with an alignment field. Offsets are not computed when constant pool entries are created. They are computed on the fly in asm printer and JIT. 5. Asm printer uses cheaper data structure to group constant pool entries. 6. Asm printer compute entry offsets after grouping is done. 7. Change JIT code to compute entry offsets on the fly. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66875 91177308-0d34-0410-b5e6-96231b3b80d8
2009-03-13 07:51:59 +00:00
for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
OutStreamer.SwitchSection(CPSections[i].S);
Fix some significant problems with constant pools that resulted in unnecessary paddings between constant pool entries, larger than necessary alignments (e.g. 8 byte alignment for .literal4 sections), and potentially other issues. 1. ConstantPoolSDNode alignment field is log2 value of the alignment requirement. This is not consistent with other SDNode variants. 2. MachineConstantPool alignment field is also a log2 value. 3. However, some places are creating ConstantPoolSDNode with alignment value rather than log2 values. This creates entries with artificially large alignments, e.g. 256 for SSE vector values. 4. Constant pool entry offsets are computed when they are created. However, asm printer group them by sections. That means the offsets are no longer valid. However, asm printer uses them to determine size of padding between entries. 5. Asm printer uses expensive data structure multimap to track constant pool entries by sections. 6. Asm printer iterate over SmallPtrSet when it's emitting constant pool entries. This is non-deterministic. Solutions: 1. ConstantPoolSDNode alignment field is changed to keep non-log2 value. 2. MachineConstantPool alignment field is also changed to keep non-log2 value. 3. Functions that create ConstantPool nodes are passing in non-log2 alignments. 4. MachineConstantPoolEntry no longer keeps an offset field. It's replaced with an alignment field. Offsets are not computed when constant pool entries are created. They are computed on the fly in asm printer and JIT. 5. Asm printer uses cheaper data structure to group constant pool entries. 6. Asm printer compute entry offsets after grouping is done. 7. Change JIT code to compute entry offsets on the fly. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66875 91177308-0d34-0410-b5e6-96231b3b80d8
2009-03-13 07:51:59 +00:00
EmitAlignment(Log2_32(CPSections[i].Alignment));
Fix some significant problems with constant pools that resulted in unnecessary paddings between constant pool entries, larger than necessary alignments (e.g. 8 byte alignment for .literal4 sections), and potentially other issues. 1. ConstantPoolSDNode alignment field is log2 value of the alignment requirement. This is not consistent with other SDNode variants. 2. MachineConstantPool alignment field is also a log2 value. 3. However, some places are creating ConstantPoolSDNode with alignment value rather than log2 values. This creates entries with artificially large alignments, e.g. 256 for SSE vector values. 4. Constant pool entry offsets are computed when they are created. However, asm printer group them by sections. That means the offsets are no longer valid. However, asm printer uses them to determine size of padding between entries. 5. Asm printer uses expensive data structure multimap to track constant pool entries by sections. 6. Asm printer iterate over SmallPtrSet when it's emitting constant pool entries. This is non-deterministic. Solutions: 1. ConstantPoolSDNode alignment field is changed to keep non-log2 value. 2. MachineConstantPool alignment field is also changed to keep non-log2 value. 3. Functions that create ConstantPool nodes are passing in non-log2 alignments. 4. MachineConstantPoolEntry no longer keeps an offset field. It's replaced with an alignment field. Offsets are not computed when constant pool entries are created. They are computed on the fly in asm printer and JIT. 5. Asm printer uses cheaper data structure to group constant pool entries. 6. Asm printer compute entry offsets after grouping is done. 7. Change JIT code to compute entry offsets on the fly. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66875 91177308-0d34-0410-b5e6-96231b3b80d8
2009-03-13 07:51:59 +00:00
unsigned Offset = 0;
for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
unsigned CPI = CPSections[i].CPEs[j];
MachineConstantPoolEntry CPE = CP[CPI];
// Emit inter-object padding for alignment.
unsigned AlignMask = CPE.getAlignment() - 1;
unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
EmitZeros(NewOffset - Offset);
const Type *Ty = CPE.getType();
Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty);
O << MAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
<< CPI << ':';
Fix some significant problems with constant pools that resulted in unnecessary paddings between constant pool entries, larger than necessary alignments (e.g. 8 byte alignment for .literal4 sections), and potentially other issues. 1. ConstantPoolSDNode alignment field is log2 value of the alignment requirement. This is not consistent with other SDNode variants. 2. MachineConstantPool alignment field is also a log2 value. 3. However, some places are creating ConstantPoolSDNode with alignment value rather than log2 values. This creates entries with artificially large alignments, e.g. 256 for SSE vector values. 4. Constant pool entry offsets are computed when they are created. However, asm printer group them by sections. That means the offsets are no longer valid. However, asm printer uses them to determine size of padding between entries. 5. Asm printer uses expensive data structure multimap to track constant pool entries by sections. 6. Asm printer iterate over SmallPtrSet when it's emitting constant pool entries. This is non-deterministic. Solutions: 1. ConstantPoolSDNode alignment field is changed to keep non-log2 value. 2. MachineConstantPool alignment field is also changed to keep non-log2 value. 3. Functions that create ConstantPool nodes are passing in non-log2 alignments. 4. MachineConstantPoolEntry no longer keeps an offset field. It's replaced with an alignment field. Offsets are not computed when constant pool entries are created. They are computed on the fly in asm printer and JIT. 5. Asm printer uses cheaper data structure to group constant pool entries. 6. Asm printer compute entry offsets after grouping is done. 7. Change JIT code to compute entry offsets on the fly. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66875 91177308-0d34-0410-b5e6-96231b3b80d8
2009-03-13 07:51:59 +00:00
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString() << " constant ";
WriteTypeSymbolic(O, CPE.getType(), MF->getFunction()->getParent());
Fix some significant problems with constant pools that resulted in unnecessary paddings between constant pool entries, larger than necessary alignments (e.g. 8 byte alignment for .literal4 sections), and potentially other issues. 1. ConstantPoolSDNode alignment field is log2 value of the alignment requirement. This is not consistent with other SDNode variants. 2. MachineConstantPool alignment field is also a log2 value. 3. However, some places are creating ConstantPoolSDNode with alignment value rather than log2 values. This creates entries with artificially large alignments, e.g. 256 for SSE vector values. 4. Constant pool entry offsets are computed when they are created. However, asm printer group them by sections. That means the offsets are no longer valid. However, asm printer uses them to determine size of padding between entries. 5. Asm printer uses expensive data structure multimap to track constant pool entries by sections. 6. Asm printer iterate over SmallPtrSet when it's emitting constant pool entries. This is non-deterministic. Solutions: 1. ConstantPoolSDNode alignment field is changed to keep non-log2 value. 2. MachineConstantPool alignment field is also changed to keep non-log2 value. 3. Functions that create ConstantPool nodes are passing in non-log2 alignments. 4. MachineConstantPoolEntry no longer keeps an offset field. It's replaced with an alignment field. Offsets are not computed when constant pool entries are created. They are computed on the fly in asm printer and JIT. 5. Asm printer uses cheaper data structure to group constant pool entries. 6. Asm printer compute entry offsets after grouping is done. 7. Change JIT code to compute entry offsets on the fly. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66875 91177308-0d34-0410-b5e6-96231b3b80d8
