llvm-6502/tools/llvm2cpp/CppWriter.cpp

1882 lines
66 KiB
C++
Raw Normal View History

//===-- CppWriter.cpp - Printing LLVM IR as a C++ Source File -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Reid Spencer and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the writing of the LLVM IR as a set of C++ calls to the
// LLVM IR interface. The input module is assumed to be verified.
//
//===----------------------------------------------------------------------===//
#include "llvm/CallingConv.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/InlineAsm.h"
#include "llvm/Instruction.h"
#include "llvm/Instructions.h"
#include "llvm/ParameterAttributes.h"
#include "llvm/Module.h"
#include "llvm/TypeSymbolTable.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Config/config.h"
#include <algorithm>
#include <iostream>
#include <set>
using namespace llvm;
static cl::opt<std::string>
FuncName("funcname", cl::desc("Specify the name of the generated function"),
cl::value_desc("function name"));
enum WhatToGenerate {
GenProgram,
GenModule,
GenContents,
GenFunction,
GenInline,
GenVariable,
GenType
};
static cl::opt<WhatToGenerate> GenerationType(cl::Optional,
cl::desc("Choose what kind of output to generate"),
cl::init(GenProgram),
cl::values(
clEnumValN(GenProgram, "gen-program", "Generate a complete program"),
clEnumValN(GenModule, "gen-module", "Generate a module definition"),
clEnumValN(GenContents,"gen-contents", "Generate contents of a module"),
clEnumValN(GenFunction,"gen-function", "Generate a function definition"),
clEnumValN(GenInline, "gen-inline", "Generate an inline function"),
clEnumValN(GenVariable,"gen-variable", "Generate a variable definition"),
clEnumValN(GenType, "gen-type", "Generate a type definition"),
clEnumValEnd
)
);
static cl::opt<std::string> NameToGenerate("for", cl::Optional,
cl::desc("Specify the name of the thing to generate"),
cl::init("!bad!"));
namespace {
typedef std::vector<const Type*> TypeList;
typedef std::map<const Type*,std::string> TypeMap;
typedef std::map<const Value*,std::string> ValueMap;
typedef std::set<std::string> NameSet;
typedef std::set<const Type*> TypeSet;
typedef std::set<const Value*> ValueSet;
typedef std::map<const Value*,std::string> ForwardRefMap;
class CppWriter {
const char* progname;
std::ostream &Out;
const Module *TheModule;
uint64_t uniqueNum;
TypeMap TypeNames;
ValueMap ValueNames;
TypeMap UnresolvedTypes;
TypeList TypeStack;
NameSet UsedNames;
TypeSet DefinedTypes;
ValueSet DefinedValues;
ForwardRefMap ForwardRefs;
bool is_inline;
public:
inline CppWriter(std::ostream &o, const Module *M, const char* pn="llvm2cpp")
: progname(pn), Out(o), TheModule(M), uniqueNum(0), TypeNames(),
ValueNames(), UnresolvedTypes(), TypeStack(), is_inline(false) { }
const Module* getModule() { return TheModule; }
void printProgram(const std::string& fname, const std::string& modName );
void printModule(const std::string& fname, const std::string& modName );
void printContents(const std::string& fname, const std::string& modName );
void printFunction(const std::string& fname, const std::string& funcName );
void printInline(const std::string& fname, const std::string& funcName );
void printVariable(const std::string& fname, const std::string& varName );
void printType(const std::string& fname, const std::string& typeName );
void error(const std::string& msg);
private:
void printLinkageType(GlobalValue::LinkageTypes LT);
void printCallingConv(unsigned cc);
void printEscapedString(const std::string& str);
