350 lines
12 KiB
C
Raw Normal View History

//===--- Allocator.h - Simple memory allocation abstraction -----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the MallocAllocator and BumpPtrAllocator interfaces.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_ALLOCATOR_H
#define LLVM_SUPPORT_ALLOCATOR_H
#include "llvm/Support/AlignOf.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Memory.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdlib>
namespace llvm {
template <typename T> struct ReferenceAdder {
typedef T &result;
};
template <typename T> struct ReferenceAdder<T &> {
typedef T result;
};
class MallocAllocator {
public:
MallocAllocator() {}
~MallocAllocator() {}
void Reset() {}
void *Allocate(size_t Size, size_t /*Alignment*/) { return malloc(Size); }
template <typename T> T *Allocate() {
return static_cast<T *>(malloc(sizeof(T)));
}
template <typename T> T *Allocate(size_t Num) {
return static_cast<T *>(malloc(sizeof(T) * Num));
}
void Deallocate(const void *Ptr) { free(const_cast<void *>(Ptr)); }
void PrintStats() const {}
};
/// MemSlab - This structure lives at the beginning of every slab allocated by
/// the bump allocator.
class MemSlab {
public:
size_t Size;
MemSlab *NextPtr;
};
/// SlabAllocator - This class can be used to parameterize the underlying
/// allocation strategy for the bump allocator. In particular, this is used
/// by the JIT to allocate contiguous swathes of executable memory. The
/// interface uses MemSlab's instead of void *'s so that the allocator
/// doesn't have to remember the size of the pointer it allocated.
class SlabAllocator {
public:
virtual ~SlabAllocator();
virtual MemSlab *Allocate(size_t Size) = 0;
virtual void Deallocate(MemSlab *Slab) = 0;
};
/// MallocSlabAllocator - The default slab allocator for the bump allocator
/// is an adapter class for MallocAllocator that just forwards the method
/// calls and translates the arguments.
class MallocSlabAllocator : public SlabAllocator {
/// Allocator - The underlying allocator that we forward to.
///
MallocAllocator Allocator;
public:
MallocSlabAllocator() : Allocator() {}
virtual ~MallocSlabAllocator();
MemSlab *Allocate(size_t Size) override;
void Deallocate(MemSlab *Slab) override;
};
/// \brief Non-templated base class for the \c BumpPtrAllocatorImpl template.
class BumpPtrAllocatorBase {
public:
void Deallocate(const void * /*Ptr*/) {}
void PrintStats() const;
/// \brief Returns the total physical memory allocated by this allocator.
size_t getTotalMemory() const;
protected:
/// \brief The slab that we are currently allocating into.
MemSlab *CurSlab;
/// \brief How many bytes we've allocated.
///
/// Used so that we can compute how much space was wasted.
size_t BytesAllocated;
BumpPtrAllocatorBase() : CurSlab(nullptr), BytesAllocated(0) {}
};
/// \brief Allocate memory in an ever growing pool, as if by bump-pointer.
///
/// This isn't strictly a bump-pointer allocator as it uses backing slabs of
/// memory rather than relying on boundless contiguous heap. However, it has
/// bump-pointer semantics in that is a monotonically growing pool of memory
/// where every allocation is found by merely allocating the next N bytes in
/// the slab, or the next N bytes in the next slab.
///
/// Note that this also has a threshold for forcing allocations above a certain
/// size into their own slab.
template <size_t SlabSize = 4096, size_t SizeThreshold = SlabSize>
class BumpPtrAllocatorImpl : public BumpPtrAllocatorBase {
BumpPtrAllocatorImpl(const BumpPtrAllocatorImpl &) LLVM_DELETED_FUNCTION;
void operator=(const BumpPtrAllocatorImpl &) LLVM_DELETED_FUNCTION;
public:
static_assert(SizeThreshold <= SlabSize,
"The SizeThreshold must be at most the SlabSize to ensure "
"that objects larger than a slab go into their own memory "
"allocation.");
BumpPtrAllocatorImpl()
: Allocator(DefaultSlabAllocator), NumSlabs(0) {}
BumpPtrAllocatorImpl(SlabAllocator &Allocator)
: Allocator(Allocator), NumSlabs(0) {}
~BumpPtrAllocatorImpl() { DeallocateSlabs(CurSlab); }
/// \brief Deallocate all but the current slab and reset the current pointer
/// to the beginning of it, freeing all memory allocated so far.
