llvm-6502/lib/Transforms/Utils/CloneFunction.cpp

495 lines
20 KiB
C++
Raw Normal View History

//===- CloneFunction.cpp - Clone a function into another function ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the CloneFunctionInto interface, which is used as the
// low-level function cloner. This is used by the CloneFunction and function
// inliner to do the dirty work of copying the body of a function around.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Instructions.h"
#include "llvm/Function.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/ADT/SmallVector.h"
#include <map>
using namespace llvm;
// CloneBasicBlock - See comments in Cloning.h
BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB,
DenseMap<const Value*, Value*> &ValueMap,
const char *NameSuffix, Function *F,
ClonedCodeInfo *CodeInfo) {
BasicBlock *NewBB = new BasicBlock("", F);
if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
// Loop over all instructions, and copy them over.
for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
II != IE; ++II) {
Instruction *NewInst = II->clone();
if (II->hasName())
NewInst->setName(II->getName()+NameSuffix);
NewBB->getInstList().push_back(NewInst);
ValueMap[II] = NewInst; // Add instruction map to value.
hasCalls |= isa<CallInst>(II);
if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
if (isa<ConstantInt>(AI->getArraySize()))
hasStaticAllocas = true;
else
hasDynamicAllocas = true;
}
}
if (CodeInfo) {
CodeInfo->ContainsCalls |= hasCalls;
CodeInfo->ContainsUnwinds |= isa<UnwindInst>(BB->getTerminator());
CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
BB != &BB->getParent()->getEntryBlock();
}
return NewBB;
}
// Clone OldFunc into NewFunc, transforming the old arguments into references to
// ArgMap values.
//
void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
DenseMap<const Value*, Value*> &ValueMap,
std::vector<ReturnInst*> &Returns,
const char *NameSuffix, ClonedCodeInfo *CodeInfo) {
assert(NameSuffix && "NameSuffix cannot be null!");
#ifndef NDEBUG
for (Function::const_arg_iterator I = OldFunc->arg_begin(),
E = OldFunc->arg_end(); I != E; ++I)
assert(ValueMap.count(I) && "No mapping from source argument specified!");
#endif
// Clone the parameter attributes
NewFunc->setParamAttrs(OldFunc->getParamAttrs());
// Loop over all of the basic blocks in the function, cloning them as
// appropriate. Note that we save BE this way in order to handle cloning of
// recursive functions into themselves.
//
for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
BI != BE; ++BI) {
const BasicBlock &BB = *BI;
// Create a new basic block and copy instructions into it!
BasicBlock *CBB = CloneBasicBlock(&BB, ValueMap, NameSuffix, NewFunc,
CodeInfo);
ValueMap[&BB] = CBB; // Add basic block mapping.
if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
Returns.push_back(RI);
}
// Loop over all of the instructions in the function, fixing up operand
// references as we go. This uses ValueMap to do all the hard work.
//
for (Function::iterator BB = cast<BasicBlock>(ValueMap[OldFunc->begin()]),
BE = NewFunc->end(); BB != BE; ++BB)
// Loop over all instructions, fixing each one as we find it...
for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II)
RemapInstruction(II, ValueMap);
}
/// CloneFunction - Return a copy of the specified function, but without
/// embedding the function into another module. Also, any references specified
/// in the ValueMap are changed to refer to their mapped value instead of the
/// original one. If any of the arguments to the function are in the ValueMap,
/// the arguments are deleted from the resultant function. The ValueMap is
/// updated to include mappings from all of the instructions and basicblocks in
/// the function from their old to new values.
///
Function *llvm::CloneFunction(const Function *F,
DenseMap<const Value*, Value*> &ValueMap,
ClonedCodeInfo *CodeInfo) {
std::vector<const Type*> ArgTypes;
// The user might be deleting arguments to the function by specifying them in
// the ValueMap. If so, we need to not add the arguments to the arg ty vector
//
for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
I != E; ++I)
if (ValueMap.count(I) == 0) // Haven't mapped the argument to anything yet?
ArgTypes.push_back(I->getType());
// Create a new function type...
FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
ArgTypes, F->getFunctionType()->isVarArg());
// Create the new function...
Function *NewF = new Function(FTy, F->getLinkage(), F->getName());
// Loop over the arguments, copying the names of the mapped arguments over...