void printCFP(const ConstantFP* CFP);
std::string getCppName(const Type* val);
inline void printCppName(const Type* val);
std::string getCppName(const Value* val);
inline void printCppName(const Value* val);
bool printTypeInternal(const Type* Ty);
inline void printType(const Type* Ty);
void printTypes(const Module* M);
void printConstant(const Constant *CPV);
void printConstants(const Module* M);
void printVariableUses(const GlobalVariable *GV);
void printVariableHead(const GlobalVariable *GV);
void printVariableBody(const GlobalVariable *GV);
void printFunctionUses(const Function *F);
void printFunctionHead(const Function *F);
void printFunctionBody(const Function *F);
void printInstruction(const Instruction *I, const std::string& bbname);
std::string getOpName(Value*);
void printModuleBody();
};
static unsigned indent_level = 0;
inline std::ostream& nl(std::ostream& Out, int delta = 0) {
Out << "\n";
if (delta >= 0 || indent_level >= unsigned(-delta))
indent_level += delta;
for (unsigned i = 0; i < indent_level; ++i)
Out << " ";
return Out;
}
inline void in() { indent_level++; }
inline void out() { if (indent_level >0) indent_level--; }
inline void
sanitize(std::string& str) {
for (size_t i = 0; i < str.length(); ++i)
if (!isalnum(str[i]) && str[i] != '_')
str[i] = '_';
}
inline std::string
getTypePrefix(const Type* Ty ) {
switch (Ty->getTypeID()) {
case Type::VoidTyID: return "void_";
case Type::IntegerTyID:
return std::string("int") + utostr(cast<IntegerType>(Ty)->getBitWidth()) +
"_";
case Type::FloatTyID: return "float_";
case Type::DoubleTyID: return "double_";
case Type::LabelTyID: return "label_";
case Type::FunctionTyID: return "func_";
case Type::StructTyID: return "struct_";
case Type::ArrayTyID: return "array_";
case Type::PointerTyID: return "ptr_";
case Type::VectorTyID: return "packed_";
case Type::OpaqueTyID: return "opaque_";
default: return "other_";
}
return "unknown_";
}
// Looks up the type in the symbol table and returns a pointer to its name or
// a null pointer if it wasn't found. Note that this isn't the same as the
// Mode::getTypeName function which will return an empty string, not a null
// pointer if the name is not found.
inline const std::string*
findTypeName(const TypeSymbolTable& ST, const Type* Ty)
{
TypeSymbolTable::const_iterator TI = ST.begin();
TypeSymbolTable::const_iterator TE = ST.end();
for (;TI != TE; ++TI)
if (TI->second == Ty)
return &(TI->first);
return 0;
}
void
CppWriter::error(const std::string& msg) {
std::cerr << progname << ": " << msg << "\n";
exit(2);
}
// printCFP - Print a floating point constant .. very carefully :)
// This makes sure that conversion to/from floating yields the same binary
// result so that we don't lose precision.
void
CppWriter::printCFP(const ConstantFP *CFP) {
Out << "ConstantFP::get(";
if (CFP->getType() == Type::DoubleTy)
Out << "Type::DoubleTy, ";
else
Out << "Type::FloatTy, ";
#if HAVE_PRINTF_A
char Buffer[100];
sprintf(Buffer, "%A", CFP->getValue());
if ((!strncmp(Buffer, "0x", 2) ||
!strncmp(Buffer, "-0x", 3) ||
!strncmp(Buffer, "+0x", 3)) &&
(atof(Buffer) == CFP->getValue()))
if (CFP->getType() == Type::DoubleTy)
Out << "BitsToDouble(" << Buffer << ")";
else
Out << "BitsToFloat(" << Buffer << ")";
else {
#endif
std::string StrVal = ftostr(CFP->getValue());
while (StrVal[0] == ' ')
StrVal.erase(StrVal.begin());
// Check to make sure that the stringized number is not some string like
// "Inf" or NaN. Check that the string matches the "[-+]?[0-9]" regex.