void Reset() {
if (!CurSlab)
return;
DeallocateSlabs(CurSlab->NextPtr);
CurSlab->NextPtr = nullptr;
CurPtr = (char *)(CurSlab + 1);
End = ((char *)CurSlab) + CurSlab->Size;
BytesAllocated = 0;
}
/// \brief Allocate space at the specified alignment.
void *Allocate(size_t Size, size_t Alignment) {
if (!CurSlab) // Start a new slab if we haven't allocated one already.
StartNewSlab();
// Keep track of how many bytes we've allocated.
BytesAllocated += Size;
// 0-byte alignment means 1-byte alignment.
if (Alignment == 0)
Alignment = 1;
// Allocate the aligned space, going forwards from CurPtr.
char *Ptr = alignPtr(CurPtr, Alignment);
// Check if we can hold it.
if (Ptr + Size <= End) {
CurPtr = Ptr + Size;
// Update the allocation point of this memory block in MemorySanitizer.
// Without this, MemorySanitizer messages for values originated from here
// will point to the allocation of the entire slab.
__msan_allocated_memory(Ptr, Size);
return Ptr;
}
// If Size is really big, allocate a separate slab for it.
size_t PaddedSize = Size + sizeof(MemSlab) + Alignment - 1;
if (PaddedSize > SizeThreshold) {
++NumSlabs;
MemSlab *NewSlab = Allocator.Allocate(PaddedSize);
// Put the new slab after the current slab, since we are not allocating
// into it.
NewSlab->NextPtr = CurSlab->NextPtr;
CurSlab->NextPtr = NewSlab;
Ptr = alignPtr((char *)(NewSlab + 1), Alignment);
assert((uintptr_t)Ptr + Size <= (uintptr_t)NewSlab + NewSlab->Size);
__msan_allocated_memory(Ptr, Size);
return Ptr;
}
// Otherwise, start a new slab and try again.
StartNewSlab();
Ptr = alignPtr(CurPtr, Alignment);
CurPtr = Ptr + Size;
assert(CurPtr <= End && "Unable to allocate memory!");
__msan_allocated_memory(Ptr, Size);
return Ptr;
}
/// \brief Allocate space for one object without constructing it.
template <typename T> T *Allocate() {
return static_cast<T *>(Allocate(sizeof(T), AlignOf<T>::Alignment));
}
/// \brief Allocate space for an array of objects without constructing them.
template <typename T> T *Allocate(size_t Num) {
return static_cast<T *>(Allocate(Num * sizeof(T), AlignOf<T>::Alignment));
}
/// \brief Allocate space for an array of objects with the specified alignment
/// and without constructing them.
template <typename T> T *Allocate(size_t Num, size_t Alignment) {
// Round EltSize up to the specified alignment.
size_t EltSize = (sizeof(T) + Alignment - 1) & (-Alignment);
return static_cast<T *>(Allocate(Num * EltSize, Alignment));
}
size_t GetNumSlabs() const { return NumSlabs; }
private:
/// \brief The default allocator used if one is not provided.
MallocSlabAllocator DefaultSlabAllocator;
/// \brief The underlying allocator we use to get slabs of memory.
///
/// This defaults to MallocSlabAllocator, which wraps malloc, but it could be
/// changed to use a custom allocator.
SlabAllocator &Allocator;
/// \brief The current pointer into the current slab.
///
/// This points to the next free byte in the slab.
char *CurPtr;
/// \brief The end of the current slab.
char *End;
/// \brief How many slabs we've allocated.