Function::arg_iterator DestI = NewF->arg_begin();
for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
I != E; ++I)
if (ValueMap.count(I) == 0) { // Is this argument preserved?
DestI->setName(I->getName()); // Copy the name over...
ValueMap[I] = DestI++; // Add mapping to ValueMap
}
std::vector<ReturnInst*> Returns; // Ignore returns cloned...
CloneFunctionInto(NewF, F, ValueMap, Returns, "", CodeInfo);
return NewF;
}
namespace {
/// PruningFunctionCloner - This class is a private class used to implement
/// the CloneAndPruneFunctionInto method.
struct VISIBILITY_HIDDEN PruningFunctionCloner {
Function *NewFunc;
const Function *OldFunc;
DenseMap<const Value*, Value*> &ValueMap;
std::vector<ReturnInst*> &Returns;
const char *NameSuffix;
ClonedCodeInfo *CodeInfo;
const TargetData *TD;
public:
PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
DenseMap<const Value*, Value*> &valueMap,
std::vector<ReturnInst*> &returns,
const char *nameSuffix,
ClonedCodeInfo *codeInfo,
const TargetData *td)
: NewFunc(newFunc), OldFunc(oldFunc), ValueMap(valueMap), Returns(returns),
NameSuffix(nameSuffix), CodeInfo(codeInfo), TD(td) {
}
/// CloneBlock - The specified block is found to be reachable, clone it and
/// anything that it can reach.
void CloneBlock(const BasicBlock *BB,
std::vector<const BasicBlock*> &ToClone);
public:
/// ConstantFoldMappedInstruction - Constant fold the specified instruction,
/// mapping its operands through ValueMap if they are available.
Constant *ConstantFoldMappedInstruction(const Instruction *I);
};
}
/// CloneBlock - The specified block is found to be reachable, clone it and
/// anything that it can reach.
void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
std::vector<const BasicBlock*> &ToClone){
Value *&BBEntry = ValueMap[BB];
// Have we already cloned this block?
if (BBEntry) return;
// Nope, clone it now.
BasicBlock *NewBB;
BBEntry = NewBB = new BasicBlock();
if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
// Loop over all instructions, and copy them over, DCE'ing as we go. This
// loop doesn't include the terminator.
for (BasicBlock::const_iterator II = BB->begin(), IE = --BB->end();
II != IE; ++II) {
// If this instruction constant folds, don't bother cloning the instruction,
// instead, just add the constant to the value map.
if (Constant *C = ConstantFoldMappedInstruction(II)) {
ValueMap[II] = C;
continue;
}
Instruction *NewInst = II->clone();
if (II->hasName())
NewInst->setName(II->getName()+NameSuffix);
NewBB->getInstList().push_back(NewInst);
ValueMap[II] = NewInst; // Add instruction map to value.
hasCalls |= isa<CallInst>(II);
if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
if (isa<ConstantInt>(AI->getArraySize()))
hasStaticAllocas = true;
else
hasDynamicAllocas = true;
}
}
// Finally, clone over the terminator.
const TerminatorInst *OldTI = BB->getTerminator();
bool TerminatorDone = false;
if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
if (BI->isConditional()) {
// If the condition was a known constant in the callee...
ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
// Or is a known constant in the caller...
if (Cond == 0)
Cond = dyn_cast_or_null<ConstantInt>(ValueMap[BI->getCondition()]);
// Constant fold to uncond branch!
if (Cond) {
BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
ValueMap[OldTI] = new BranchInst(Dest, NewBB);
ToClone.push_back(Dest);
TerminatorDone = true;
}
}
} else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
// If switching on a value known constant in the caller.
ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
if (Cond == 0) // Or known constant after constant prop in the callee...
Cond = dyn_cast_or_null<ConstantInt>(ValueMap[SI->getCondition()]);
if (Cond) { // Constant fold to uncond branch!
BasicBlock *Dest = SI->getSuccessor(SI->findCaseValue(Cond));
ValueMap[OldTI] = new BranchInst(Dest, NewBB);
ToClone.push_back(Dest);
TerminatorDone = true;
}
}
if (!TerminatorDone) {
Instruction *NewInst = OldTI->clone();
if (OldTI->hasName())
NewInst->setName(OldTI->getName()+NameSuffix);
NewBB->getInstList().push_back(NewInst);
ValueMap[OldTI] = NewInst; // Add instruction map to value.