2009-03-13 07:51:59 +00:00
}
O << '\n';
Fix some significant problems with constant pools that resulted in unnecessary paddings between constant pool entries, larger than necessary alignments (e.g. 8 byte alignment for .literal4 sections), and potentially other issues. 1. ConstantPoolSDNode alignment field is log2 value of the alignment requirement. This is not consistent with other SDNode variants. 2. MachineConstantPool alignment field is also a log2 value. 3. However, some places are creating ConstantPoolSDNode with alignment value rather than log2 values. This creates entries with artificially large alignments, e.g. 256 for SSE vector values. 4. Constant pool entry offsets are computed when they are created. However, asm printer group them by sections. That means the offsets are no longer valid. However, asm printer uses them to determine size of padding between entries. 5. Asm printer uses expensive data structure multimap to track constant pool entries by sections. 6. Asm printer iterate over SmallPtrSet when it's emitting constant pool entries. This is non-deterministic. Solutions: 1. ConstantPoolSDNode alignment field is changed to keep non-log2 value. 2. MachineConstantPool alignment field is also changed to keep non-log2 value. 3. Functions that create ConstantPool nodes are passing in non-log2 alignments. 4. MachineConstantPoolEntry no longer keeps an offset field. It's replaced with an alignment field. Offsets are not computed when constant pool entries are created. They are computed on the fly in asm printer and JIT. 5. Asm printer uses cheaper data structure to group constant pool entries. 6. Asm printer compute entry offsets after grouping is done. 7. Change JIT code to compute entry offsets on the fly. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66875 91177308-0d34-0410-b5e6-96231b3b80d8
2009-03-13 07:51:59 +00:00
if (CPE.isMachineConstantPoolEntry())
EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
else
Fix some significant problems with constant pools that resulted in unnecessary paddings between constant pool entries, larger than necessary alignments (e.g. 8 byte alignment for .literal4 sections), and potentially other issues. 1. ConstantPoolSDNode alignment field is log2 value of the alignment requirement. This is not consistent with other SDNode variants. 2. MachineConstantPool alignment field is also a log2 value. 3. However, some places are creating ConstantPoolSDNode with alignment value rather than log2 values. This creates entries with artificially large alignments, e.g. 256 for SSE vector values. 4. Constant pool entry offsets are computed when they are created. However, asm printer group them by sections. That means the offsets are no longer valid. However, asm printer uses them to determine size of padding between entries. 5. Asm printer uses expensive data structure multimap to track constant pool entries by sections. 6. Asm printer iterate over SmallPtrSet when it's emitting constant pool entries. This is non-deterministic. Solutions: 1. ConstantPoolSDNode alignment field is changed to keep non-log2 value. 2. MachineConstantPool alignment field is also changed to keep non-log2 value. 3. Functions that create ConstantPool nodes are passing in non-log2 alignments. 4. MachineConstantPoolEntry no longer keeps an offset field. It's replaced with an alignment field. Offsets are not computed when constant pool entries are created. They are computed on the fly in asm printer and JIT. 5. Asm printer uses cheaper data structure to group constant pool entries. 6. Asm printer compute entry offsets after grouping is done. 7. Change JIT code to compute entry offsets on the fly. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66875 91177308-0d34-0410-b5e6-96231b3b80d8
2009-03-13 07:51:59 +00:00
EmitGlobalConstant(CPE.Val.ConstVal);
}
}
}
/// EmitJumpTableInfo - Print assembly representations of the jump tables used
/// by the current function to the current output stream.
///
void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI,
MachineFunction &MF) {
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
if (JT.empty()) return;
bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
// Pick the directive to use to print the jump table entries, and switch to
// the appropriate section.
TargetLowering *LoweringInfo = TM.getTargetLowering();
const Function *F = MF.getFunction();
bool JTInDiffSection = false;
if (F->isWeakForLinker() ||
(IsPic && !LoweringInfo->usesGlobalOffsetTable())) {
// In PIC mode, we need to emit the jump table to the same section as the
// function body itself, otherwise the label differences won't make sense.
// We should also do if the section name is NULL or function is declared in
// discardable section.
OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang,
TM));
} else {
// Otherwise, drop it in the readonly section.
const MCSection *ReadOnlySection =
getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
OutStreamer.SwitchSection(ReadOnlySection);
JTInDiffSection = true;
}
EmitAlignment(Log2_32(MJTI->getAlignment()));
for (unsigned i = 0, e = JT.size(); i != e; ++i) {
const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs;
// If this jump table was deleted, ignore it.
if (JTBBs.empty()) continue;
// For PIC codegen, if possible we want to use the SetDirective to reduce
// the number of relocations the assembler will generate for the jump table.
// Set directives are all printed before the jump table itself.
SmallPtrSet<MachineBasicBlock*, 16> EmittedSets;
if (MAI->getSetDirective() && IsPic)
for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
if (EmittedSets.insert(JTBBs[ii]))
printPICJumpTableSetLabel(i, JTBBs[ii]);
// On some targets (e.g. Darwin) we want to emit two consequtive labels
// before each jump table. The first label is never referenced, but tells
// the assembler and linker the extents of the jump table object. The
// second label is actually referenced by the code.
if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0]) {
O << MAI->getLinkerPrivateGlobalPrefix()
<< "JTI" << getFunctionNumber() << '_' << i << ":\n";
}
O << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
<< '_' << i << ":\n";
for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
printPICJumpTableEntry(MJTI, JTBBs[ii], i);
O << '\n';
}
}
}
void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI,
const MachineBasicBlock *MBB,
unsigned uid) const {
bool isPIC = TM.getRelocationModel() == Reloc::PIC_;
// Use JumpTableDirective otherwise honor the entry size from the jump table
// info.
const char *JTEntryDirective = MAI->getJumpTableDirective(isPIC);
bool HadJTEntryDirective = JTEntryDirective != NULL;
if (!HadJTEntryDirective) {
JTEntryDirective = MJTI->getEntrySize() == 4 ?
MAI->getData32bitsDirective() : MAI->getData64bitsDirective();
}
O << JTEntryDirective << ' ';
// If we have emitted set directives for the jump table entries, print
// them rather than the entries themselves. If we're emitting PIC, then
// emit the table entries as differences between two text section labels.
