llvm-6502/lib/Target/NVPTX/NVPTXAsmPrinter.cpp

2118 lines
65 KiB
C++
Raw Normal View History

//===-- NVPTXAsmPrinter.cpp - NVPTX LLVM assembly writer ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a printer that converts from our internal representation
// of machine-dependent LLVM code to NVPTX assembly language.
//
//===----------------------------------------------------------------------===//
#include "NVPTXAsmPrinter.h"
#include "MCTargetDesc/NVPTXMCAsmInfo.h"
#include "NVPTX.h"
#include "NVPTXInstrInfo.h"
#include "NVPTXNumRegisters.h"
#include "NVPTXRegisterInfo.h"
#include "NVPTXTargetMachine.h"
#include "NVPTXUtilities.h"
#include "cl_common_defines.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/DebugInfo.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TimeValue.h"
#include "llvm/Target/Mangler.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include <sstream>
using namespace llvm;
#include "NVPTXGenAsmWriter.inc"
bool RegAllocNilUsed = true;
#define DEPOTNAME "__local_depot"
static cl::opt<bool>
EmitLineNumbers("nvptx-emit-line-numbers",
cl::desc("NVPTX Specific: Emit Line numbers even without -G"),
cl::init(true));
namespace llvm { bool InterleaveSrcInPtx = false; }
static cl::opt<bool, true>
InterleaveSrc("nvptx-emit-src", cl::ZeroOrMore,
cl::desc("NVPTX Specific: Emit source line in ptx file"),
cl::location(llvm::InterleaveSrcInPtx));
namespace {
/// DiscoverDependentGlobals - Return a set of GlobalVariables on which \p V
/// depends.
void DiscoverDependentGlobals(Value *V, DenseSet<GlobalVariable *> &Globals) {
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
Globals.insert(GV);
else {
if (User *U = dyn_cast<User>(V)) {
for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i) {
DiscoverDependentGlobals(U->getOperand(i), Globals);
}
}
}
}
/// VisitGlobalVariableForEmission - Add \p GV to the list of GlobalVariable
/// instances to be emitted, but only after any dependents have been added
/// first.
void VisitGlobalVariableForEmission(
GlobalVariable *GV, SmallVectorImpl<GlobalVariable *> &Order,
DenseSet<GlobalVariable *> &Visited, DenseSet<GlobalVariable *> &Visiting) {
// Have we already visited this one?
if (Visited.count(GV))
return;
// Do we have a circular dependency?
if (Visiting.count(GV))
report_fatal_error("Circular dependency found in global variable set");
// Start visiting this global
Visiting.insert(GV);
// Make sure we visit all dependents first
DenseSet<GlobalVariable *> Others;
for (unsigned i = 0, e = GV->getNumOperands(); i != e; ++i)
DiscoverDependentGlobals(GV->getOperand(i), Others);
for (DenseSet<GlobalVariable *>::iterator I = Others.begin(),
E = Others.end();
I != E; ++I)
VisitGlobalVariableForEmission(*I, Order, Visited, Visiting);
// Now we can visit ourself
Order.push_back(GV);
Visited.insert(GV);
Visiting.erase(GV);
}
}
// @TODO: This is a copy from AsmPrinter.cpp. The function is static, so we
// cannot just link to the existing version.
/// LowerConstant - Lower the specified LLVM Constant to an MCExpr.
///
using namespace nvptx;
const MCExpr *nvptx::LowerConstant(const Constant *CV, AsmPrinter &AP) {
MCContext &Ctx = AP.OutContext;
if (CV->isNullValue() || isa<UndefValue>(CV))
return MCConstantExpr::Create(0, Ctx);
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
return MCConstantExpr::Create(CI->getZExtValue(), Ctx);
if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx);
if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx);
const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
if (CE == 0)
llvm_unreachable("Unknown constant value to lower!");
switch (CE->getOpcode()) {
default:
// If the code isn't optimized, there may be outstanding folding
// opportunities. Attempt to fold the expression using DataLayout as a
// last resort before giving up.
if (Constant *C = ConstantFoldConstantExpression(CE, AP.TM.getDataLayout()))
if (C != CE)
return LowerConstant(C, AP);
// Otherwise report the problem to the user.
{
std::string S;
raw_string_ostream OS(S);
OS << "Unsupported expression in static initializer: ";
WriteAsOperand(OS, CE, /*PrintType=*/ false,
!AP.MF ? 0 : AP.MF->getFunction()->getParent());
report_fatal_error(OS.str());
}
case Instruction::GetElementPtr: {
const DataLayout &TD = *AP.TM.getDataLayout();
// Generate a symbolic expression for the byte address
APInt OffsetAI(TD.getPointerSizeInBits(), 0);
cast<GEPOperator>(CE)->accumulateConstantOffset(TD, OffsetAI);
const MCExpr *Base = LowerConstant(CE->getOperand(0), AP);
if (!OffsetAI)
return Base;
int64_t Offset = OffsetAI.getSExtValue();
return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx),
Ctx);
}
case Instruction::Trunc:
// We emit the value and depend on the assembler to truncate the generated
// expression properly. This is important for differences between
// blockaddress labels. Since the two labels are in the same function, it
// is reasonable to treat their delta as a 32-bit value.
// FALL THROUGH.
case Instruction::BitCast:
return LowerConstant(CE->getOperand(0), AP);
case Instruction::IntToPtr: {
const DataLayout &TD = *AP.TM.getDataLayout();
// Handle casts to pointers by changing them into casts to the appropriate
// integer type. This promotes constant folding and simplifies this code.
Constant *Op = CE->getOperand(0);
Revert the series of commits starting with r166578 which introduced the getIntPtrType support for multiple address spaces via a pointer type, and also introduced a crasher bug in the constant folder reported in PR14233. These commits also contained several problems that should really be addressed before they are re-committed. I have avoided reverting various cleanups to the DataLayout APIs that are reasonable to have moving forward in order to reduce the amount of churn, and minimize the number of commits that were reverted. I've also manually updated merge conflicts and manually arranged for the getIntPtrType function to stay in DataLayout and to be defined in a plausible way after this revert. Thanks to Duncan for working through this exact strategy with me, and Nick Lewycky for tracking down the really annoying crasher this triggered. (Test case to follow in its own commit.) After discussing with Duncan extensively, and based on a note from Micah, I'm going to continue to back out some more of the more problematic patches in this series in order to ensure we go into the LLVM 3.2 branch with a reasonable story here. I'll send a note to llvmdev explaining what's going on and why. Summary of reverted revisions: r166634: Fix a compiler warning with an unused variable. r166607: Add some cleanup to the DataLayout changes requested by Chandler. r166596: Revert "Back out r166591, not sure why this made it through since I cancelled the command. Bleh, sorry about this! r166591: Delete a directory that wasn't supposed to be checked in yet. r166578: Add in support for getIntPtrType to get the pointer type based on the address space. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167221 91177308-0d34-0410-b5e6-96231b3b80d8
2012-11-01 08:07:29 +00:00
Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()),
false /*ZExt*/);
return LowerConstant(Op, AP);
}
case Instruction::PtrToInt: {
const DataLayout &TD = *AP.TM.getDataLayout();
// Support only foldable casts to/from pointers that can be eliminated by
// changing the pointer to the appropriately sized integer type.
Constant *Op = CE->getOperand(0);
Type *Ty = CE->getType();
const MCExpr *OpExpr = LowerConstant(Op, AP);
// We can emit the pointer value into this slot if the slot is an
// integer slot equal to the size of the pointer.
if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType()))
return OpExpr;
// Otherwise the pointer is smaller than the resultant integer, mask off
// the high bits so we are sure to get a proper truncation if the input is
// a constant expr.
unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType());
const MCExpr *MaskExpr =
MCConstantExpr::Create(~0ULL >> (64 - InBits), Ctx);
return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx);
}
// The MC library also has a right-shift operator, but it isn't consistently
// signed or unsigned between different targets.