// Recursively clone any reachable successor blocks.
const TerminatorInst *TI = BB->getTerminator();
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
ToClone.push_back(TI->getSuccessor(i));
}
if (CodeInfo) {
CodeInfo->ContainsCalls |= hasCalls;
CodeInfo->ContainsUnwinds |= isa<UnwindInst>(OldTI);
CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
BB != &BB->getParent()->front();
}
if (ReturnInst *RI = dyn_cast<ReturnInst>(NewBB->getTerminator()))
Returns.push_back(RI);
}
/// ConstantFoldMappedInstruction - Constant fold the specified instruction,
/// mapping its operands through ValueMap if they are available.
Constant *PruningFunctionCloner::
ConstantFoldMappedInstruction(const Instruction *I) {
SmallVector<Constant*, 8> Ops;
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
if (Constant *Op = dyn_cast_or_null<Constant>(MapValue(I->getOperand(i),
ValueMap)))
Ops.push_back(Op);
else
return 0; // All operands not constant!
if (const CmpInst *CI = dyn_cast<CmpInst>(I))
return ConstantFoldCompareInstOperands(CI->getPredicate(),
&Ops[0], Ops.size(), TD);
else
return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
&Ops[0], Ops.size(), TD);
}
/// CloneAndPruneFunctionInto - This works exactly like CloneFunctionInto,
/// except that it does some simple constant prop and DCE on the fly. The
/// effect of this is to copy significantly less code in cases where (for
/// example) a function call with constant arguments is inlined, and those
/// constant arguments cause a significant amount of code in the callee to be
/// dead. Since this doesn't produce an exact copy of the input, it can't be
/// used for things like CloneFunction or CloneModule.
void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
DenseMap<const Value*, Value*> &ValueMap,
std::vector<ReturnInst*> &Returns,
const char *NameSuffix,
ClonedCodeInfo *CodeInfo,
const TargetData *TD) {
assert(NameSuffix && "NameSuffix cannot be null!");
#ifndef NDEBUG
for (Function::const_arg_iterator II = OldFunc->arg_begin(),
E = OldFunc->arg_end(); II != E; ++II)
assert(ValueMap.count(II) && "No mapping from source argument specified!");
#endif
PruningFunctionCloner PFC(NewFunc, OldFunc, ValueMap, Returns,
NameSuffix, CodeInfo, TD);
// Clone the entry block, and anything recursively reachable from it.
std::vector<const BasicBlock*> CloneWorklist;
CloneWorklist.push_back(&OldFunc->getEntryBlock());
while (!CloneWorklist.empty()) {
const BasicBlock *BB = CloneWorklist.back();
CloneWorklist.pop_back();
PFC.CloneBlock(BB, CloneWorklist);
}
// Loop over all of the basic blocks in the old function. If the block was
// reachable, we have cloned it and the old block is now in the value map:
// insert it into the new function in the right order. If not, ignore it.
//
// Defer PHI resolution until rest of function is resolved.
std::vector<const PHINode*> PHIToResolve;
for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
BI != BE; ++BI) {
BasicBlock *NewBB = cast_or_null<BasicBlock>(ValueMap[BI]);
if (NewBB == 0) continue; // Dead block.
// Add the new block to the new function.
NewFunc->getBasicBlockList().push_back(NewBB);
// Loop over all of the instructions in the block, fixing up operand
// references as we go. This uses ValueMap to do all the hard work.
//
BasicBlock::iterator I = NewBB->begin();
// Handle PHI nodes specially, as we have to remove references to dead
// blocks.
if (PHINode *PN = dyn_cast<PHINode>(I)) {
// Skip over all PHI nodes, remembering them for later.
BasicBlock::const_iterator OldI = BI->begin();
for (; (PN = dyn_cast<PHINode>(I)); ++I, ++OldI)
PHIToResolve.push_back(cast<PHINode>(OldI));
}
// Otherwise, remap the rest of the instructions normally.
for (; I != NewBB->end(); ++I)
RemapInstruction(I, ValueMap);
}
// Defer PHI resolution until rest of function is resolved, PHI resolution
// requires the CFG to be up-to-date.
for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
const PHINode *OPN = PHIToResolve[phino];
unsigned NumPreds = OPN->getNumIncomingValues();
const BasicBlock *OldBB = OPN->getParent();
BasicBlock *NewBB = cast<BasicBlock>(ValueMap[OldBB]);
// Map operands for blocks that are live and remove operands for blocks
// that are dead.