// If we're emitting non-PIC code, then emit the entries as direct
// references to the target basic blocks.
if (!isPIC) {
GetMBBSymbol(MBB->getNumber())->print(O, MAI);
} else if (MAI->getSetDirective()) {
O << MAI->getPrivateGlobalPrefix() << getFunctionNumber()
<< '_' << uid << "_set_" << MBB->getNumber();
} else {
GetMBBSymbol(MBB->getNumber())->print(O, MAI);
// If the arch uses custom Jump Table directives, don't calc relative to
// JT
if (!HadJTEntryDirective)
O << '-' << MAI->getPrivateGlobalPrefix() << "JTI"
<< getFunctionNumber() << '_' << uid;
}
}
/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
/// special global used by LLVM. If so, emit it and return true, otherwise
/// do nothing and return false.
bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
if (GV->getName() == "llvm.used") {
if (MAI->getUsedDirective() != 0) // No need to emit this at all.
EmitLLVMUsedList(GV->getInitializer());
return true;
}
// Ignore debug and non-emitted data. This handles llvm.compiler.used.
if (GV->getSection() == "llvm.metadata" ||
GV->hasAvailableExternallyLinkage())
return true;
if (!GV->hasAppendingLinkage()) return false;
assert(GV->hasInitializer() && "Not a special LLVM global!");
const TargetData *TD = TM.getTargetData();
unsigned Align = Log2_32(TD->getPointerPrefAlignment());
if (GV->getName() == "llvm.global_ctors") {
OutStreamer.SwitchSection(getObjFileLowering().getStaticCtorSection());
EmitAlignment(Align, 0);
EmitXXStructorList(GV->getInitializer());
return true;
}
if (GV->getName() == "llvm.global_dtors") {
OutStreamer.SwitchSection(getObjFileLowering().getStaticDtorSection());
EmitAlignment(Align, 0);
EmitXXStructorList(GV->getInitializer());
return true;
}
return false;
}
/// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
/// global in the specified llvm.used list for which emitUsedDirectiveFor
/// is true, as being used with this directive.
void AsmPrinter::EmitLLVMUsedList(Constant *List) {
const char *Directive = MAI->getUsedDirective();
// Should be an array of 'i8*'.
ConstantArray *InitList = dyn_cast<ConstantArray>(List);
if (InitList == 0) return;
for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
const GlobalValue *GV =
dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang)) {
O << Directive;
EmitConstantValueOnly(InitList->getOperand(i));
O << '\n';
}
}
}
/// EmitXXStructorList - Emit the ctor or dtor list. This just prints out the
/// function pointers, ignoring the init priority.
void AsmPrinter::EmitXXStructorList(Constant *List) {
// Should be an array of '{ int, void ()* }' structs. The first value is the
// init priority, which we ignore.
if (!isa<ConstantArray>(List)) return;
ConstantArray *InitList = cast<ConstantArray>(List);
for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
if (CS->getOperand(1)->isNullValue())
return; // Found a null terminator, exit printing.
// Emit the function pointer.
EmitGlobalConstant(CS->getOperand(1));
}
}
//===----------------------------------------------------------------------===//
/// LEB 128 number encoding.
/// PrintULEB128 - Print a series of hexidecimal values (separated by commas)
/// representing an unsigned leb128 value.
void AsmPrinter::PrintULEB128(unsigned Value) const {
char Buffer[20];
do {
unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
Value >>= 7;
if (Value) Byte |= 0x80;
O << "0x" << utohex_buffer(Byte, Buffer+20);
if (Value) O << ", ";
} while (Value);
}
/// PrintSLEB128 - Print a series of hexidecimal values (separated by commas)
/// representing a signed leb128 value.
void AsmPrinter::PrintSLEB128(int Value) const {
int Sign = Value >> (8 * sizeof(Value) - 1);
bool IsMore;
char Buffer[20];
do {
unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
Value >>= 7;
IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
if (IsMore) Byte |= 0x80;
O << "0x" << utohex_buffer(Byte, Buffer+20);
if (IsMore) O << ", ";
} while (IsMore);
}
//===--------------------------------------------------------------------===//
// Emission and print routines
//
/// PrintHex - Print a value as a hexidecimal value.
///
void AsmPrinter::PrintHex(int Value) const {
char Buffer[20];
O << "0x" << utohex_buffer(static_cast<unsigned>(Value), Buffer+20);
}
/// EOL - Print a newline character to asm stream. If a comment is present
/// then it will be printed first. Comments should not contain '\n'.
void AsmPrinter::EOL() const {
O << '\n';
}
void AsmPrinter::EOL(const std::string &Comment) const {
if (VerboseAsm && !Comment.empty()) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
<< ' '
<< Comment;
}
O << '\n';
}
void AsmPrinter::EOL(const char* Comment) const {
if (VerboseAsm && *Comment) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
<< ' '
<< Comment;
}
O << '\n';
}
static const char *DecodeDWARFEncoding(unsigned Encoding) {
switch (Encoding) {
case dwarf::DW_EH_PE_absptr:
return "absptr";
case dwarf::DW_EH_PE_omit:
return "omit";
case dwarf::DW_EH_PE_pcrel:
return "pcrel";
case dwarf::DW_EH_PE_udata4:
return "udata4";
case dwarf::DW_EH_PE_udata8:
return "udata8";
case dwarf::DW_EH_PE_sdata4:
return "sdata4";
case dwarf::DW_EH_PE_sdata8:
return "sdata8";
case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata4:
return "pcrel udata4";
case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4:
return "pcrel sdata4";
case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata8:
return "pcrel udata8";
case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata8:
return "pcrel sdata8";
case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_udata4:
return "indirect pcrel udata4";
case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_sdata4:
return "indirect pcrel sdata4";
case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_udata8:
return "indirect pcrel udata8";
case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_sdata8:
return "indirect pcrel sdata8";
}
return 0;
}
void AsmPrinter::EOL(const char *Comment, unsigned Encoding) const {
if (VerboseAsm && *Comment) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
<< ' '
<< Comment;
if (const char *EncStr = DecodeDWARFEncoding(Encoding))
O << " (" << EncStr << ')';
}
O << '\n';
}
/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an
/// unsigned leb128 value.
void AsmPrinter::EmitULEB128Bytes(unsigned Value) const {
if (MAI->hasLEB128()) {
O << "\t.uleb128\t"
<< Value;
} else {
O << MAI->getData8bitsDirective();
PrintULEB128(Value);
}
}
/// EmitSLEB128Bytes - print an assembler byte data directive to compose a
/// signed leb128 value.
void AsmPrinter::EmitSLEB128Bytes(int Value) const {
if (MAI->hasLEB128()) {
O << "\t.sleb128\t"
<< Value;
} else {
O << MAI->getData8bitsDirective();
PrintSLEB128(Value);
}
}
/// EmitInt8 - Emit a byte directive and value.
///
void AsmPrinter::EmitInt8(int Value) const {
O << MAI->getData8bitsDirective();
PrintHex(Value & 0xFF);
}
/// EmitInt16 - Emit a short directive and value.