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
case Instruction::SDiv:
case Instruction::SRem:
case Instruction::Shl:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor: {
const MCExpr *LHS = LowerConstant(CE->getOperand(0), AP);
const MCExpr *RHS = LowerConstant(CE->getOperand(1), AP);
switch (CE->getOpcode()) {
default:
llvm_unreachable("Unknown binary operator constant cast expr");
case Instruction::Add:
return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx);
case Instruction::Sub:
return MCBinaryExpr::CreateSub(LHS, RHS, Ctx);
case Instruction::Mul:
return MCBinaryExpr::CreateMul(LHS, RHS, Ctx);
case Instruction::SDiv:
return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx);
case Instruction::SRem:
return MCBinaryExpr::CreateMod(LHS, RHS, Ctx);
case Instruction::Shl:
return MCBinaryExpr::CreateShl(LHS, RHS, Ctx);
case Instruction::And:
return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx);
case Instruction::Or:
return MCBinaryExpr::CreateOr(LHS, RHS, Ctx);
case Instruction::Xor:
return MCBinaryExpr::CreateXor(LHS, RHS, Ctx);
}
}
}
}
void NVPTXAsmPrinter::emitLineNumberAsDotLoc(const MachineInstr &MI) {
if (!EmitLineNumbers)
return;
if (ignoreLoc(MI))
return;
DebugLoc curLoc = MI.getDebugLoc();
if (prevDebugLoc.isUnknown() && curLoc.isUnknown())
return;
if (prevDebugLoc == curLoc)
return;
prevDebugLoc = curLoc;
if (curLoc.isUnknown())
return;
const MachineFunction *MF = MI.getParent()->getParent();
//const TargetMachine &TM = MF->getTarget();
const LLVMContext &ctx = MF->getFunction()->getContext();
DIScope Scope(curLoc.getScope(ctx));
if (!Scope.Verify())
return;
StringRef fileName(Scope.getFilename());
StringRef dirName(Scope.getDirectory());
SmallString<128> FullPathName = dirName;
if (!dirName.empty() && !sys::path::is_absolute(fileName)) {
sys::path::append(FullPathName, fileName);
fileName = FullPathName.str();
}
if (filenameMap.find(fileName.str()) == filenameMap.end())
return;
// Emit the line from the source file.
if (llvm::InterleaveSrcInPtx)
this->emitSrcInText(fileName.str(), curLoc.getLine());
std::stringstream temp;
temp << "\t.loc " << filenameMap[fileName.str()] << " " << curLoc.getLine()
<< " " << curLoc.getCol();
OutStreamer.EmitRawText(Twine(temp.str().c_str()));
}
void NVPTXAsmPrinter::EmitInstruction(const MachineInstr *MI) {
SmallString<128> Str;
raw_svector_ostream OS(Str);
if (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA)
emitLineNumberAsDotLoc(*MI);
printInstruction(MI, OS);
OutStreamer.EmitRawText(OS.str());
}
void NVPTXAsmPrinter::printReturnValStr(const Function *F, raw_ostream &O) {
const DataLayout *TD = TM.getDataLayout();
const TargetLowering *TLI = TM.getTargetLowering();
Type *Ty = F->getReturnType();
bool isABI = (nvptxSubtarget.getSmVersion() >= 20);
if (Ty->getTypeID() == Type::VoidTyID)
return;
O << " (";
if (isABI) {
if (Ty->isPrimitiveType() || Ty->isIntegerTy()) {
unsigned size = 0;
if (const IntegerType *ITy = dyn_cast<IntegerType>(Ty)) {
size = ITy->getBitWidth();
if (size < 32)
size = 32;
} else {
assert(Ty->isFloatingPointTy() && "Floating point type expected here");
size = Ty->getPrimitiveSizeInBits();
}
O << ".param .b" << size << " func_retval0";
} else if (isa<PointerType>(Ty)) {
O << ".param .b" << TLI->getPointerTy().getSizeInBits()
<< " func_retval0";
} else {
if ((Ty->getTypeID() == Type::StructTyID) || isa<VectorType>(Ty)) {
SmallVector<EVT, 16> vtparts;
ComputeValueVTs(*TLI, Ty, vtparts);
unsigned totalsz = 0;
for (unsigned i = 0, e = vtparts.size(); i != e; ++i) {
unsigned elems = 1;
EVT elemtype = vtparts[i];
if (vtparts[i].isVector()) {
elems = vtparts[i].getVectorNumElements();
elemtype = vtparts[i].getVectorElementType();
}
for (unsigned j = 0, je = elems; j != je; ++j) {
unsigned sz = elemtype.getSizeInBits();
if (elemtype.isInteger() && (sz < 8))
sz = 8;
totalsz += sz / 8;
}
}
unsigned retAlignment = 0;
if (!llvm::getAlign(*F, 0, retAlignment))
retAlignment = TD->getABITypeAlignment(Ty);
O << ".param .align " << retAlignment << " .b8 func_retval0[" << totalsz
<< "]";
} else
assert(false && "Unknown return type");
}
} else {
SmallVector<EVT, 16> vtparts;
ComputeValueVTs(*TLI, Ty, vtparts);
unsigned idx = 0;
for (unsigned i = 0, e = vtparts.size(); i != e; ++i) {
unsigned elems = 1;
EVT elemtype = vtparts[i];
if (vtparts[i].isVector()) {
elems = vtparts[i].getVectorNumElements();
elemtype = vtparts[i].getVectorElementType();
}
for (unsigned j = 0, je = elems; j != je; ++j) {
unsigned sz = elemtype.getSizeInBits();
if (elemtype.isInteger() && (sz < 32))
sz = 32;
O << ".reg .b" << sz << " func_retval" << idx;
if (j < je - 1)
O << ", ";
++idx;
}
if (i < e - 1)
O << ", ";
}
}
O << ") ";
return;
}
void NVPTXAsmPrinter::printReturnValStr(const MachineFunction &MF,
raw_ostream &O) {
const Function *F = MF.getFunction();
printReturnValStr(F, O);
}
void NVPTXAsmPrinter::EmitFunctionEntryLabel() {
SmallString<128> Str;
raw_svector_ostream O(Str);
// Set up
MRI = &MF->getRegInfo();
F = MF->getFunction();
emitLinkageDirective(F, O);
if (llvm::isKernelFunction(*F))
O << ".entry ";
else {
O << ".func ";
printReturnValStr(*MF, O);
}
O << *CurrentFnSym;
emitFunctionParamList(*MF, O);
if (llvm::isKernelFunction(*F))
emitKernelFunctionDirectives(*F, O);
OutStreamer.EmitRawText(O.str());
prevDebugLoc = DebugLoc();
}
void NVPTXAsmPrinter::EmitFunctionBodyStart() {
const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
unsigned numRegClasses = TRI.getNumRegClasses();
VRidGlobal2LocalMap = new std::map<unsigned, unsigned>[numRegClasses + 1];
OutStreamer.EmitRawText(StringRef("{\n"));
setAndEmitFunctionVirtualRegisters(*MF);
SmallString<128> Str;
raw_svector_ostream O(Str);
emitDemotedVars(MF->getFunction(), O);
OutStreamer.EmitRawText(O.str());
}
void NVPTXAsmPrinter::EmitFunctionBodyEnd() {
OutStreamer.EmitRawText(StringRef("}\n"));
delete[] VRidGlobal2LocalMap;
}
void NVPTXAsmPrinter::emitKernelFunctionDirectives(const Function &F,
raw_ostream &O) const {
// If the NVVM IR has some of reqntid* specified, then output
// the reqntid directive, and set the unspecified ones to 1.
// If none of reqntid* is specified, don't output reqntid directive.
unsigned reqntidx, reqntidy, reqntidz;
bool specified = false;
if (llvm::getReqNTIDx(F, reqntidx) == false)
reqntidx = 1;
else
specified = true;
if (llvm::getReqNTIDy(F, reqntidy) == false)
reqntidy = 1;
else
specified = true;
if (llvm::getReqNTIDz(F, reqntidz) == false)
reqntidz = 1;
else
specified = true;
if (specified)
O << ".reqntid " << reqntidx << ", " << reqntidy << ", " << reqntidz
<< "\n";
// If the NVVM IR has some of maxntid* specified, then output
// the maxntid directive, and set the unspecified ones to 1.
// If none of maxntid* is specified, don't output maxntid directive.