if (((StrVal[0] >= '0' && StrVal[0] <= '9') ||
((StrVal[0] == '-' || StrVal[0] == '+') &&
(StrVal[1] >= '0' && StrVal[1] <= '9'))) &&
(atof(StrVal.c_str()) == CFP->getValue()))
if (CFP->getType() == Type::DoubleTy)
Out << StrVal;
else
Out << StrVal;
else if (CFP->getType() == Type::DoubleTy)
Out << "BitsToDouble(0x" << std::hex << DoubleToBits(CFP->getValue())
<< std::dec << "ULL) /* " << StrVal << " */";
else
Out << "BitsToFloat(0x" << std::hex << FloatToBits(CFP->getValue())
<< std::dec << "U) /* " << StrVal << " */";
#if HAVE_PRINTF_A
}
#endif
Out << ")";
}
void
CppWriter::printCallingConv(unsigned cc){
// Print the calling convention.
switch (cc) {
case CallingConv::C: Out << "CallingConv::C"; break;
case CallingConv::Fast: Out << "CallingConv::Fast"; break;
case CallingConv::Cold: Out << "CallingConv::Cold"; break;
case CallingConv::FirstTargetCC: Out << "CallingConv::FirstTargetCC"; break;
default: Out << cc; break;
}
}
void
CppWriter::printLinkageType(GlobalValue::LinkageTypes LT) {
switch (LT) {
case GlobalValue::InternalLinkage:
Out << "GlobalValue::InternalLinkage"; break;
case GlobalValue::LinkOnceLinkage:
Out << "GlobalValue::LinkOnceLinkage "; break;
case GlobalValue::WeakLinkage:
Out << "GlobalValue::WeakLinkage"; break;
case GlobalValue::AppendingLinkage:
Out << "GlobalValue::AppendingLinkage"; break;
case GlobalValue::ExternalLinkage:
Out << "GlobalValue::ExternalLinkage"; break;
case GlobalValue::DLLImportLinkage:
Out << "GlobalValue::DLLImportLinkage"; break;
case GlobalValue::DLLExportLinkage:
Out << "GlobalValue::DLLExportLinkage"; break;
case GlobalValue::ExternalWeakLinkage:
Out << "GlobalValue::ExternalWeakLinkage"; break;
case GlobalValue::GhostLinkage:
Out << "GlobalValue::GhostLinkage"; break;
}
}
// printEscapedString - Print each character of the specified string, escaping
// it if it is not printable or if it is an escape char.
void
CppWriter::printEscapedString(const std::string &Str) {
for (unsigned i = 0, e = Str.size(); i != e; ++i) {
unsigned char C = Str[i];
if (isprint(C) && C != '"' && C != '\\') {
Out << C;
} else {
Out << "\\x"
<< (char) ((C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
<< (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
}
}
}
std::string
CppWriter::getCppName(const Type* Ty)
{
// First, handle the primitive types .. easy
if (Ty->isPrimitiveType() || Ty->isInteger()) {
switch (Ty->getTypeID()) {
case Type::VoidTyID: return "Type::VoidTy";
case Type::IntegerTyID: {
unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
return "IntegerType::get(" + utostr(BitWidth) + ")";
}
case Type::FloatTyID: return "Type::FloatTy";
case Type::DoubleTyID: return "Type::DoubleTy";
case Type::LabelTyID: return "Type::LabelTy";
default:
error("Invalid primitive type");
break;
}
return "Type::VoidTy"; // shouldn't be returned, but make it sensible
}
// Now, see if we've seen the type before and return that
TypeMap::iterator I = TypeNames.find(Ty);
if (I != TypeNames.end())
return I->second;
// Okay, let's build a new name for this type. Start with a prefix
const char* prefix = 0;
switch (Ty->getTypeID()) {
case Type::FunctionTyID: prefix = "FuncTy_"; break;
case Type::StructTyID: prefix = "StructTy_"; break;
case Type::ArrayTyID: prefix = "ArrayTy_"; break;