///
void AsmPrinter::EmitInt16(int Value) const {
O << MAI->getData16bitsDirective();
PrintHex(Value & 0xFFFF);
}
/// EmitInt32 - Emit a long directive and value.
///
void AsmPrinter::EmitInt32(int Value) const {
O << MAI->getData32bitsDirective();
PrintHex(Value);
}
/// EmitInt64 - Emit a long long directive and value.
///
void AsmPrinter::EmitInt64(uint64_t Value) const {
if (MAI->getData64bitsDirective()) {
O << MAI->getData64bitsDirective();
PrintHex(Value);
} else {
if (TM.getTargetData()->isBigEndian()) {
EmitInt32(unsigned(Value >> 32)); O << '\n';
EmitInt32(unsigned(Value));
} else {
EmitInt32(unsigned(Value)); O << '\n';
EmitInt32(unsigned(Value >> 32));
}
}
}
/// toOctal - Convert the low order bits of X into an octal digit.
///
static inline char toOctal(int X) {
return (X&7)+'0';
}
/// printStringChar - Print a char, escaped if necessary.
///
static void printStringChar(formatted_raw_ostream &O, unsigned char C) {
if (C == '"') {
O << "\\\"";
} else if (C == '\\') {
O << "\\\\";
} else if (isprint((unsigned char)C)) {
O << C;
} else {
switch(C) {
case '\b': O << "\\b"; break;
case '\f': O << "\\f"; break;
case '\n': O << "\\n"; break;
case '\r': O << "\\r"; break;
case '\t': O << "\\t"; break;
default:
O << '\\';
O << toOctal(C >> 6);
O << toOctal(C >> 3);
O << toOctal(C >> 0);
break;
}
}
}
/// EmitString - Emit a string with quotes and a null terminator.
/// Special characters are emitted properly.
/// \literal (Eg. '\t') \endliteral
void AsmPrinter::EmitString(const std::string &String) const {
EmitString(String.c_str(), String.size());
}
void AsmPrinter::EmitString(const char *String, unsigned Size) const {
const char* AscizDirective = MAI->getAscizDirective();
if (AscizDirective)
O << AscizDirective;
else
O << MAI->getAsciiDirective();
O << '\"';
for (unsigned i = 0; i < Size; ++i)
printStringChar(O, String[i]);
if (AscizDirective)
O << '\"';
else
O << "\\0\"";
}
/// EmitFile - Emit a .file directive.
void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const {
O << "\t.file\t" << Number << " \"";
for (unsigned i = 0, N = Name.size(); i < N; ++i)
printStringChar(O, Name[i]);
O << '\"';
}
//===----------------------------------------------------------------------===//
// EmitAlignment - Emit an alignment directive to the specified power of
// two boundary. For example, if you pass in 3 here, you will get an 8
// byte alignment. If a global value is specified, and if that global has
// an explicit alignment requested, it will unconditionally override the
// alignment request. However, if ForcedAlignBits is specified, this value
// has final say: the ultimate alignment will be the max of ForcedAlignBits
// and the alignment computed with NumBits and the global.
//
// The algorithm is:
// Align = NumBits;
// if (GV && GV->hasalignment) Align = GV->getalignment();
// Align = std::max(Align, ForcedAlignBits);
//
void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV,
unsigned ForcedAlignBits,
bool UseFillExpr) const {
if (GV && GV->getAlignment())
NumBits = Log2_32(GV->getAlignment());
NumBits = std::max(NumBits, ForcedAlignBits);
if (NumBits == 0) return; // No need to emit alignment.
unsigned FillValue = 0;
if (getCurrentSection()->getKind().isText())
FillValue = MAI->getTextAlignFillValue();
OutStreamer.EmitValueToAlignment(1 << NumBits, FillValue, 1, 0);
}
/// EmitZeros - Emit a block of zeros.
///
void AsmPrinter::EmitZeros(uint64_t NumZeros, unsigned AddrSpace) const {
if (NumZeros) {
if (MAI->getZeroDirective()) {
O << MAI->getZeroDirective() << NumZeros;
if (MAI->getZeroDirectiveSuffix())
O << MAI->getZeroDirectiveSuffix();
O << '\n';
} else {
for (; NumZeros; --NumZeros)
O << MAI->getData8bitsDirective(AddrSpace) << "0\n";
}
}
}
// Print out the specified constant, without a storage class. Only the
// constants valid in constant expressions can occur here.
void AsmPrinter::EmitConstantValueOnly(const Constant *CV) {
if (CV->isNullValue() || isa<UndefValue>(CV))
O << '0';
else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
O << CI->getZExtValue();
} else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
// This is a constant address for a global variable or function. Use the
// name of the variable or function as the address value.
O << Mang->getMangledName(GV);
} else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
const TargetData *TD = TM.getTargetData();
unsigned Opcode = CE->getOpcode();
switch (Opcode) {
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPToUI:
case Instruction::FPToSI:
llvm_unreachable("FIXME: Don't support this constant cast expr");
case Instruction::GetElementPtr: {
// generate a symbolic expression for the byte address
const Constant *ptrVal = CE->getOperand(0);
SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0],
idxVec.size())) {
// Truncate/sext the offset to the pointer size.
if (TD->getPointerSizeInBits() != 64) {
int SExtAmount = 64-TD->getPointerSizeInBits();
Offset = (Offset << SExtAmount) >> SExtAmount;
}
if (Offset)
O << '(';
EmitConstantValueOnly(ptrVal);
if (Offset > 0)
O << ") + " << Offset;
else if (Offset < 0)
O << ") - " << -Offset;
} else {
EmitConstantValueOnly(ptrVal);
}
break;
}
case Instruction::BitCast:
return EmitConstantValueOnly(CE->getOperand(0));
case Instruction::IntToPtr: {
// Handle casts to pointers by changing them into casts to the appropriate
// integer type. This promotes constant folding and simplifies this code.
Constant *Op = CE->getOperand(0);
Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(CV->getContext()),
false/*ZExt*/);
return EmitConstantValueOnly(Op);
}
case Instruction::PtrToInt: {
// Support only foldable casts to/from pointers that can be eliminated by
// changing the pointer to the appropriately sized integer type.