unsigned maxntidx, maxntidy, maxntidz;
specified = false;
if (llvm::getMaxNTIDx(F, maxntidx) == false)
maxntidx = 1;
else
specified = true;
if (llvm::getMaxNTIDy(F, maxntidy) == false)
maxntidy = 1;
else
specified = true;
if (llvm::getMaxNTIDz(F, maxntidz) == false)
maxntidz = 1;
else
specified = true;
if (specified)
O << ".maxntid " << maxntidx << ", " << maxntidy << ", " << maxntidz
<< "\n";
unsigned mincta;
if (llvm::getMinCTASm(F, mincta))
O << ".minnctapersm " << mincta << "\n";
}
void NVPTXAsmPrinter::getVirtualRegisterName(unsigned vr, bool isVec,
raw_ostream &O) {
const TargetRegisterClass *RC = MRI->getRegClass(vr);
unsigned id = RC->getID();
std::map<unsigned, unsigned> &regmap = VRidGlobal2LocalMap[id];
unsigned mapped_vr = regmap[vr];
if (!isVec) {
O << getNVPTXRegClassStr(RC) << mapped_vr;
return;
}
report_fatal_error("Bad register!");
}
void NVPTXAsmPrinter::emitVirtualRegister(unsigned int vr, bool isVec,
raw_ostream &O) {
getVirtualRegisterName(vr, isVec, O);
}
void NVPTXAsmPrinter::printVecModifiedImmediate(
const MachineOperand &MO, const char *Modifier, raw_ostream &O) {
static const char vecelem[] = { '0', '1', '2', '3', '0', '1', '2', '3' };
int Imm = (int) MO.getImm();
if (0 == strcmp(Modifier, "vecelem"))
O << "_" << vecelem[Imm];
else if (0 == strcmp(Modifier, "vecv4comm1")) {
if ((Imm < 0) || (Imm > 3))
O << "//";
} else if (0 == strcmp(Modifier, "vecv4comm2")) {
if ((Imm < 4) || (Imm > 7))
O << "//";
} else if (0 == strcmp(Modifier, "vecv4pos")) {
if (Imm < 0)
Imm = 0;
O << "_" << vecelem[Imm % 4];
} else if (0 == strcmp(Modifier, "vecv2comm1")) {
if ((Imm < 0) || (Imm > 1))
O << "//";
} else if (0 == strcmp(Modifier, "vecv2comm2")) {
if ((Imm < 2) || (Imm > 3))
O << "//";
} else if (0 == strcmp(Modifier, "vecv2pos")) {
if (Imm < 0)
Imm = 0;
O << "_" << vecelem[Imm % 2];
} else
llvm_unreachable("Unknown Modifier on immediate operand");
}
void NVPTXAsmPrinter::printOperand(const MachineInstr *MI, int opNum,
raw_ostream &O, const char *Modifier) {
const MachineOperand &MO = MI->getOperand(opNum);
switch (MO.getType()) {
case MachineOperand::MO_Register:
if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
if (MO.getReg() == NVPTX::VRDepot)
O << DEPOTNAME << getFunctionNumber();
else
O << getRegisterName(MO.getReg());
} else {
if (!Modifier)
emitVirtualRegister(MO.getReg(), false, O);
else {
if (strcmp(Modifier, "vecfull") == 0)
emitVirtualRegister(MO.getReg(), true, O);
else
llvm_unreachable(
"Don't know how to handle the modifier on virtual register.");
}
}
return;
case MachineOperand::MO_Immediate:
if (!Modifier)
O << MO.getImm();
else if (strstr(Modifier, "vec") == Modifier)
printVecModifiedImmediate(MO, Modifier, O);
else
llvm_unreachable(
"Don't know how to handle modifier on immediate operand");
return;
case MachineOperand::MO_FPImmediate:
printFPConstant(MO.getFPImm(), O);
break;
case MachineOperand::MO_GlobalAddress:
O << *Mang->getSymbol(MO.getGlobal());
break;
case MachineOperand::MO_ExternalSymbol: {
const char *symbname = MO.getSymbolName();
if (strstr(symbname, ".PARAM") == symbname) {
unsigned index;
sscanf(symbname + 6, "%u[];", &index);
printParamName(index, O);
} else if (strstr(symbname, ".HLPPARAM") == symbname) {
unsigned index;
sscanf(symbname + 9, "%u[];", &index);
O << *CurrentFnSym << "_param_" << index << "_offset";
} else
O << symbname;
break;
}
case MachineOperand::MO_MachineBasicBlock:
O << *MO.getMBB()->getSymbol();
return;
default:
llvm_unreachable("Operand type not supported.");
}
}
void NVPTXAsmPrinter::printImplicitDef(const MachineInstr *MI,
raw_ostream &O) const {
#ifndef __OPTIMIZE__
O << "\t// Implicit def :";
//printOperand(MI, 0);
O << "\n";
#endif
}
void NVPTXAsmPrinter::printMemOperand(const MachineInstr *MI, int opNum,
raw_ostream &O, const char *Modifier) {
printOperand(MI, opNum, O);
if (Modifier && !strcmp(Modifier, "add")) {
O << ", ";
printOperand(MI, opNum + 1, O);
} else {
if (MI->getOperand(opNum + 1).isImm() &&
MI->getOperand(opNum + 1).getImm() == 0)
return; // don't print ',0' or '+0'
O << "+";
printOperand(MI, opNum + 1, O);
}
}
void NVPTXAsmPrinter::printLdStCode(const MachineInstr *MI, int opNum,
raw_ostream &O, const char *Modifier) {
if (Modifier) {
const MachineOperand &MO = MI->getOperand(opNum);
int Imm = (int) MO.getImm();
if (!strcmp(Modifier, "volatile")) {
if (Imm)
O << ".volatile";
} else if (!strcmp(Modifier, "addsp")) {
switch (Imm) {
case NVPTX::PTXLdStInstCode::GLOBAL:
O << ".global";
break;
case NVPTX::PTXLdStInstCode::SHARED:
O << ".shared";
break;
case NVPTX::PTXLdStInstCode::LOCAL:
O << ".local";
break;
case NVPTX::PTXLdStInstCode::PARAM:
O << ".param";
break;
case NVPTX::PTXLdStInstCode::CONSTANT:
O << ".const";
break;
case NVPTX::PTXLdStInstCode::GENERIC:
if (!nvptxSubtarget.hasGenericLdSt())
O << ".global";
break;
default:
llvm_unreachable("Wrong Address Space");
}
} else if (!strcmp(Modifier, "sign")) {
if (Imm == NVPTX::PTXLdStInstCode::Signed)
O << "s";
else if (Imm == NVPTX::PTXLdStInstCode::Unsigned)
O << "u";
else
O << "f";
} else if (!strcmp(Modifier, "vec")) {
if (Imm == NVPTX::PTXLdStInstCode::V2)
O << ".v2";
else if (Imm == NVPTX::PTXLdStInstCode::V4)
O << ".v4";
} else
llvm_unreachable("Unknown Modifier");
} else
llvm_unreachable("Empty Modifier");
}
void NVPTXAsmPrinter::emitDeclaration(const Function *F, raw_ostream &O) {
emitLinkageDirective(F, O);
if (llvm::isKernelFunction(*F))
O << ".entry ";
else
O << ".func ";
printReturnValStr(F, O);
O << *CurrentFnSym << "\n";
emitFunctionParamList(F, O);
O << ";\n";
}
static bool usedInGlobalVarDef(const Constant *C) {
if (!C)
return false;
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
if (GV->getName().str() == "llvm.used")
return false;
return true;
}
for (Value::const_use_iterator ui = C->use_begin(), ue = C->use_end();
ui != ue; ++ui) {
const Constant *C = dyn_cast<Constant>(*ui);
if (usedInGlobalVarDef(C))
return true;
}
return false;
}
static bool usedInOneFunc(const User *U, Function const *&oneFunc) {
if (const GlobalVariable *othergv = dyn_cast<GlobalVariable>(U)) {
if (othergv->getName().str() == "llvm.used")
return true;
}
if (const Instruction *instr = dyn_cast<Instruction>(U)) {
if (instr->getParent() && instr->getParent()->getParent()) {
const Function *curFunc = instr->getParent()->getParent();
if (oneFunc && (curFunc != oneFunc))
return false;
oneFunc = curFunc;
return true;
} else
return false;
}
if (const MDNode *md = dyn_cast<MDNode>(U))
if (md->hasName() && ((md->getName().str() == "llvm.dbg.gv") ||
(md->getName().str() == "llvm.dbg.sp")))
return true;
for (User::const_use_iterator ui = U->use_begin(), ue = U->use_end();
ui != ue; ++ui) {
if (usedInOneFunc(*ui, oneFunc) == false)
return false;
}
return true;
}
/* Find out if a global variable can be demoted to local scope.
* Currently, this is valid for CUDA shared variables, which have local
* scope and global lifetime. So the conditions to check are :
* 1. Is the global variable in shared address space?
* 2. Does it have internal linkage?
* 3. Is the global variable referenced only in one function?
*/
static bool canDemoteGlobalVar(const GlobalVariable *gv, Function const *&f) {
if (gv->hasInternalLinkage() == false)
return false;
const PointerType *Pty = gv->getType();
if (Pty->getAddressSpace() != llvm::ADDRESS_SPACE_SHARED)
return false;
const Function *oneFunc = 0;
bool flag = usedInOneFunc(gv, oneFunc);
if (flag == false)
return false;
if (!oneFunc)
return false;
f = oneFunc;
return true;
}
static bool useFuncSeen(const Constant *C,
llvm::DenseMap<const Function *, bool> &seenMap) {
for (Value::const_use_iterator ui = C->use_begin(), ue = C->use_end();
ui != ue; ++ui) {
if (const Constant *cu = dyn_cast<Constant>(*ui)) {
if (useFuncSeen(cu, seenMap))
return true;
} else if (const Instruction *I = dyn_cast<Instruction>(*ui)) {
const BasicBlock *bb = I->getParent();
if (!bb)
continue;
const Function *caller = bb->getParent();
if (!caller)
continue;
if (seenMap.find(caller) != seenMap.end())
return true;
}
}
return false;
}
void NVPTXAsmPrinter::emitDeclarations(Module &M, raw_ostream &O) {
llvm::DenseMap<const Function *, bool> seenMap;
for (Module::const_iterator FI = M.begin(), FE = M.end(); FI != FE; ++FI) {
const Function *F = FI;
if (F->isDeclaration()) {
if (F->use_empty())
continue;
if (F->getIntrinsicID())
continue;
CurrentFnSym = Mang->getSymbol(F);
emitDeclaration(F, O);
continue;
}
for (Value::const_use_iterator iter = F->use_begin(),
iterEnd = F->use_end();
iter != iterEnd; ++iter) {
if (const Constant *C = dyn_cast<Constant>(*iter)) {
if (usedInGlobalVarDef(C)) {
// The use is in the initialization of a global variable
// that is a function pointer, so print a declaration
// for the original function
CurrentFnSym = Mang->getSymbol(F);
emitDeclaration(F, O);
break;
}
// Emit a declaration of this function if the function that
// uses this constant expr has already been seen.