case Type::PointerTyID: prefix = "PointerTy_"; break;
case Type::OpaqueTyID: prefix = "OpaqueTy_"; break;
case Type::VectorTyID: prefix = "VectorTy_"; break;
default: prefix = "OtherTy_"; break; // prevent breakage
}
// See if the type has a name in the symboltable and build accordingly
const std::string* tName = findTypeName(TheModule->getTypeSymbolTable(), Ty);
std::string name;
if (tName)
name = std::string(prefix) + *tName;
else
name = std::string(prefix) + utostr(uniqueNum++);
sanitize(name);
// Save the name
return TypeNames[Ty] = name;
}
void
CppWriter::printCppName(const Type* Ty)
{
printEscapedString(getCppName(Ty));
}
std::string
CppWriter::getCppName(const Value* val) {
std::string name;
ValueMap::iterator I = ValueNames.find(val);
if (I != ValueNames.end() && I->first == val)
return I->second;
if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(val)) {
name = std::string("gvar_") +
getTypePrefix(GV->getType()->getElementType());
} else if (isa<Function>(val)) {
name = std::string("func_");
} else if (const Constant* C = dyn_cast<Constant>(val)) {
name = std::string("const_") + getTypePrefix(C->getType());
} else if (const Argument* Arg = dyn_cast<Argument>(val)) {
if (is_inline) {
unsigned argNum = std::distance(Arg->getParent()->arg_begin(),
Function::const_arg_iterator(Arg)) + 1;
name = std::string("arg_") + utostr(argNum);
NameSet::iterator NI = UsedNames.find(name);
if (NI != UsedNames.end())
name += std::string("_") + utostr(uniqueNum++);
UsedNames.insert(name);
return ValueNames[val] = name;
} else {
name = getTypePrefix(val->getType());
}
} else {
name = getTypePrefix(val->getType());
}
name += (val->hasName() ? val->getName() : utostr(uniqueNum++));
sanitize(name);
NameSet::iterator NI = UsedNames.find(name);
if (NI != UsedNames.end())
name += std::string("_") + utostr(uniqueNum++);
UsedNames.insert(name);
return ValueNames[val] = name;
}
void
CppWriter::printCppName(const Value* val) {
printEscapedString(getCppName(val));
}
bool
CppWriter::printTypeInternal(const Type* Ty) {
// We don't print definitions for primitive types
if (Ty->isPrimitiveType() || Ty->isInteger())
return false;
// If we already defined this type, we don't need to define it again.
if (DefinedTypes.find(Ty) != DefinedTypes.end())
return false;
// Everything below needs the name for the type so get it now.
std::string typeName(getCppName(Ty));
// Search the type stack for recursion. If we find it, then generate this
// as an OpaqueType, but make sure not to do this multiple times because
// the type could appear in multiple places on the stack. Once the opaque
// definition is issued, it must not be re-issued. Consequently we have to
// check the UnresolvedTypes list as well.
TypeList::const_iterator TI = std::find(TypeStack.begin(),TypeStack.end(),Ty);
if (TI != TypeStack.end()) {
TypeMap::const_iterator I = UnresolvedTypes.find(Ty);
if (I == UnresolvedTypes.end()) {
Out << "PATypeHolder " << typeName << "_fwd = OpaqueType::get();";
nl(Out);
UnresolvedTypes[Ty] = typeName;
}
return true;
}
// We're going to print a derived type which, by definition, contains other
// types. So, push this one we're printing onto the type stack to assist with
// recursive definitions.