Constant *Op = CE->getOperand(0);
const Type *Ty = CE->getType();
// We can emit the pointer value into this slot if the slot is an
// integer slot greater or equal to the size of the pointer.
if (TD->getTypeAllocSize(Ty) == TD->getTypeAllocSize(Op->getType()))
return EmitConstantValueOnly(Op);
O << "((";
EmitConstantValueOnly(Op);
APInt ptrMask =
APInt::getAllOnesValue(TD->getTypeAllocSizeInBits(Op->getType()));
SmallString<40> S;
ptrMask.toStringUnsigned(S);
O << ") & " << S.str() << ')';
break;
}
case Instruction::Add:
case Instruction::Sub:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
O << '(';
EmitConstantValueOnly(CE->getOperand(0));
O << ')';
switch (Opcode) {
case Instruction::Add:
O << " + ";
break;
case Instruction::Sub:
O << " - ";
break;
case Instruction::And:
O << " & ";
break;
case Instruction::Or:
O << " | ";
break;
case Instruction::Xor:
O << " ^ ";
break;
default:
break;
}
O << '(';
EmitConstantValueOnly(CE->getOperand(1));
O << ')';
break;
default:
llvm_unreachable("Unsupported operator!");
}
} else if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
GetBlockAddressSymbol(BA)->print(O, MAI);
} else {
llvm_unreachable("Unknown constant value!");
}
}
/// printAsCString - Print the specified array as a C compatible string, only if
/// the predicate isString is true.
///
static void printAsCString(formatted_raw_ostream &O, const ConstantArray *CVA,
unsigned LastElt) {
assert(CVA->isString() && "Array is not string compatible!");
O << '\"';
for (unsigned i = 0; i != LastElt; ++i) {
unsigned char C =
(unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue();
printStringChar(O, C);
}
O << '\"';
}
/// EmitString - Emit a zero-byte-terminated string constant.
///
void AsmPrinter::EmitString(const ConstantArray *CVA) const {
unsigned NumElts = CVA->getNumOperands();
if (MAI->getAscizDirective() && NumElts &&
cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) {
O << MAI->getAscizDirective();
printAsCString(O, CVA, NumElts-1);
} else {
O << MAI->getAsciiDirective();
printAsCString(O, CVA, NumElts);
}
O << '\n';
}
void AsmPrinter::EmitGlobalConstantArray(const ConstantArray *CVA,
unsigned AddrSpace) {
if (CVA->isString()) {
EmitString(CVA);
} else { // Not a string. Print the values in successive locations
for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
EmitGlobalConstant(CVA->getOperand(i), AddrSpace);
}
}
void AsmPrinter::EmitGlobalConstantVector(const ConstantVector *CP) {
const VectorType *PTy = CP->getType();
for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
EmitGlobalConstant(CP->getOperand(I));
}
void AsmPrinter::EmitGlobalConstantStruct(const ConstantStruct *CVS,
unsigned AddrSpace) {
// Print the fields in successive locations. Pad to align if needed!
const TargetData *TD = TM.getTargetData();
unsigned Size = TD->getTypeAllocSize(CVS->getType());
const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
uint64_t sizeSoFar = 0;
for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
const Constant* field = CVS->getOperand(i);
// Check if padding is needed and insert one or more 0s.
uint64_t fieldSize = TD->getTypeAllocSize(field->getType());
uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
- cvsLayout->getElementOffset(i)) - fieldSize;
sizeSoFar += fieldSize + padSize;
// Now print the actual field value.
EmitGlobalConstant(field, AddrSpace);
// Insert padding - this may include padding to increase the size of the
// current field up to the ABI size (if the struct is not packed) as well
// as padding to ensure that the next field starts at the right offset.
EmitZeros(padSize, AddrSpace);
}
assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
"Layout of constant struct may be incorrect!");
}
void AsmPrinter::EmitGlobalConstantFP(const ConstantFP *CFP,
unsigned AddrSpace) {
// FP Constants are printed as integer constants to avoid losing
// precision...
LLVMContext &Context = CFP->getContext();
const TargetData *TD = TM.getTargetData();
if (CFP->getType()->isDoubleTy()) {
double Val = CFP->getValueAPF().convertToDouble(); // for comment only
uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
if (MAI->getData64bitsDirective(AddrSpace)) {
O << MAI->getData64bitsDirective(AddrSpace) << i;
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString() << " double " << Val;
}
O << '\n';
} else if (TD->isBigEndian()) {
O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
<< " most significant word of double " << Val;
}
O << '\n';
O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i);
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
<< " least significant word of double " << Val;
}
O << '\n';
} else {
O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i);
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
<< " least significant word of double " << Val;
}
O << '\n';
O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
<< " most significant word of double " << Val;
}
O << '\n';
}
return;
}
if (CFP->getType()->isFloatTy()) {
float Val = CFP->getValueAPF().convertToFloat(); // for comment only
O << MAI->getData32bitsDirective(AddrSpace)
<< CFP->getValueAPF().bitcastToAPInt().getZExtValue();
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString() << " float " << Val;
}
O << '\n';
return;
}
if (CFP->getType()->isX86_FP80Ty()) {
// all long double variants are printed as hex
// api needed to prevent premature destruction
APInt api = CFP->getValueAPF().bitcastToAPInt();
const uint64_t *p = api.getRawData();
// Convert to double so we can print the approximate val as a comment.
APFloat DoubleVal = CFP->getValueAPF();
bool ignored;
DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
&ignored);
if (TD->isBigEndian()) {
O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
<< " most significant halfword of x86_fp80 ~"
<< DoubleVal.convertToDouble();
}
O << '\n';
O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString() << " next halfword";
}
O << '\n';
O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString() << " next halfword";
}
O << '\n';
O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString() << " next halfword";
}
O << '\n';
O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
<< " least significant halfword";
}
O << '\n';
} else {
O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
<< " least significant halfword of x86_fp80 ~"
<< DoubleVal.convertToDouble();
}
O << '\n';
O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
<< " next halfword";
}
O << '\n';
O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
<< " next halfword";
}
O << '\n';
O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
<< " next halfword";
}
O << '\n';
O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
<< " most significant halfword";
}
O << '\n';
}
EmitZeros(TD->getTypeAllocSize(Type::getX86_FP80Ty(Context)) -
TD->getTypeStoreSize(Type::getX86_FP80Ty(Context)), AddrSpace);
return;
}
if (CFP->getType()->isPPC_FP128Ty()) {
// all long double variants are printed as hex
// api needed to prevent premature destruction
APInt api = CFP->getValueAPF().bitcastToAPInt();
const uint64_t *p = api.getRawData();
if (TD->isBigEndian()) {
O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
<< " most significant word of ppc_fp128";
}
O << '\n';
O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
<< " next word";
}
O << '\n';
O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
<< " next word";
}
O << '\n';
O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
<< " least significant word";
}
O << '\n';
} else {
O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
<< " least significant word of ppc_fp128";
}
O << '\n';
O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
<< " next word";
}
O << '\n';
O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
<< " next word";
}
O << '\n';
O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
<< " most significant word";
}
O << '\n';
}
return;
} else llvm_unreachable("Floating point constant type not handled");
}
void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI,
unsigned AddrSpace) {
const TargetData *TD = TM.getTargetData();
unsigned BitWidth = CI->getBitWidth();
assert(isPowerOf2_32(BitWidth) &&
"Non-power-of-2-sized integers not handled!");
// We don't expect assemblers to support integer data directives
// for more than 64 bits, so we emit the data in at most 64-bit
// quantities at a time.