if (useFuncSeen(C, seenMap)) {
CurrentFnSym = Mang->getSymbol(F);
emitDeclaration(F, O);
break;
}
}
if (!isa<Instruction>(*iter))
continue;
const Instruction *instr = cast<Instruction>(*iter);
const BasicBlock *bb = instr->getParent();
if (!bb)
continue;
const Function *caller = bb->getParent();
if (!caller)
continue;
// If a caller has already been seen, then the caller is
// appearing in the module before the callee. so print out
// a declaration for the callee.
if (seenMap.find(caller) != seenMap.end()) {
CurrentFnSym = Mang->getSymbol(F);
emitDeclaration(F, O);
break;
}
}
seenMap[F] = true;
}
}
void NVPTXAsmPrinter::recordAndEmitFilenames(Module &M) {
DebugInfoFinder DbgFinder;
DbgFinder.processModule(M);
unsigned i = 1;
for (DebugInfoFinder::iterator I = DbgFinder.compile_unit_begin(),
E = DbgFinder.compile_unit_end();
I != E; ++I) {
DICompileUnit DIUnit(*I);
StringRef Filename(DIUnit.getFilename());
StringRef Dirname(DIUnit.getDirectory());
SmallString<128> FullPathName = Dirname;
if (!Dirname.empty() && !sys::path::is_absolute(Filename)) {
sys::path::append(FullPathName, Filename);
Filename = FullPathName.str();
}
if (filenameMap.find(Filename.str()) != filenameMap.end())
continue;
filenameMap[Filename.str()] = i;
OutStreamer.EmitDwarfFileDirective(i, "", Filename.str());
++i;
}
for (DebugInfoFinder::iterator I = DbgFinder.subprogram_begin(),
E = DbgFinder.subprogram_end();
I != E; ++I) {
DISubprogram SP(*I);
StringRef Filename(SP.getFilename());
StringRef Dirname(SP.getDirectory());
SmallString<128> FullPathName = Dirname;
if (!Dirname.empty() && !sys::path::is_absolute(Filename)) {
sys::path::append(FullPathName, Filename);
Filename = FullPathName.str();
}
if (filenameMap.find(Filename.str()) != filenameMap.end())
continue;
filenameMap[Filename.str()] = i;
++i;
}
}
bool NVPTXAsmPrinter::doInitialization(Module &M) {
SmallString<128> Str1;
raw_svector_ostream OS1(Str1);
MMI = getAnalysisIfAvailable<MachineModuleInfo>();
MMI->AnalyzeModule(M);
// We need to call the parent's one explicitly.
//bool Result = AsmPrinter::doInitialization(M);
// Initialize TargetLoweringObjectFile.
const_cast<TargetLoweringObjectFile &>(getObjFileLowering())
.Initialize(OutContext, TM);
Mang = new Mangler(OutContext, *TM.getDataLayout());
// Emit header before any dwarf directives are emitted below.
emitHeader(M, OS1);
OutStreamer.EmitRawText(OS1.str());
// Already commented out
//bool Result = AsmPrinter::doInitialization(M);
if (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA)
recordAndEmitFilenames(M);
SmallString<128> Str2;
raw_svector_ostream OS2(Str2);
emitDeclarations(M, OS2);
// As ptxas does not support forward references of globals, we need to first
// sort the list of module-level globals in def-use order. We visit each
// global variable in order, and ensure that we emit it *after* its dependent
// globals. We use a little extra memory maintaining both a set and a list to
// have fast searches while maintaining a strict ordering.
SmallVector<GlobalVariable *, 8> Globals;
DenseSet<GlobalVariable *> GVVisited;
DenseSet<GlobalVariable *> GVVisiting;
// Visit each global variable, in order
for (Module::global_iterator I = M.global_begin(), E = M.global_end(); I != E;
++I)
VisitGlobalVariableForEmission(I, Globals, GVVisited, GVVisiting);
assert(GVVisited.size() == M.getGlobalList().size() &&
"Missed a global variable");
assert(GVVisiting.size() == 0 && "Did not fully process a global variable");
// Print out module-level global variables in proper order
for (unsigned i = 0, e = Globals.size(); i != e; ++i)
printModuleLevelGV(Globals[i], OS2);
OS2 << '\n';
OutStreamer.EmitRawText(OS2.str());
return false; // success
}
void NVPTXAsmPrinter::emitHeader(Module &M, raw_ostream &O) {
O << "//\n";
O << "// Generated by LLVM NVPTX Back-End\n";
O << "//\n";
O << "\n";
unsigned PTXVersion = nvptxSubtarget.getPTXVersion();
O << ".version " << (PTXVersion / 10) << "." << (PTXVersion % 10) << "\n";
O << ".target ";
O << nvptxSubtarget.getTargetName();
if (nvptxSubtarget.getDrvInterface() == NVPTX::NVCL)
O << ", texmode_independent";
if (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA) {
if (!nvptxSubtarget.hasDouble())
O << ", map_f64_to_f32";
}
if (MAI->doesSupportDebugInformation())
O << ", debug";
O << "\n";
O << ".address_size ";
if (nvptxSubtarget.is64Bit())
O << "64";
else
O << "32";
O << "\n";
O << "\n";
}
bool NVPTXAsmPrinter::doFinalization(Module &M) {
// XXX Temproarily remove global variables so that doFinalization() will not
// emit them again (global variables are emitted at beginning).
Module::GlobalListType &global_list = M.getGlobalList();
int i, n = global_list.size();
GlobalVariable **gv_array = new GlobalVariable *[n];
// first, back-up GlobalVariable in gv_array
i = 0;
for (Module::global_iterator I = global_list.begin(), E = global_list.end();
I != E; ++I)
gv_array[i++] = &*I;
// second, empty global_list
while (!global_list.empty())
global_list.remove(global_list.begin());
// call doFinalization
bool ret = AsmPrinter::doFinalization(M);
// now we restore global variables
for (i = 0; i < n; i++)
global_list.insert(global_list.end(), gv_array[i]);
delete[] gv_array;
return ret;
//bool Result = AsmPrinter::doFinalization(M);
// Instead of calling the parents doFinalization, we may
// clone parents doFinalization and customize here.
// Currently, we if NVISA out the EmitGlobals() in
// parent's doFinalization, which is too intrusive.
//
// Same for the doInitialization.
//return Result;
}
// This function emits appropriate linkage directives for
// functions and global variables.
//
// extern function declaration -> .extern
// extern function definition -> .visible
// external global variable with init -> .visible
// external without init -> .extern
// appending -> not allowed, assert.
void NVPTXAsmPrinter::emitLinkageDirective(const GlobalValue *V,
raw_ostream &O) {
if (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA) {
if (V->hasExternalLinkage()) {
if (isa<GlobalVariable>(V)) {
const GlobalVariable *GVar = cast<GlobalVariable>(V);
if (GVar) {
if (GVar->hasInitializer())
O << ".visible ";
else
O << ".extern ";
}
} else if (V->isDeclaration())
O << ".extern ";
else
O << ".visible ";
} else if (V->hasAppendingLinkage()) {
std::string msg;
msg.append("Error: ");
msg.append("Symbol ");
if (V->hasName())
msg.append(V->getName().str());
msg.append("has unsupported appending linkage type");
llvm_unreachable(msg.c_str());
}
}
}
void NVPTXAsmPrinter::printModuleLevelGV(GlobalVariable *GVar, raw_ostream &O,
bool processDemoted) {
// Skip meta data
if (GVar->hasSection()) {
if (GVar->getSection() == "llvm.metadata")
return;
}
const DataLayout *TD = TM.getDataLayout();
// GlobalVariables are always constant pointers themselves.
const PointerType *PTy = GVar->getType();
Type *ETy = PTy->getElementType();
if (GVar->hasExternalLinkage()) {
if (GVar->hasInitializer())
O << ".visible ";
else
O << ".extern ";
}
if (llvm::isTexture(*GVar)) {
O << ".global .texref " << llvm::getTextureName(*GVar) << ";\n";
return;
}
if (llvm::isSurface(*GVar)) {
O << ".global .surfref " << llvm::getSurfaceName(*GVar) << ";\n";
return;
}
if (GVar->isDeclaration()) {
// (extern) declarations, no definition or initializer
// Currently the only known declaration is for an automatic __local
// (.shared) promoted to global.