TypeStack.push_back(Ty);
// Print the type definition
switch (Ty->getTypeID()) {
case Type::FunctionTyID: {
const FunctionType* FT = cast<FunctionType>(Ty);
Out << "std::vector<const Type*>" << typeName << "_args;";
nl(Out);
FunctionType::param_iterator PI = FT->param_begin();
FunctionType::param_iterator PE = FT->param_end();
for (; PI != PE; ++PI) {
const Type* argTy = static_cast<const Type*>(*PI);
bool isForward = printTypeInternal(argTy);
std::string argName(getCppName(argTy));
Out << typeName << "_args.push_back(" << argName;
if (isForward)
Out << "_fwd";
Out << ");";
nl(Out);
}
const ParamAttrsList *PAL = FT->getParamAttrs();
Out << "ParamAttrsList *" << typeName << "_PAL = 0;";
nl(Out);
if (PAL) {
Out << '{'; in(); nl(Out);
Out << "ParamAttrsVector Attrs;"; nl(Out);
Out << "ParamAttrsWithIndex PAWI;"; nl(Out);
for (unsigned i = 0; i < PAL->size(); ++i) {
uint16_t index = PAL->getParamIndex(i);
uint16_t attrs = PAL->getParamAttrs(index);
Out << "PAWI.index = " << index << "; PAWI.attrs = 0 ";
if (attrs & ParamAttr::SExt)
Out << " | ParamAttr::SExt";
if (attrs & ParamAttr::ZExt)
Out << " | ParamAttr::ZExt";
if (attrs & ParamAttr::NoAlias)
Out << " | ParamAttr::NoAlias";
if (attrs & ParamAttr::StructRet)
Out << " | ParamAttr::StructRet";
if (attrs & ParamAttr::InReg)
Out << " | ParamAttr::InReg";
if (attrs & ParamAttr::NoReturn)
Out << " | ParamAttr::NoReturn";
if (attrs & ParamAttr::NoUnwind)
Out << " | ParamAttr::NoUnwind";
Out << ";";
nl(Out);
Out << "Attrs.push_back(PAWI);";
nl(Out);
}
Out << typeName << "_PAL = ParamAttrsList::get(Attrs);";
nl(Out);
out(); nl(Out);
Out << '}'; nl(Out);
}
bool isForward = printTypeInternal(FT->getReturnType());
std::string retTypeName(getCppName(FT->getReturnType()));
Out << "FunctionType* " << typeName << " = FunctionType::get(";
in(); nl(Out) << "/*Result=*/" << retTypeName;
if (isForward)
Out << "_fwd";
Out << ",";
nl(Out) << "/*Params=*/" << typeName << "_args,";
nl(Out) << "/*isVarArg=*/" << (FT->isVarArg() ? "true," : "false,") ;
nl(Out) << "/*ParamAttrs=*/" << typeName << "_PAL" << ");";
out();
nl(Out);
break;
}
case Type::StructTyID: {
const StructType* ST = cast<StructType>(Ty);
Out << "std::vector<const Type*>" << typeName << "_fields;";
nl(Out);
StructType::element_iterator EI = ST->element_begin();
StructType::element_iterator EE = ST->element_end();
for (; EI != EE; ++EI) {
const Type* fieldTy = static_cast<const Type*>(*EI);
bool isForward = printTypeInternal(fieldTy);
std::string fieldName(getCppName(fieldTy));
Out << typeName << "_fields.push_back(" << fieldName;
if (isForward)
Out << "_fwd";
Out << ");";
nl(Out);
}
Out << "StructType* " << typeName << " = StructType::get("
<< typeName << "_fields, /*isPacked=*/"
<< (ST->isPacked() ? "true" : "false") << ");";
nl(Out);
break;
}
case Type::ArrayTyID: {
const ArrayType* AT = cast<ArrayType>(Ty);
const Type* ET = AT->getElementType();
bool isForward = printTypeInternal(ET);
std::string elemName(getCppName(ET));
Out << "ArrayType* " << typeName << " = ArrayType::get("
<< elemName << (isForward ? "_fwd" : "")
<< ", " << utostr(AT->getNumElements()) << ");";
nl(Out);
break;
}
case Type::PointerTyID: {
const PointerType* PT = cast<PointerType>(Ty);
const Type* ET = PT->getElementType();
bool isForward = printTypeInternal(ET);
std::string elemName(getCppName(ET));
Out << "PointerType* " << typeName << " = PointerType::get("
<< elemName << (isForward ? "_fwd" : "") << ");";
nl(Out);
break;
}
case Type::VectorTyID: {
const VectorType* PT = cast<VectorType>(Ty);
const Type* ET = PT->getElementType();
bool isForward = printTypeInternal(ET);
std::string elemName(getCppName(ET));
Out << "VectorType* " << typeName << " = VectorType::get("
<< elemName << (isForward ? "_fwd" : "")
<< ", " << utostr(PT->getNumElements()) << ");";
nl(Out);
break;
}
case Type::OpaqueTyID: {
Out << "OpaqueType* " << typeName << " = OpaqueType::get();";
nl(Out);
break;
}
default:
error("Invalid TypeID");
}
// If the type had a name, make sure we recreate it.