const uint64_t *RawData = CI->getValue().getRawData();
for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
uint64_t Val;
if (TD->isBigEndian())
Val = RawData[e - i - 1];
else
Val = RawData[i];
if (MAI->getData64bitsDirective(AddrSpace))
O << MAI->getData64bitsDirective(AddrSpace) << Val << '\n';
else if (TD->isBigEndian()) {
O << MAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32);
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
<< " most significant half of i64 " << Val;
}
O << '\n';
O << MAI->getData32bitsDirective(AddrSpace) << unsigned(Val);
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
<< " least significant half of i64 " << Val;
}
O << '\n';
} else {
O << MAI->getData32bitsDirective(AddrSpace) << unsigned(Val);
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
<< " least significant half of i64 " << Val;
}
O << '\n';
O << MAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32);
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
<< " most significant half of i64 " << Val;
}
O << '\n';
}
}
}
/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
const TargetData *TD = TM.getTargetData();
const Type *type = CV->getType();
unsigned Size = TD->getTypeAllocSize(type);
if (CV->isNullValue() || isa<UndefValue>(CV)) {
EmitZeros(Size, AddrSpace);
return;
} else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
EmitGlobalConstantArray(CVA , AddrSpace);
return;
} else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
EmitGlobalConstantStruct(CVS, AddrSpace);
return;
} else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
EmitGlobalConstantFP(CFP, AddrSpace);
return;
} else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
// Small integers are handled below; large integers are handled here.
if (Size > 4) {
EmitGlobalConstantLargeInt(CI, AddrSpace);
return;
}
} else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
EmitGlobalConstantVector(CP);
return;
}
printDataDirective(type, AddrSpace);
EmitConstantValueOnly(CV);
if (VerboseAsm) {
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
SmallString<40> S;
CI->getValue().toStringUnsigned(S, 16);
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString() << " 0x" << S.str();
}
}
O << '\n';
}
void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
// Target doesn't support this yet!
llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
}
/// PrintSpecial - Print information related to the specified machine instr
/// that is independent of the operand, and may be independent of the instr
/// itself. This can be useful for portably encoding the comment character
/// or other bits of target-specific knowledge into the asmstrings. The
/// syntax used is ${:comment}. Targets can override this to add support
/// for their own strange codes.
void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) const {
if (!strcmp(Code, "private")) {
O << MAI->getPrivateGlobalPrefix();
} else if (!strcmp(Code, "comment")) {
if (VerboseAsm)
O << MAI->getCommentString();
} else if (!strcmp(Code, "uid")) {
// Comparing the address of MI isn't sufficient, because machineinstrs may
// be allocated to the same address across functions.
const Function *ThisF = MI->getParent()->getParent()->getFunction();
// If this is a new LastFn instruction, bump the counter.
if (LastMI != MI || LastFn != ThisF) {
++Counter;
LastMI = MI;
LastFn = ThisF;
}
O << Counter;
} else {
std::string msg;
raw_string_ostream Msg(msg);
Msg << "Unknown special formatter '" << Code
<< "' for machine instr: " << *MI;
llvm_report_error(Msg.str());
}
}
/// processDebugLoc - Processes the debug information of each machine
/// instruction's DebugLoc.
void AsmPrinter::processDebugLoc(const MachineInstr *MI,
bool BeforePrintingInsn) {
if (!MAI || !DW)
return;
DebugLoc DL = MI->getDebugLoc();
if (MAI->doesSupportDebugInformation() && DW->ShouldEmitDwarfDebug()) {
if (!DL.isUnknown()) {
DebugLocTuple CurDLT = MF->getDebugLocTuple(DL);
if (BeforePrintingInsn) {
if (CurDLT.Scope != 0 && PrevDLT != CurDLT) {
unsigned L = DW->RecordSourceLine(CurDLT.Line, CurDLT.Col,
CurDLT.Scope);
printLabel(L);
O << '\n';
#ifdef ATTACH_DEBUG_INFO_TO_AN_INSN
DW->SetDbgScopeBeginLabels(MI, L);
#endif
} else {
#ifdef ATTACH_DEBUG_INFO_TO_AN_INSN
DW->SetDbgScopeEndLabels(MI, 0);
#endif
}
}
PrevDLT = CurDLT;
}
}
}
/// printInlineAsm - This method formats and prints the specified machine
/// instruction that is an inline asm.
void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
unsigned NumOperands = MI->getNumOperands();
// Count the number of register definitions.
unsigned NumDefs = 0;
for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
++NumDefs)
assert(NumDefs != NumOperands-1 && "No asm string?");
assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?");
// Disassemble the AsmStr, printing out the literal pieces, the operands, etc.
const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
// If this asmstr is empty, just print the #APP/#NOAPP markers.
// These are useful to see where empty asm's wound up.
if (AsmStr[0] == 0) {
O << MAI->getCommentString() << MAI->getInlineAsmStart() << "\n\t";
O << MAI->getCommentString() << MAI->getInlineAsmEnd() << '\n';
return;
}
O << MAI->getCommentString() << MAI->getInlineAsmStart() << "\n\t";
// The variant of the current asmprinter.
int AsmPrinterVariant = MAI->getAssemblerDialect();
int CurVariant = -1; // The number of the {.|.|.} region we are in.
const char *LastEmitted = AsmStr; // One past the last character emitted.
while (*LastEmitted) {
switch (*LastEmitted) {
default: {
// Not a special case, emit the string section literally.
const char *LiteralEnd = LastEmitted+1;
while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' &&
*LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n')
++LiteralEnd;
if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
O.write(LastEmitted, LiteralEnd-LastEmitted);
LastEmitted = LiteralEnd;
break;
}
case '\n':
++LastEmitted; // Consume newline character.
O << '\n'; // Indent code with newline.
break;
case '$': {
++LastEmitted; // Consume '$' character.
bool Done = true;
// Handle escapes.
switch (*LastEmitted) {
default: Done = false; break;
case '$': // $$ -> $
if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
O << '$';
++LastEmitted; // Consume second '$' character.
break;
case '(': // $( -> same as GCC's { character.
++LastEmitted; // Consume '(' character.
if (CurVariant != -1) {
llvm_report_error("Nested variants found in inline asm string: '"
+ std::string(AsmStr) + "'");
}
CurVariant = 0; // We're in the first variant now.
break;
case '|':
++LastEmitted; // consume '|' character.
if (CurVariant == -1)
O << '|'; // this is gcc's behavior for | outside a variant
else
++CurVariant; // We're in the next variant.
break;
case ')': // $) -> same as GCC's } char.