emitPTXGlobalVariable(GVar, O);
O << ";\n";
return;
}
if (llvm::isSampler(*GVar)) {
O << ".global .samplerref " << llvm::getSamplerName(*GVar);
Constant *Initializer = NULL;
if (GVar->hasInitializer())
Initializer = GVar->getInitializer();
ConstantInt *CI = NULL;
if (Initializer)
CI = dyn_cast<ConstantInt>(Initializer);
if (CI) {
unsigned sample = CI->getZExtValue();
O << " = { ";
for (int i = 0,
addr = ((sample & __CLK_ADDRESS_MASK) >> __CLK_ADDRESS_BASE);
i < 3; i++) {
O << "addr_mode_" << i << " = ";
switch (addr) {
case 0:
O << "wrap";
break;
case 1:
O << "clamp_to_border";
break;
case 2:
O << "clamp_to_edge";
break;
case 3:
O << "wrap";
break;
case 4:
O << "mirror";
break;
}
O << ", ";
}
O << "filter_mode = ";
switch ((sample & __CLK_FILTER_MASK) >> __CLK_FILTER_BASE) {
case 0:
O << "nearest";
break;
case 1:
O << "linear";
break;
case 2:
assert(0 && "Anisotropic filtering is not supported");
default:
O << "nearest";
break;
}
if (!((sample & __CLK_NORMALIZED_MASK) >> __CLK_NORMALIZED_BASE)) {
O << ", force_unnormalized_coords = 1";
}
O << " }";
}
O << ";\n";
return;
}
if (GVar->hasPrivateLinkage()) {
if (!strncmp(GVar->getName().data(), "unrollpragma", 12))
return;
// FIXME - need better way (e.g. Metadata) to avoid generating this global
if (!strncmp(GVar->getName().data(), "filename", 8))
return;
if (GVar->use_empty())
return;
}
const Function *demotedFunc = 0;
if (!processDemoted && canDemoteGlobalVar(GVar, demotedFunc)) {
O << "// " << GVar->getName().str() << " has been demoted\n";
if (localDecls.find(demotedFunc) != localDecls.end())
localDecls[demotedFunc].push_back(GVar);
else {
std::vector<GlobalVariable *> temp;
temp.push_back(GVar);
localDecls[demotedFunc] = temp;
}
return;
}
O << ".";
emitPTXAddressSpace(PTy->getAddressSpace(), O);
if (GVar->getAlignment() == 0)
O << " .align " << (int) TD->getPrefTypeAlignment(ETy);
else
O << " .align " << GVar->getAlignment();
if (ETy->isPrimitiveType() || ETy->isIntegerTy() || isa<PointerType>(ETy)) {
O << " .";
O << getPTXFundamentalTypeStr(ETy, false);
O << " ";
O << *Mang->getSymbol(GVar);
// Ptx allows variable initilization only for constant and global state
// spaces.
if (((PTy->getAddressSpace() == llvm::ADDRESS_SPACE_GLOBAL) ||
(PTy->getAddressSpace() == llvm::ADDRESS_SPACE_CONST_NOT_GEN) ||
(PTy->getAddressSpace() == llvm::ADDRESS_SPACE_CONST)) &&
GVar->hasInitializer()) {
Constant *Initializer = GVar->getInitializer();
if (!Initializer->isNullValue()) {
O << " = ";
printScalarConstant(Initializer, O);
}
}
} else {
unsigned int ElementSize = 0;
// Although PTX has direct support for struct type and array type and
// LLVM IR is very similar to PTX, the LLVM CodeGen does not support for
// targets that support these high level field accesses. Structs, arrays
// and vectors are lowered into arrays of bytes.
switch (ETy->getTypeID()) {
case Type::StructTyID:
case Type::ArrayTyID:
case Type::VectorTyID:
ElementSize = TD->getTypeStoreSize(ETy);
// Ptx allows variable initilization only for constant and
// global state spaces.
if (((PTy->getAddressSpace() == llvm::ADDRESS_SPACE_GLOBAL) ||
(PTy->getAddressSpace() == llvm::ADDRESS_SPACE_CONST_NOT_GEN) ||
(PTy->getAddressSpace() == llvm::ADDRESS_SPACE_CONST)) &&
GVar->hasInitializer()) {
Constant *Initializer = GVar->getInitializer();
if (!isa<UndefValue>(Initializer) && !Initializer->isNullValue()) {
AggBuffer aggBuffer(ElementSize, O, *this);
bufferAggregateConstant(Initializer, &aggBuffer);
if (aggBuffer.numSymbols) {
if (nvptxSubtarget.is64Bit()) {
O << " .u64 " << *Mang->getSymbol(GVar) << "[";
O << ElementSize / 8;
} else {
O << " .u32 " << *Mang->getSymbol(GVar) << "[";
O << ElementSize / 4;
}
O << "]";
} else {
O << " .b8 " << *Mang->getSymbol(GVar) << "[";
O << ElementSize;
O << "]";
}
O << " = {";
aggBuffer.print();
O << "}";
} else {
O << " .b8 " << *Mang->getSymbol(GVar);
if (ElementSize) {
O << "[";
O << ElementSize;
O << "]";
}
}
} else {
O << " .b8 " << *Mang->getSymbol(GVar);
if (ElementSize) {
O << "[";
O << ElementSize;
O << "]";
}
}
break;
default:
assert(0 && "type not supported yet");
}
}
O << ";\n";
}
void NVPTXAsmPrinter::emitDemotedVars(const Function *f, raw_ostream &O) {
if (localDecls.find(f) == localDecls.end())
return;
std::vector<GlobalVariable *> &gvars = localDecls[f];
for (unsigned i = 0, e = gvars.size(); i != e; ++i) {
O << "\t// demoted variable\n\t";
printModuleLevelGV(gvars[i], O, true);
}
}
void NVPTXAsmPrinter::emitPTXAddressSpace(unsigned int AddressSpace,
raw_ostream &O) const {
switch (AddressSpace) {
case llvm::ADDRESS_SPACE_LOCAL:
O << "local";
break;
case llvm::ADDRESS_SPACE_GLOBAL:
O << "global";
break;
case llvm::ADDRESS_SPACE_CONST:
// This logic should be consistent with that in
// getCodeAddrSpace() (NVPTXISelDATToDAT.cpp)
if (nvptxSubtarget.hasGenericLdSt())
O << "global";
else
O << "const";
break;
case llvm::ADDRESS_SPACE_CONST_NOT_GEN:
O << "const";
break;
case llvm::ADDRESS_SPACE_SHARED:
O << "shared";
break;
default:
report_fatal_error("Bad address space found while emitting PTX");
break;
}
}
std::string
NVPTXAsmPrinter::getPTXFundamentalTypeStr(const Type *Ty, bool useB4PTR) const {
switch (Ty->getTypeID()) {
default:
llvm_unreachable("unexpected type");
break;
case Type::IntegerTyID: {
unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
if (NumBits == 1)
return "pred";
else if (NumBits <= 64) {
std::string name = "u";
return name + utostr(NumBits);
} else {
llvm_unreachable("Integer too large");
break;
}
break;
}
case Type::FloatTyID:
return "f32";
case Type::DoubleTyID:
return "f64";
case Type::PointerTyID:
if (nvptxSubtarget.is64Bit())
if (useB4PTR)
return "b64";
else
return "u64";
else if (useB4PTR)
return "b32";
else
return "u32";
}
llvm_unreachable("unexpected type");
return NULL;
}
void NVPTXAsmPrinter::emitPTXGlobalVariable(const GlobalVariable *GVar,
raw_ostream &O) {
const DataLayout *TD = TM.getDataLayout();
// GlobalVariables are always constant pointers themselves.
const PointerType *PTy = GVar->getType();
Type *ETy = PTy->getElementType();
O << ".";
emitPTXAddressSpace(PTy->getAddressSpace(), O);
if (GVar->getAlignment() == 0)
O << " .align " << (int) TD->getPrefTypeAlignment(ETy);
else
O << " .align " << GVar->getAlignment();
if (ETy->isPrimitiveType() || ETy->isIntegerTy() || isa<PointerType>(ETy)) {
O << " .";
O << getPTXFundamentalTypeStr(ETy);
O << " ";
O << *Mang->getSymbol(GVar);
return;
}
int64_t ElementSize = 0;
// Although PTX has direct support for struct type and array type and LLVM IR
// is very similar to PTX, the LLVM CodeGen does not support for targets that
// support these high level field accesses. Structs and arrays are lowered
// into arrays of bytes.