const std::string* progTypeName =
findTypeName(TheModule->getTypeSymbolTable(),Ty);
if (progTypeName) {
Out << "mod->addTypeName(\"" << *progTypeName << "\", "
<< typeName << ");";
nl(Out);
}
// Pop us off the type stack
TypeStack.pop_back();
// Indicate that this type is now defined.
DefinedTypes.insert(Ty);
// Early resolve as many unresolved types as possible. Search the unresolved
// types map for the type we just printed. Now that its definition is complete
// we can resolve any previous references to it. This prevents a cascade of
// unresolved types.
TypeMap::iterator I = UnresolvedTypes.find(Ty);
if (I != UnresolvedTypes.end()) {
Out << "cast<OpaqueType>(" << I->second
<< "_fwd.get())->refineAbstractTypeTo(" << I->second << ");";
nl(Out);
Out << I->second << " = cast<";
switch (Ty->getTypeID()) {
case Type::FunctionTyID: Out << "FunctionType"; break;
case Type::ArrayTyID: Out << "ArrayType"; break;
case Type::StructTyID: Out << "StructType"; break;
case Type::VectorTyID: Out << "VectorType"; break;
case Type::PointerTyID: Out << "PointerType"; break;
case Type::OpaqueTyID: Out << "OpaqueType"; break;
default: Out << "NoSuchDerivedType"; break;
}
Out << ">(" << I->second << "_fwd.get());";
nl(Out); nl(Out);
UnresolvedTypes.erase(I);
}
// Finally, separate the type definition from other with a newline.
nl(Out);
// We weren't a recursive type
return false;
}
// Prints a type definition. Returns true if it could not resolve all the types
// in the definition but had to use a forward reference.
void
CppWriter::printType(const Type* Ty) {
assert(TypeStack.empty());
TypeStack.clear();
printTypeInternal(Ty);
assert(TypeStack.empty());
}
void
CppWriter::printTypes(const Module* M) {
// Walk the symbol table and print out all its types
const TypeSymbolTable& symtab = M->getTypeSymbolTable();
for (TypeSymbolTable::const_iterator TI = symtab.begin(), TE = symtab.end();
TI != TE; ++TI) {
// For primitive types and types already defined, just add a name
TypeMap::const_iterator TNI = TypeNames.find(TI->second);
if (TI->second->isInteger() || TI->second->isPrimitiveType() ||
TNI != TypeNames.end()) {
Out << "mod->addTypeName(\"";
printEscapedString(TI->first);
Out << "\", " << getCppName(TI->second) << ");";
nl(Out);
// For everything else, define the type
} else {
printType(TI->second);
}
}
// Add all of the global variables to the value table...