++LastEmitted; // consume ')' character.
if (CurVariant == -1)
O << '}'; // this is gcc's behavior for } outside a variant
else
CurVariant = -1;
break;
}
if (Done) break;
bool HasCurlyBraces = false;
if (*LastEmitted == '{') { // ${variable}
++LastEmitted; // Consume '{' character.
HasCurlyBraces = true;
}
// If we have ${:foo}, then this is not a real operand reference, it is a
// "magic" string reference, just like in .td files. Arrange to call
// PrintSpecial.
if (HasCurlyBraces && *LastEmitted == ':') {
++LastEmitted;
const char *StrStart = LastEmitted;
const char *StrEnd = strchr(StrStart, '}');
if (StrEnd == 0) {
llvm_report_error("Unterminated ${:foo} operand in inline asm string: '"
+ std::string(AsmStr) + "'");
}
std::string Val(StrStart, StrEnd);
PrintSpecial(MI, Val.c_str());
LastEmitted = StrEnd+1;
break;
}
const char *IDStart = LastEmitted;
char *IDEnd;
errno = 0;
long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs.
if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) {
llvm_report_error("Bad $ operand number in inline asm string: '"
+ std::string(AsmStr) + "'");
}
LastEmitted = IDEnd;
char Modifier[2] = { 0, 0 };
if (HasCurlyBraces) {
// If we have curly braces, check for a modifier character. This
// supports syntax like ${0:u}, which correspond to "%u0" in GCC asm.
if (*LastEmitted == ':') {
++LastEmitted; // Consume ':' character.
if (*LastEmitted == 0) {
llvm_report_error("Bad ${:} expression in inline asm string: '"
+ std::string(AsmStr) + "'");
}
Modifier[0] = *LastEmitted;
++LastEmitted; // Consume modifier character.
}
if (*LastEmitted != '}') {
llvm_report_error("Bad ${} expression in inline asm string: '"
+ std::string(AsmStr) + "'");
}
++LastEmitted; // Consume '}' character.
}
if ((unsigned)Val >= NumOperands-1) {
llvm_report_error("Invalid $ operand number in inline asm string: '"
+ std::string(AsmStr) + "'");
}
// Okay, we finally have a value number. Ask the target to print this
// operand!
if (CurVariant == -1 || CurVariant == AsmPrinterVariant) {
unsigned OpNo = 1;
bool Error = false;
// Scan to find the machine operand number for the operand.
for (; Val; --Val) {
if (OpNo >= MI->getNumOperands()) break;
unsigned OpFlags = MI->getOperand(OpNo).getImm();
OpNo += InlineAsm::getNumOperandRegisters(OpFlags) + 1;
}
if (OpNo >= MI->getNumOperands()) {
Error = true;
} else {
unsigned OpFlags = MI->getOperand(OpNo).getImm();
++OpNo; // Skip over the ID number.
if (Modifier[0]=='l') // labels are target independent
GetMBBSymbol(MI->getOperand(OpNo).getMBB()
->getNumber())->print(O, MAI);
else {
AsmPrinter *AP = const_cast<AsmPrinter*>(this);
if ((OpFlags & 7) == 4) {
Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant,
Modifier[0] ? Modifier : 0);
} else {
Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant,
Modifier[0] ? Modifier : 0);
}
}
}
if (Error) {
std::string msg;
raw_string_ostream Msg(msg);
Msg << "Invalid operand found in inline asm: '"
<< AsmStr << "'\n";
MI->print(Msg);
llvm_report_error(Msg.str());
}
}
break;
}
}
}
O << "\n\t" << MAI->getCommentString() << MAI->getInlineAsmEnd();
}
/// printImplicitDef - This method prints the specified machine instruction
/// that is an implicit def.
void AsmPrinter::printImplicitDef(const MachineInstr *MI) const {
if (!VerboseAsm) return;
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString() << " implicit-def: "
<< TRI->getName(MI->getOperand(0).getReg());
}
/// printLabel - This method prints a local label used by debug and
/// exception handling tables.
void AsmPrinter::printLabel(const MachineInstr *MI) const {
printLabel(MI->getOperand(0).getImm());
}
void AsmPrinter::printLabel(unsigned Id) const {
O << MAI->getPrivateGlobalPrefix() << "label" << Id << ':';
}
/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM
/// instruction, using the specified assembler variant. Targets should
/// overried this to format as appropriate.
bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
unsigned AsmVariant, const char *ExtraCode) {
// Target doesn't support this yet!
return true;
}
bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
unsigned AsmVariant,
const char *ExtraCode) {
// Target doesn't support this yet!
return true;
}
MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
return GetBlockAddressSymbol(BA->getFunction(), BA->getBasicBlock());
}
MCSymbol *AsmPrinter::GetBlockAddressSymbol(const Function *F,
const BasicBlock *BB) const {
assert(BB->hasName() &&
"Address of anonymous basic block not supported yet!");
// FIXME: This isn't guaranteed to produce a unique name even if the
// block and function have a name.
std::string Mangled =
Mang->getMangledName(F, Mang->makeNameProper(BB->getName()).c_str(),
/*ForcePrivate=*/true);
return OutContext.GetOrCreateSymbol(StringRef(Mangled));
}
MCSymbol *AsmPrinter::GetMBBSymbol(unsigned MBBID) const {
SmallString<60> Name;
raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix() << "BB"
<< getFunctionNumber() << '_' << MBBID;
return OutContext.GetOrCreateSymbol(Name.str());
}
/// EmitBasicBlockStart - This method prints the label for the specified
/// MachineBasicBlock, an alignment (if present) and a comment describing
/// it if appropriate.
void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const {
// Emit an alignment directive for this block, if needed.
if (unsigned Align = MBB->getAlignment())
EmitAlignment(Log2_32(Align));
// If the block has its address taken, emit a special label to satisfy
// references to the block. This is done so that we don't need to
// remember the number of this label, and so that we can make
// forward references to labels without knowing what their numbers
// will be.
if (MBB->hasAddressTaken()) {
GetBlockAddressSymbol(MBB->getBasicBlock()->getParent(),
MBB->getBasicBlock())->print(O, MAI);
O << ':';
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString() << " Address Taken";
}
O << '\n';
}
// Print the main label for the block.
if (MBB->pred_empty() || MBB->isOnlyReachableByFallthrough()) {
if (VerboseAsm)
O << MAI->getCommentString() << " BB#" << MBB->getNumber() << ':';
} else {
GetMBBSymbol(MBB->getNumber())->print(O, MAI);
O << ':';
if (!VerboseAsm)
O << '\n';
}
// Print some comments to accompany the label.
if (VerboseAsm) {
if (const BasicBlock *BB = MBB->getBasicBlock())
if (BB->hasName()) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString() << ' ';
WriteAsOperand(O, BB, /*PrintType=*/false);
}
EmitComments(*MBB);
O << '\n';
}
}
/// printPICJumpTableSetLabel - This method prints a set label for the
/// specified MachineBasicBlock for a jumptable entry.