switch (ETy->getTypeID()) {
case Type::StructTyID:
case Type::ArrayTyID:
case Type::VectorTyID:
ElementSize = TD->getTypeStoreSize(ETy);
O << " .b8 " << *Mang->getSymbol(GVar) << "[";
if (ElementSize) {
O << itostr(ElementSize);
}
O << "]";
break;
default:
assert(0 && "type not supported yet");
}
return;
}
static unsigned int getOpenCLAlignment(const DataLayout *TD, Type *Ty) {
if (Ty->isPrimitiveType() || Ty->isIntegerTy() || isa<PointerType>(Ty))
return TD->getPrefTypeAlignment(Ty);
const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
if (ATy)
return getOpenCLAlignment(TD, ATy->getElementType());
const VectorType *VTy = dyn_cast<VectorType>(Ty);
if (VTy) {
Type *ETy = VTy->getElementType();
unsigned int numE = VTy->getNumElements();
unsigned int alignE = TD->getPrefTypeAlignment(ETy);
if (numE == 3)
return 4 * alignE;
else
return numE * alignE;
}
const StructType *STy = dyn_cast<StructType>(Ty);
if (STy) {
unsigned int alignStruct = 1;
// Go through each element of the struct and find the
// largest alignment.
for (unsigned i = 0, e = STy->getNumElements(); i != e; i++) {
Type *ETy = STy->getElementType(i);
unsigned int align = getOpenCLAlignment(TD, ETy);
if (align > alignStruct)
alignStruct = align;
}
return alignStruct;
}
const FunctionType *FTy = dyn_cast<FunctionType>(Ty);
if (FTy)
Revert the majority of the next patch in the address space series: r165941: Resubmit the changes to llvm core to update the functions to support different pointer sizes on a per address space basis. Despite this commit log, this change primarily changed stuff outside of VMCore, and those changes do not carry any tests for correctness (or even plausibility), and we have consistently found questionable or flat out incorrect cases in these changes. Most of them are probably correct, but we need to devise a system that makes it more clear when we have handled the address space concerns correctly, and ideally each pass that gets updated would receive an accompanying test case that exercises that pass specificaly w.r.t. alternate address spaces. However, from this commit, I have retained the new C API entry points. Those were an orthogonal change that probably should have been split apart, but they seem entirely good. In several places the changes were very obvious cleanups with no actual multiple address space code added; these I have not reverted when I spotted them. In a few other places there were merge conflicts due to a cleaner solution being implemented later, often not using address spaces at all. In those cases, I've preserved the new code which isn't address space dependent. This is part of my ongoing effort to clean out the partial address space code which carries high risk and low test coverage, and not likely to be finished before the 3.2 release looms closer. Duncan and I would both like to see the above issues addressed before we return to these changes. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167222 91177308-0d34-0410-b5e6-96231b3b80d8
2012-11-01 09:14:31 +00:00
return TD->getPointerPrefAlignment();
return TD->getPrefTypeAlignment(Ty);
}
void NVPTXAsmPrinter::printParamName(Function::const_arg_iterator I,
int paramIndex, raw_ostream &O) {
if ((nvptxSubtarget.getDrvInterface() == NVPTX::NVCL) ||
(nvptxSubtarget.getDrvInterface() == NVPTX::CUDA))
O << *CurrentFnSym << "_param_" << paramIndex;
else {
std::string argName = I->getName();
const char *p = argName.c_str();
while (*p) {
if (*p == '.')
O << "_";
else
O << *p;
p++;
}
}
}
void NVPTXAsmPrinter::printParamName(int paramIndex, raw_ostream &O) {
Function::const_arg_iterator I, E;
int i = 0;
if ((nvptxSubtarget.getDrvInterface() == NVPTX::NVCL) ||
(nvptxSubtarget.getDrvInterface() == NVPTX::CUDA)) {
O << *CurrentFnSym << "_param_" << paramIndex;
return;
}
for (I = F->arg_begin(), E = F->arg_end(); I != E; ++I, i++) {
if (i == paramIndex) {
printParamName(I, paramIndex, O);
return;
}
}
llvm_unreachable("paramIndex out of bound");
}
void NVPTXAsmPrinter::emitFunctionParamList(const Function *F, raw_ostream &O) {
const DataLayout *TD = TM.getDataLayout();
const AttributeSet &PAL = F->getAttributes();
const TargetLowering *TLI = TM.getTargetLowering();
Function::const_arg_iterator I, E;
unsigned paramIndex = 0;
bool first = true;
bool isKernelFunc = llvm::isKernelFunction(*F);
bool isABI = (nvptxSubtarget.getSmVersion() >= 20);
MVT thePointerTy = TLI->getPointerTy();
O << "(\n";
for (I = F->arg_begin(), E = F->arg_end(); I != E; ++I, paramIndex++) {
Type *Ty = I->getType();
if (!first)
O << ",\n";
first = false;
// Handle image/sampler parameters
if (llvm::isSampler(*I) || llvm::isImage(*I)) {
if (llvm::isImage(*I)) {
std::string sname = I->getName();
if (llvm::isImageWriteOnly(*I))
O << "\t.param .surfref " << *CurrentFnSym << "_param_" << paramIndex;
else // Default image is read_only
O << "\t.param .texref " << *CurrentFnSym << "_param_" << paramIndex;
} else // Should be llvm::isSampler(*I)
O << "\t.param .samplerref " << *CurrentFnSym << "_param_"
<< paramIndex;
continue;
}
if (PAL.hasAttribute(paramIndex + 1, Attribute::ByVal) == false) {
if (Ty->isVectorTy()) {
// Just print .param .b8 .align <a> .param[size];
// <a> = PAL.getparamalignment
// size = typeallocsize of element type
unsigned align = PAL.getParamAlignment(paramIndex + 1);
if (align == 0)
align = TD->getABITypeAlignment(Ty);
unsigned sz = TD->getTypeAllocSize(Ty);
O << "\t.param .align " << align << " .b8 ";
printParamName(I, paramIndex, O);
O << "[" << sz << "]";
continue;
}
// Just a scalar
const PointerType *PTy = dyn_cast<PointerType>(Ty);
if (isKernelFunc) {
if (PTy) {
// Special handling for pointer arguments to kernel
O << "\t.param .u" << thePointerTy.getSizeInBits() << " ";
if (nvptxSubtarget.getDrvInterface() != NVPTX::CUDA) {
Type *ETy = PTy->getElementType();
int addrSpace = PTy->getAddressSpace();
switch (addrSpace) {
default:
O << ".ptr ";
break;
case llvm::ADDRESS_SPACE_CONST_NOT_GEN:
O << ".ptr .const ";
break;
case llvm::ADDRESS_SPACE_SHARED:
O << ".ptr .shared ";
break;
case llvm::ADDRESS_SPACE_GLOBAL:
case llvm::ADDRESS_SPACE_CONST:
O << ".ptr .global ";
break;
}
O << ".align " << (int) getOpenCLAlignment(TD, ETy) << " ";
}
printParamName(I, paramIndex, O);
continue;
}
// non-pointer scalar to kernel func
O << "\t.param ." << getPTXFundamentalTypeStr(Ty) << " ";
printParamName(I, paramIndex, O);
continue;
}
// Non-kernel function, just print .param .b<size> for ABI
// and .reg .b<size> for non ABY
unsigned sz = 0;
if (isa<IntegerType>(Ty)) {
sz = cast<IntegerType>(Ty)->getBitWidth();
if (sz < 32)
sz = 32;
} else if (isa<PointerType>(Ty))
sz = thePointerTy.getSizeInBits();
else
sz = Ty->getPrimitiveSizeInBits();
if (isABI)
O << "\t.param .b" << sz << " ";
else
O << "\t.reg .b" << sz << " ";
printParamName(I, paramIndex, O);
continue;
}
// param has byVal attribute. So should be a pointer
const PointerType *PTy = dyn_cast<PointerType>(Ty);
assert(PTy && "Param with byval attribute should be a pointer type");
Type *ETy = PTy->getElementType();
if (isABI || isKernelFunc) {
// Just print .param .b8 .align <a> .param[size];
// <a> = PAL.getparamalignment
// size = typeallocsize of element type
unsigned align = PAL.getParamAlignment(paramIndex + 1);
if (align == 0)
align = TD->getABITypeAlignment(ETy);
unsigned sz = TD->getTypeAllocSize(ETy);
O << "\t.param .align " << align << " .b8 ";
printParamName(I, paramIndex, O);
O << "[" << sz << "]";
continue;
} else {
// Split the ETy into constituent parts and
// print .param .b<size> <name> for each part.
// Further, if a part is vector, print the above for
// each vector element.