for (Module::const_global_iterator I = TheModule->global_begin(),
E = TheModule->global_end(); I != E; ++I) {
if (I->hasInitializer())
printType(I->getInitializer()->getType());
printType(I->getType());
}
// Add all the functions to the table
for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
FI != FE; ++FI) {
printType(FI->getReturnType());
printType(FI->getFunctionType());
// Add all the function arguments
for(Function::const_arg_iterator AI = FI->arg_begin(),
AE = FI->arg_end(); AI != AE; ++AI) {
printType(AI->getType());
}
// Add all of the basic blocks and instructions
for (Function::const_iterator BB = FI->begin(),
E = FI->end(); BB != E; ++BB) {
printType(BB->getType());
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
++I) {
printType(I->getType());
for (unsigned i = 0; i < I->getNumOperands(); ++i)
printType(I->getOperand(i)->getType());
}
}
}
}
// printConstant - Print out a constant pool entry...
void CppWriter::printConstant(const Constant *CV) {
// First, if the constant is actually a GlobalValue (variable or function) or
// its already in the constant list then we've printed it already and we can
// just return.
if (isa<GlobalValue>(CV) || ValueNames.find(CV) != ValueNames.end())
return;
std::string constName(getCppName(CV));
std::string typeName(getCppName(CV->getType()));
if (CV->isNullValue()) {
Out << "Constant* " << constName << " = Constant::getNullValue("
<< typeName << ");";
nl(Out);
return;
}
if (isa<GlobalValue>(CV)) {
// Skip variables and functions, we emit them elsewhere
return;
}
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
Out << "ConstantInt* " << constName << " = ConstantInt::get(APInt("
<< cast<IntegerType>(CI->getType())->getBitWidth() << ", "
<< " \"" << CI->getValue().toStringSigned(10) << "\", 10));";
} else if (isa<ConstantAggregateZero>(CV)) {
Out << "ConstantAggregateZero* " << constName
<< " = ConstantAggregateZero::get(" << typeName << ");";
} else if (isa<ConstantPointerNull>(CV)) {
Out << "ConstantPointerNull* " << constName
<< " = ConstanPointerNull::get(" << typeName << ");";
} else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
Out << "ConstantFP* " << constName << " = ";
printCFP(CFP);
Out << ";";
} else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
if (CA->isString() && CA->getType()->getElementType() == Type::Int8Ty) {
Out << "Constant* " << constName << " = ConstantArray::get(\"";
std::string tmp = CA->getAsString();
bool nullTerminate = false;
if (tmp[tmp.length()-1] == 0) {
tmp.erase(tmp.length()-1);
nullTerminate = true;
}
printEscapedString(tmp);
// Determine if we want null termination or not.
if (nullTerminate)
Out << "\", true"; // Indicate that the null terminator should be added.
else
Out << "\", false";// No null terminator
Out << ");";
} else {
Out << "std::vector<Constant*> " << constName << "_elems;";
nl(Out);
unsigned N = CA->getNumOperands();
for (unsigned i = 0; i < N; ++i) {
printConstant(CA->getOperand(i)); // recurse to print operands
Out << constName << "_elems.push_back("
<< getCppName(CA->getOperand(i)) << ");";
nl(Out);
}
Out << "Constant* " << constName << " = ConstantArray::get("
<< typeName << ", " << constName << "_elems);";
}
} else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
Out << "std::vector<Constant*> " << constName << "_fields;";
nl(Out);
unsigned N = CS->getNumOperands();
for (unsigned i = 0; i < N; i++) {
printConstant(CS->getOperand(i));
Out << constName << "_fields.push_back("
<< getCppName(CS->getOperand(i)) << ");";
nl(Out);
}
Out << "Constant* " << constName << " = ConstantStruct::get("