///
/// Used to scale the size of each slab and reduce the number of allocations
/// for extremely heavy memory use scenarios.
size_t NumSlabs;
/// \brief Allocate a new slab and move the bump pointers over into the new
/// slab, modifying CurPtr and End.
void StartNewSlab() {
++NumSlabs;
// Scale the actual allocated slab size based on the number of slabs
// allocated. Every 128 slabs allocated, we double the allocated size to
// reduce allocation frequency, but saturate at multiplying the slab size by
// 2^30.
// FIXME: Currently, this count includes special slabs for objects above the
// size threshold. That will be fixed in a subsequent commit to make the
// growth even more predictable.
size_t AllocatedSlabSize =
SlabSize * ((size_t)1 << std::min<size_t>(30, NumSlabs / 128));
MemSlab *NewSlab = Allocator.Allocate(AllocatedSlabSize);
NewSlab->NextPtr = CurSlab;
CurSlab = NewSlab;
CurPtr = (char *)(CurSlab + 1);
End = ((char *)CurSlab) + CurSlab->Size;
}
/// \brief Deallocate all memory slabs after and including this one.
void DeallocateSlabs(MemSlab *Slab) {
while (Slab) {
MemSlab *NextSlab = Slab->NextPtr;
#ifndef NDEBUG
// Poison the memory so stale pointers crash sooner. Note we must
// preserve the Size and NextPtr fields at the beginning.
sys::Memory::setRangeWritable(Slab + 1, Slab->Size - sizeof(MemSlab));
memset(Slab + 1, 0xCD, Slab->Size - sizeof(MemSlab));
#endif
Allocator.Deallocate(Slab);
Slab = NextSlab;
--NumSlabs;
}
}
template <typename T> friend class SpecificBumpPtrAllocator;
};
/// \brief The standard BumpPtrAllocator which just uses the default template
/// paramaters.
typedef BumpPtrAllocatorImpl<> BumpPtrAllocator;
/// \brief A BumpPtrAllocator that allows only elements of a specific type to be
/// allocated.
///
/// This allows calling the destructor in DestroyAll() and when the allocator is
/// destroyed.
template <typename T> class SpecificBumpPtrAllocator {
BumpPtrAllocator Allocator;
public:
SpecificBumpPtrAllocator() : Allocator() {}
SpecificBumpPtrAllocator(SlabAllocator &allocator) : Allocator(allocator) {}
~SpecificBumpPtrAllocator() { DestroyAll(); }
/// Call the destructor of each allocated object and deallocate all but the
/// current slab and reset the current pointer to the beginning of it, freeing
/// all memory allocated so far.
void DestroyAll() {
MemSlab *Slab = Allocator.CurSlab;
while (Slab) {
char *End = Slab == Allocator.CurSlab ? Allocator.CurPtr
: (char *)Slab + Slab->Size;
for (char *Ptr = (char *)(Slab + 1); Ptr < End; Ptr += sizeof(T)) {
Ptr = alignPtr(Ptr, alignOf<T>());
if (Ptr + sizeof(T) <= End)
reinterpret_cast<T *>(Ptr)->~T();
}
Slab = Slab->NextPtr;
}
Allocator.Reset();
}
/// \brief Allocate space for an array of objects without constructing them.
T *Allocate(size_t num = 1) { return Allocator.Allocate<T>(num); }
};
} // end namespace llvm
template <size_t SlabSize, size_t SizeThreshold>
void *
operator new(size_t Size,
llvm::BumpPtrAllocatorImpl<SlabSize, SizeThreshold> &Allocator) {
struct S {
char c;
union {
double D;
long double LD;
long long L;
void *P;
} x;
};
return Allocator.Allocate(
Size, std::min((size_t)llvm::NextPowerOf2(Size), offsetof(S, x)));
}
template <size_t SlabSize, size_t SizeThreshold>
void operator delete(void *,
llvm::BumpPtrAllocatorImpl<SlabSize, SizeThreshold> &) {}
#endif // LLVM_SUPPORT_ALLOCATOR_H