SmallVector<EVT, 16> vtparts;
ComputeValueVTs(*TLI, ETy, vtparts);
for (unsigned i = 0, e = vtparts.size(); i != e; ++i) {
unsigned elems = 1;
EVT elemtype = vtparts[i];
if (vtparts[i].isVector()) {
elems = vtparts[i].getVectorNumElements();
elemtype = vtparts[i].getVectorElementType();
}
for (unsigned j = 0, je = elems; j != je; ++j) {
unsigned sz = elemtype.getSizeInBits();
if (elemtype.isInteger() && (sz < 32))
sz = 32;
O << "\t.reg .b" << sz << " ";
printParamName(I, paramIndex, O);
if (j < je - 1)
O << ",\n";
++paramIndex;
}
if (i < e - 1)
O << ",\n";
}
--paramIndex;
continue;
}
}
O << "\n)\n";
}
void NVPTXAsmPrinter::emitFunctionParamList(const MachineFunction &MF,
raw_ostream &O) {
const Function *F = MF.getFunction();
emitFunctionParamList(F, O);
}
void NVPTXAsmPrinter::setAndEmitFunctionVirtualRegisters(
const MachineFunction &MF) {
SmallString<128> Str;
raw_svector_ostream O(Str);
// Map the global virtual register number to a register class specific
// virtual register number starting from 1 with that class.
const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
//unsigned numRegClasses = TRI->getNumRegClasses();
// Emit the Fake Stack Object
const MachineFrameInfo *MFI = MF.getFrameInfo();
int NumBytes = (int) MFI->getStackSize();
if (NumBytes) {
O << "\t.local .align " << MFI->getMaxAlignment() << " .b8 \t" << DEPOTNAME
<< getFunctionNumber() << "[" << NumBytes << "];\n";
if (nvptxSubtarget.is64Bit()) {
O << "\t.reg .b64 \t%SP;\n";
O << "\t.reg .b64 \t%SPL;\n";
} else {
O << "\t.reg .b32 \t%SP;\n";
O << "\t.reg .b32 \t%SPL;\n";
}
}
// Go through all virtual registers to establish the mapping between the
// global virtual
// register number and the per class virtual register number.
// We use the per class virtual register number in the ptx output.
unsigned int numVRs = MRI->getNumVirtRegs();
for (unsigned i = 0; i < numVRs; i++) {
unsigned int vr = TRI->index2VirtReg(i);
const TargetRegisterClass *RC = MRI->getRegClass(vr);
std::map<unsigned, unsigned> &regmap = VRidGlobal2LocalMap[RC->getID()];
int n = regmap.size();
regmap.insert(std::make_pair(vr, n + 1));
}
// Emit register declarations
// @TODO: Extract out the real register usage
O << "\t.reg .pred %p<" << NVPTXNumRegisters << ">;\n";
O << "\t.reg .s16 %rc<" << NVPTXNumRegisters << ">;\n";
O << "\t.reg .s16 %rs<" << NVPTXNumRegisters << ">;\n";
O << "\t.reg .s32 %r<" << NVPTXNumRegisters << ">;\n";
O << "\t.reg .s64 %rl<" << NVPTXNumRegisters << ">;\n";
O << "\t.reg .f32 %f<" << NVPTXNumRegisters << ">;\n";
O << "\t.reg .f64 %fl<" << NVPTXNumRegisters << ">;\n";
// Emit declaration of the virtual registers or 'physical' registers for
// each register class
//for (unsigned i=0; i< numRegClasses; i++) {
// std::map<unsigned, unsigned> &regmap = VRidGlobal2LocalMap[i];
// const TargetRegisterClass *RC = TRI->getRegClass(i);
// std::string rcname = getNVPTXRegClassName(RC);
// std::string rcStr = getNVPTXRegClassStr(RC);
// //int n = regmap.size();
// if (!isNVPTXVectorRegClass(RC)) {
// O << "\t.reg " << rcname << " \t" << rcStr << "<"
// << NVPTXNumRegisters << ">;\n";
// }
// Only declare those registers that may be used. And do not emit vector
// registers as
// they are all elementized to scalar registers.
//if (n && !isNVPTXVectorRegClass(RC)) {
// if (RegAllocNilUsed) {
// O << "\t.reg " << rcname << " \t" << rcStr << "<" << (n+1)
// << ">;\n";
// }
// else {
// O << "\t.reg " << rcname << " \t" << StrToUpper(rcStr)
// << "<" << 32 << ">;\n";
// }
//}
//}
OutStreamer.EmitRawText(O.str());
}
void NVPTXAsmPrinter::printFPConstant(const ConstantFP *Fp, raw_ostream &O) {
APFloat APF = APFloat(Fp->getValueAPF()); // make a copy
bool ignored;
unsigned int numHex;
const char *lead;
if (Fp->getType()->getTypeID() == Type::FloatTyID) {
numHex = 8;
lead = "0f";
APF.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &ignored);
} else if (Fp->getType()->getTypeID() == Type::DoubleTyID) {
numHex = 16;
lead = "0d";
APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored);
} else
llvm_unreachable("unsupported fp type");
APInt API = APF.bitcastToAPInt();
std::string hexstr(utohexstr(API.getZExtValue()));
O << lead;
if (hexstr.length() < numHex)
O << std::string(numHex - hexstr.length(), '0');
O << utohexstr(API.getZExtValue());
}
void NVPTXAsmPrinter::printScalarConstant(Constant *CPV, raw_ostream &O) {
if (ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
O << CI->getValue();
return;
}
if (ConstantFP *CFP = dyn_cast<ConstantFP>(CPV)) {
printFPConstant(CFP, O);
return;
}
if (isa<ConstantPointerNull>(CPV)) {
O << "0";
return;
}
if (GlobalValue *GVar = dyn_cast<GlobalValue>(CPV)) {
O << *Mang->getSymbol(GVar);
return;
}
if (ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
Value *v = Cexpr->stripPointerCasts();
if (GlobalValue *GVar = dyn_cast<GlobalValue>(v)) {
O << *Mang->getSymbol(GVar);
return;
} else {
O << *LowerConstant(CPV, *this);
return;
}
}
llvm_unreachable("Not scalar type found in printScalarConstant()");
}
void NVPTXAsmPrinter::bufferLEByte(Constant *CPV, int Bytes,
AggBuffer *aggBuffer) {
const DataLayout *TD = TM.getDataLayout();
if (isa<UndefValue>(CPV) || CPV->isNullValue()) {
int s = TD->getTypeAllocSize(CPV->getType());
if (s < Bytes)
s = Bytes;
aggBuffer->addZeros(s);
return;
}
unsigned char *ptr;
switch (CPV->getType()->getTypeID()) {
case Type::IntegerTyID: {
const Type *ETy = CPV->getType();
if (ETy == Type::getInt8Ty(CPV->getContext())) {
unsigned char c =
(unsigned char)(dyn_cast<ConstantInt>(CPV))->getZExtValue();
ptr = &c;
aggBuffer->addBytes(ptr, 1, Bytes);
} else if (ETy == Type::getInt16Ty(CPV->getContext())) {
short int16 = (short)(dyn_cast<ConstantInt>(CPV))->getZExtValue();
ptr = (unsigned char *)&int16;
aggBuffer->addBytes(ptr, 2, Bytes);
} else if (ETy == Type::getInt32Ty(CPV->getContext())) {
if (ConstantInt *constInt = dyn_cast<ConstantInt>(CPV)) {
int int32 = (int)(constInt->getZExtValue());
ptr = (unsigned char *)&int32;
aggBuffer->addBytes(ptr, 4, Bytes);
break;
} else if (ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
if (ConstantInt *constInt = dyn_cast<ConstantInt>(
ConstantFoldConstantExpression(Cexpr, TD))) {
int int32 = (int)(constInt->getZExtValue());
ptr = (unsigned char *)&int32;
aggBuffer->addBytes(ptr, 4, Bytes);
break;
}
if (Cexpr->getOpcode() == Instruction::PtrToInt) {
Value *v = Cexpr->getOperand(0)->stripPointerCasts();
aggBuffer->addSymbol(v);
aggBuffer->addZeros(4);
break;
}
}
llvm_unreachable("unsupported integer const type");
} else if (ETy == Type::getInt64Ty(CPV->getContext())) {
if (ConstantInt *constInt = dyn_cast<ConstantInt>(CPV)) {
long long int64 = (long long)(constInt->getZExtValue());
ptr = (unsigned char *)&int64;
aggBuffer->addBytes(ptr, 8, Bytes);
break;
} else if (ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
if (ConstantInt *constInt = dyn_cast<ConstantInt>(
ConstantFoldConstantExpression(Cexpr, TD))) {
long long int64 = (long long)(constInt->getZExtValue());
ptr = (unsigned char *)&int64;
aggBuffer->addBytes(ptr, 8, Bytes);
break;
}