for (; phino != PHIToResolve.size() &&
PHIToResolve[phino]->getParent() == OldBB; ++phino) {
OPN = PHIToResolve[phino];
PHINode *PN = cast<PHINode>(ValueMap[OPN]);
for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
if (BasicBlock *MappedBlock =
cast_or_null<BasicBlock>(ValueMap[PN->getIncomingBlock(pred)])) {
Value *InVal = MapValue(PN->getIncomingValue(pred), ValueMap);
assert(InVal && "Unknown input value?");
PN->setIncomingValue(pred, InVal);
PN->setIncomingBlock(pred, MappedBlock);
} else {
PN->removeIncomingValue(pred, false);
--pred, --e; // Revisit the next entry.
}
}
}
// The loop above has removed PHI entries for those blocks that are dead
// and has updated others. However, if a block is live (i.e. copied over)
// but its terminator has been changed to not go to this block, then our
// phi nodes will have invalid entries. Update the PHI nodes in this
// case.
PHINode *PN = cast<PHINode>(NewBB->begin());
NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB));
if (NumPreds != PN->getNumIncomingValues()) {
assert(NumPreds < PN->getNumIncomingValues());
// Count how many times each predecessor comes to this block.
std::map<BasicBlock*, unsigned> PredCount;
for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
PI != E; ++PI)
--PredCount[*PI];
// Figure out how many entries to remove from each PHI.
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
++PredCount[PN->getIncomingBlock(i)];
// At this point, the excess predecessor entries are positive in the
// map. Loop over all of the PHIs and remove excess predecessor
// entries.
BasicBlock::iterator I = NewBB->begin();
for (; (PN = dyn_cast<PHINode>(I)); ++I) {
for (std::map<BasicBlock*, unsigned>::iterator PCI =PredCount.begin(),
E = PredCount.end(); PCI != E; ++PCI) {
BasicBlock *Pred = PCI->first;
for (unsigned NumToRemove = PCI->second; NumToRemove; --NumToRemove)
PN->removeIncomingValue(Pred, false);
}
}
}
// If the loops above have made these phi nodes have 0 or 1 operand,
// replace them with undef or the input value. We must do this for
// correctness, because 0-operand phis are not valid.
PN = cast<PHINode>(NewBB->begin());
if (PN->getNumIncomingValues() == 0) {
BasicBlock::iterator I = NewBB->begin();
BasicBlock::const_iterator OldI = OldBB->begin();
while ((PN = dyn_cast<PHINode>(I++))) {
Value *NV = UndefValue::get(PN->getType());
PN->replaceAllUsesWith(NV);
assert(ValueMap[OldI] == PN && "ValueMap mismatch");
ValueMap[OldI] = NV;
PN->eraseFromParent();
++OldI;
}
}
// NOTE: We cannot eliminate single entry phi nodes here, because of
// ValueMap. Single entry phi nodes can have multiple ValueMap entries
// pointing at them. Thus, deleting one would require scanning the ValueMap
// to update any entries in it that would require that. This would be
// really slow.
}
// Now that the inlined function body has been fully constructed, go through
// and zap unconditional fall-through branches. This happen all the time when
// specializing code: code specialization turns conditional branches into
// uncond branches, and this code folds them.
Function::iterator I = cast<BasicBlock>(ValueMap[&OldFunc->getEntryBlock()]);
while (I != NewFunc->end()) {
BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
if (!BI || BI->isConditional()) { ++I; continue; }
// Note that we can't eliminate uncond branches if the destination has
// single-entry PHI nodes. Eliminating the single-entry phi nodes would
// require scanning the ValueMap to update any entries that point to the phi
// node.
BasicBlock *Dest = BI->getSuccessor(0);
if (!Dest->getSinglePredecessor() || isa<PHINode>(Dest->begin())) {
++I; continue;
}
// We know all single-entry PHI nodes in the inlined function have been
// removed, so we just need to splice the blocks.
BI->eraseFromParent();
// Move all the instructions in the succ to the pred.
I->getInstList().splice(I->end(), Dest->getInstList());
// Make all PHI nodes that referred to Dest now refer to I as their source.
Dest->replaceAllUsesWith(I);
// Remove the dest block.
Dest->eraseFromParent();
// Do not increment I, iteratively merge all things this block branches to.
}
}