void AsmPrinter::printPICJumpTableSetLabel(unsigned uid,
const MachineBasicBlock *MBB) const {
if (!MAI->getSetDirective())
return;
O << MAI->getSetDirective() << ' ' << MAI->getPrivateGlobalPrefix()
<< getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ',';
GetMBBSymbol(MBB->getNumber())->print(O, MAI);
O << '-' << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
<< '_' << uid << '\n';
}
void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2,
const MachineBasicBlock *MBB) const {
if (!MAI->getSetDirective())
return;
O << MAI->getSetDirective() << ' ' << MAI->getPrivateGlobalPrefix()
<< getFunctionNumber() << '_' << uid << '_' << uid2
<< "_set_" << MBB->getNumber() << ',';
GetMBBSymbol(MBB->getNumber())->print(O, MAI);
O << '-' << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
<< '_' << uid << '_' << uid2 << '\n';
}
/// printDataDirective - This method prints the asm directive for the
/// specified type.
void AsmPrinter::printDataDirective(const Type *type, unsigned AddrSpace) {
const TargetData *TD = TM.getTargetData();
switch (type->getTypeID()) {
case Type::FloatTyID: case Type::DoubleTyID:
case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID:
assert(0 && "Should have already output floating point constant.");
default:
assert(0 && "Can't handle printing this type of thing");
case Type::IntegerTyID: {
unsigned BitWidth = cast<IntegerType>(type)->getBitWidth();
if (BitWidth <= 8)
O << MAI->getData8bitsDirective(AddrSpace);
else if (BitWidth <= 16)
O << MAI->getData16bitsDirective(AddrSpace);
else if (BitWidth <= 32)
O << MAI->getData32bitsDirective(AddrSpace);
else if (BitWidth <= 64) {
assert(MAI->getData64bitsDirective(AddrSpace) &&
"Target cannot handle 64-bit constant exprs!");
O << MAI->getData64bitsDirective(AddrSpace);
} else {
llvm_unreachable("Target cannot handle given data directive width!");
}
break;
}
case Type::PointerTyID:
if (TD->getPointerSize() == 8) {
assert(MAI->getData64bitsDirective(AddrSpace) &&
"Target cannot handle 64-bit pointer exprs!");
O << MAI->getData64bitsDirective(AddrSpace);
} else if (TD->getPointerSize() == 2) {
O << MAI->getData16bitsDirective(AddrSpace);
} else if (TD->getPointerSize() == 1) {
O << MAI->getData8bitsDirective(AddrSpace);
} else {
O << MAI->getData32bitsDirective(AddrSpace);
}
break;
}
}
void AsmPrinter::printVisibility(const std::string& Name,
unsigned Visibility) const {
if (Visibility == GlobalValue::HiddenVisibility) {
if (const char *Directive = MAI->getHiddenDirective())
O << Directive << Name << '\n';
} else if (Visibility == GlobalValue::ProtectedVisibility) {
if (const char *Directive = MAI->getProtectedDirective())
O << Directive << Name << '\n';
}
}
void AsmPrinter::printOffset(int64_t Offset) const {
if (Offset > 0)
O << '+' << Offset;
else if (Offset < 0)
O << Offset;
}
GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
if (!S->usesMetadata())
return 0;
gcp_iterator GCPI = GCMetadataPrinters.find(S);
if (GCPI != GCMetadataPrinters.end())
return GCPI->second;
const char *Name = S->getName().c_str();
for (GCMetadataPrinterRegistry::iterator
I = GCMetadataPrinterRegistry::begin(),
E = GCMetadataPrinterRegistry::end(); I != E; ++I)
if (strcmp(Name, I->getName()) == 0) {
GCMetadataPrinter *GMP = I->instantiate();
GMP->S = S;
GCMetadataPrinters.insert(std::make_pair(S, GMP));
return GMP;
}
errs() << "no GCMetadataPrinter registered for GC: " << Name << "\n";
llvm_unreachable(0);
}
/// EmitComments - Pretty-print comments for instructions
void AsmPrinter::EmitComments(const MachineInstr &MI) const {
assert(VerboseAsm && !MI.getDebugLoc().isUnknown());
DebugLocTuple DLT = MF->getDebugLocTuple(MI.getDebugLoc());
// Print source line info.
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString() << " SrcLine ";
if (DLT.Scope) {
DICompileUnit CU(DLT.Scope);
if (!CU.isNull())
O << CU.getFilename() << " ";
}
O << DLT.Line;
if (DLT.Col != 0)
O << ":" << DLT.Col;
}
/// PrintChildLoopComment - Print comments about child loops within
/// the loop for this basic block, with nesting.
///
static void PrintChildLoopComment(formatted_raw_ostream &O,
const MachineLoop *loop,
const MCAsmInfo *MAI,
int FunctionNumber) {
// Add child loop information
for(MachineLoop::iterator cl = loop->begin(),
clend = loop->end();
cl != clend;
++cl) {
MachineBasicBlock *Header = (*cl)->getHeader();
assert(Header && "No header for loop");
O << '\n';
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString();
O.indent(((*cl)->getLoopDepth()-1)*2)
<< " Child Loop BB" << FunctionNumber << "_"
<< Header->getNumber() << " Depth " << (*cl)->getLoopDepth();
PrintChildLoopComment(O, *cl, MAI, FunctionNumber);
}
}
/// EmitComments - Pretty-print comments for basic blocks
void AsmPrinter::EmitComments(const MachineBasicBlock &MBB) const
{
if (VerboseAsm) {
// Add loop depth information
const MachineLoop *loop = LI->getLoopFor(&MBB);
if (loop) {
// Print a newline after bb# annotation.
O << "\n";
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString() << " Loop Depth " << loop->getLoopDepth()
<< '\n';
O.PadToColumn(MAI->getCommentColumn());
MachineBasicBlock *Header = loop->getHeader();
assert(Header && "No header for loop");
if (Header == &MBB) {
O << MAI->getCommentString() << " Loop Header";
PrintChildLoopComment(O, loop, MAI, getFunctionNumber());
}
else {
O << MAI->getCommentString() << " Loop Header is BB"
<< getFunctionNumber() << "_" << loop->getHeader()->getNumber();
}
if (loop->empty()) {
O << '\n';
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString() << " Inner Loop";
}
// Add parent loop information
for (const MachineLoop *CurLoop = loop->getParentLoop();
CurLoop;
CurLoop = CurLoop->getParentLoop()) {
MachineBasicBlock *Header = CurLoop->getHeader();
assert(Header && "No header for loop");
O << '\n';
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString();
O.indent((CurLoop->getLoopDepth()-1)*2)
<< " Inside Loop BB" << getFunctionNumber() << "_"
<< Header->getNumber() << " Depth " << CurLoop->getLoopDepth();
}
}
}
}