if (Cexpr->getOpcode() == Instruction::PtrToInt) {
Value *v = Cexpr->getOperand(0)->stripPointerCasts();
aggBuffer->addSymbol(v);
aggBuffer->addZeros(8);
break;
}
}
llvm_unreachable("unsupported integer const type");
} else
llvm_unreachable("unsupported integer const type");
break;
}
case Type::FloatTyID:
case Type::DoubleTyID: {
ConstantFP *CFP = dyn_cast<ConstantFP>(CPV);
const Type *Ty = CFP->getType();
if (Ty == Type::getFloatTy(CPV->getContext())) {
float float32 = (float) CFP->getValueAPF().convertToFloat();
ptr = (unsigned char *)&float32;
aggBuffer->addBytes(ptr, 4, Bytes);
} else if (Ty == Type::getDoubleTy(CPV->getContext())) {
double float64 = CFP->getValueAPF().convertToDouble();
ptr = (unsigned char *)&float64;
aggBuffer->addBytes(ptr, 8, Bytes);
} else {
llvm_unreachable("unsupported fp const type");
}
break;
}
case Type::PointerTyID: {
if (GlobalValue *GVar = dyn_cast<GlobalValue>(CPV)) {
aggBuffer->addSymbol(GVar);
} else if (ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
Value *v = Cexpr->stripPointerCasts();
aggBuffer->addSymbol(v);
}
unsigned int s = TD->getTypeAllocSize(CPV->getType());
aggBuffer->addZeros(s);
break;
}
case Type::ArrayTyID:
case Type::VectorTyID:
case Type::StructTyID: {
if (isa<ConstantArray>(CPV) || isa<ConstantVector>(CPV) ||
isa<ConstantStruct>(CPV)) {
int ElementSize = TD->getTypeAllocSize(CPV->getType());
bufferAggregateConstant(CPV, aggBuffer);
if (Bytes > ElementSize)
aggBuffer->addZeros(Bytes - ElementSize);
} else if (isa<ConstantAggregateZero>(CPV))
aggBuffer->addZeros(Bytes);
else
llvm_unreachable("Unexpected Constant type");
break;
}
default:
llvm_unreachable("unsupported type");
}
}
void NVPTXAsmPrinter::bufferAggregateConstant(Constant *CPV,
AggBuffer *aggBuffer) {
const DataLayout *TD = TM.getDataLayout();
int Bytes;
// Old constants
if (isa<ConstantArray>(CPV) || isa<ConstantVector>(CPV)) {
if (CPV->getNumOperands())
for (unsigned i = 0, e = CPV->getNumOperands(); i != e; ++i)
bufferLEByte(cast<Constant>(CPV->getOperand(i)), 0, aggBuffer);
return;
}
if (const ConstantDataSequential *CDS =
dyn_cast<ConstantDataSequential>(CPV)) {
if (CDS->getNumElements())
for (unsigned i = 0; i < CDS->getNumElements(); ++i)
bufferLEByte(cast<Constant>(CDS->getElementAsConstant(i)), 0,
aggBuffer);
return;
}
if (isa<ConstantStruct>(CPV)) {
if (CPV->getNumOperands()) {
StructType *ST = cast<StructType>(CPV->getType());
for (unsigned i = 0, e = CPV->getNumOperands(); i != e; ++i) {
if (i == (e - 1))
Bytes = TD->getStructLayout(ST)->getElementOffset(0) +
TD->getTypeAllocSize(ST) -
TD->getStructLayout(ST)->getElementOffset(i);
else
Bytes = TD->getStructLayout(ST)->getElementOffset(i + 1) -
TD->getStructLayout(ST)->getElementOffset(i);
bufferLEByte(cast<Constant>(CPV->getOperand(i)), Bytes, aggBuffer);
}
}
return;
}
llvm_unreachable("unsupported constant type in printAggregateConstant()");
}
// buildTypeNameMap - Run through symbol table looking for type names.
//
bool NVPTXAsmPrinter::isImageType(const Type *Ty) {
std::map<const Type *, std::string>::iterator PI = TypeNameMap.find(Ty);
if (PI != TypeNameMap.end() && (!PI->second.compare("struct._image1d_t") ||
!PI->second.compare("struct._image2d_t") ||
!PI->second.compare("struct._image3d_t")))
return true;
return false;
}
/// PrintAsmOperand - Print out an operand for an inline asm expression.
///
bool NVPTXAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
unsigned AsmVariant,
const char *ExtraCode, raw_ostream &O) {
if (ExtraCode && ExtraCode[0]) {
if (ExtraCode[1] != 0)
return true; // Unknown modifier.
switch (ExtraCode[0]) {
default:
// See if this is a generic print operand
return AsmPrinter::PrintAsmOperand(MI, OpNo, AsmVariant, ExtraCode, O);
case 'r':
break;
}
}
printOperand(MI, OpNo, O);
return false;
}
bool NVPTXAsmPrinter::PrintAsmMemoryOperand(
const MachineInstr *MI, unsigned OpNo, unsigned AsmVariant,
const char *ExtraCode, raw_ostream &O) {
if (ExtraCode && ExtraCode[0])
return true; // Unknown modifier
O << '[';
printMemOperand(MI, OpNo, O);
O << ']';
return false;
}
bool NVPTXAsmPrinter::ignoreLoc(const MachineInstr &MI) {
switch (MI.getOpcode()) {
default:
return false;
case NVPTX::CallArgBeginInst:
case NVPTX::CallArgEndInst0:
case NVPTX::CallArgEndInst1:
case NVPTX::CallArgF32:
case NVPTX::CallArgF64:
case NVPTX::CallArgI16:
case NVPTX::CallArgI32:
case NVPTX::CallArgI32imm:
case NVPTX::CallArgI64:
case NVPTX::CallArgI8:
case NVPTX::CallArgParam:
case NVPTX::CallVoidInst:
case NVPTX::CallVoidInstReg:
case NVPTX::Callseq_End:
case NVPTX::CallVoidInstReg64:
case NVPTX::DeclareParamInst:
case NVPTX::DeclareRetMemInst:
case NVPTX::DeclareRetRegInst:
case NVPTX::DeclareRetScalarInst:
case NVPTX::DeclareScalarParamInst:
case NVPTX::DeclareScalarRegInst:
case NVPTX::StoreParamF32:
case NVPTX::StoreParamF64:
case NVPTX::StoreParamI16:
case NVPTX::StoreParamI32:
case NVPTX::StoreParamI64:
case NVPTX::StoreParamI8:
case NVPTX::StoreParamS32I8:
case NVPTX::StoreParamU32I8:
case NVPTX::StoreParamS32I16:
case NVPTX::StoreParamU32I16:
case NVPTX::StoreRetvalF32:
case NVPTX::StoreRetvalF64:
case NVPTX::StoreRetvalI16:
case NVPTX::StoreRetvalI32:
case NVPTX::StoreRetvalI64:
case NVPTX::StoreRetvalI8:
case NVPTX::LastCallArgF32:
case NVPTX::LastCallArgF64:
case NVPTX::LastCallArgI16:
case NVPTX::LastCallArgI32:
case NVPTX::LastCallArgI32imm:
case NVPTX::LastCallArgI64:
case NVPTX::LastCallArgI8:
case NVPTX::LastCallArgParam:
case NVPTX::LoadParamMemF32:
case NVPTX::LoadParamMemF64:
case NVPTX::LoadParamMemI16:
case NVPTX::LoadParamMemI32:
case NVPTX::LoadParamMemI64:
case NVPTX::LoadParamMemI8:
case NVPTX::LoadParamRegF32:
case NVPTX::LoadParamRegF64:
case NVPTX::LoadParamRegI16:
case NVPTX::LoadParamRegI32:
case NVPTX::LoadParamRegI64:
case NVPTX::LoadParamRegI8:
case NVPTX::PrototypeInst:
case NVPTX::DBG_VALUE:
return true;
}
return false;
}
// Force static initialization.
extern "C" void LLVMInitializeNVPTXBackendAsmPrinter() {
RegisterAsmPrinter<NVPTXAsmPrinter> X(TheNVPTXTarget32);
RegisterAsmPrinter<NVPTXAsmPrinter> Y(TheNVPTXTarget64);
}
void NVPTXAsmPrinter::emitSrcInText(StringRef filename, unsigned line) {
std::stringstream temp;
LineReader *reader = this->getReader(filename.str());
temp << "\n//";
temp << filename.str();
temp << ":";
temp << line;
temp << " ";
temp << reader->readLine(line);
temp << "\n";
this->OutStreamer.EmitRawText(Twine(temp.str()));
}
LineReader *NVPTXAsmPrinter::getReader(std::string filename) {
if (reader == NULL) {
reader = new LineReader(filename);
}
if (reader->fileName() != filename) {
delete reader;
reader = new LineReader(filename);
}
return reader;
}
std::string LineReader::readLine(unsigned lineNum) {
if (lineNum < theCurLine) {
theCurLine = 0;
fstr.seekg(0, std::ios::beg);
}
while (theCurLine < lineNum) {
fstr.getline(buff, 500);
theCurLine++;
}
return buff;
}
// Force static initialization.
extern "C" void LLVMInitializeNVPTXAsmPrinter() {
RegisterAsmPrinter<NVPTXAsmPrinter> X(TheNVPTXTarget32);
RegisterAsmPrinter<NVPTXAsmPrinter> Y(TheNVPTXTarget64);
}