<< typeName << ", " << constName << "_fields);";
} else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
Out << "std::vector<Constant*> " << constName << "_elems;";
nl(Out);
unsigned N = CP->getNumOperands();
for (unsigned i = 0; i < N; ++i) {
printConstant(CP->getOperand(i));
Out << constName << "_elems.push_back("
<< getCppName(CP->getOperand(i)) << ");";
nl(Out);
}
Out << "Constant* " << constName << " = ConstantVector::get("
<< typeName << ", " << constName << "_elems);";
} else if (isa<UndefValue>(CV)) {
Out << "UndefValue* " << constName << " = UndefValue::get("
<< typeName << ");";
} else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
if (CE->getOpcode() == Instruction::GetElementPtr) {
Out << "std::vector<Constant*> " << constName << "_indices;";
nl(Out);
printConstant(CE->getOperand(0));
for (unsigned i = 1; i < CE->getNumOperands(); ++i ) {
printConstant(CE->getOperand(i));
Out << constName << "_indices.push_back("
<< getCppName(CE->getOperand(i)) << ");";
nl(Out);
}
Out << "Constant* " << constName
<< " = ConstantExpr::getGetElementPtr("
<< getCppName(CE->getOperand(0)) << ", "
<< "&" << constName << "_indices[0], " << CE->getNumOperands() - 1
<< " );";
} else if (CE->isCast()) {
printConstant(CE->getOperand(0));
Out << "Constant* " << constName << " = ConstantExpr::getCast(";
switch (CE->getOpcode()) {
default: assert(0 && "Invalid cast opcode");
case Instruction::Trunc: Out << "Instruction::Trunc"; break;
case Instruction::ZExt: Out << "Instruction::ZExt"; break;
case Instruction::SExt: Out << "Instruction::SExt"; break;
case Instruction::FPTrunc: Out << "Instruction::FPTrunc"; break;
case Instruction::FPExt: Out << "Instruction::FPExt"; break;
case Instruction::FPToUI: Out << "Instruction::FPToUI"; break;
case Instruction::FPToSI: Out << "Instruction::FPToSI"; break;
case Instruction::UIToFP: Out << "Instruction::UIToFP"; break;
case Instruction::SIToFP: Out << "Instruction::SIToFP"; break;
case Instruction::PtrToInt: Out << "Instruction::PtrToInt"; break;
case Instruction::IntToPtr: Out << "Instruction::IntToPtr"; break;
case Instruction::BitCast: Out << "Instruction::BitCast"; break;
}
Out << ", " << getCppName(CE->getOperand(0)) << ", "
<< getCppName(CE->getType()) << ");";
} else {
unsigned N = CE->getNumOperands();
for (unsigned i = 0; i < N; ++i ) {
printConstant(CE->getOperand(i));
}
Out << "Constant* " << constName << " = ConstantExpr::";
switch (CE->getOpcode()) {
case Instruction::Add: Out << "getAdd("; break;
case Instruction::Sub: Out << "getSub("; break;
case Instruction::Mul: Out << "getMul("; break;
case Instruction::UDiv: Out << "getUDiv("; break;
case Instruction::SDiv: Out << "getSDiv("; break;
case Instruction::FDiv: Out << "getFDiv("; break;
case Instruction::URem: Out << "getURem("; break;
case Instruction::SRem: Out << "getSRem("; break;
case Instruction::FRem: Out << "getFRem("; break;
case Instruction::And: Out << "getAnd("; break;
case Instruction::Or: Out << "getOr("; break;
case Instruction::Xor: Out << "getXor("; break;
case Instruction::ICmp:
Out << "getICmp(ICmpInst::ICMP_";
switch (CE->getPredicate()) {
case ICmpInst::ICMP_EQ: Out << "EQ"; break;
case ICmpInst::ICMP_NE: Out << "NE"; break;
case ICmpInst::ICMP_SLT: Out << "SLT"; break;
case ICmpInst::ICMP_ULT: Out << "ULT"; break;
case ICmpInst::ICMP_SGT: Out << "SGT"; break;
case ICmpInst::ICMP_UGT: Out << "UGT"; break;
case ICmpInst::ICMP_SLE: Out << "SLE"; break;
case ICmpInst::ICMP_ULE: Out << "ULE"; break;
case ICmpInst::ICMP_SGE: Out << "SGE"; break;
case ICmpInst::ICMP_UGE: Out << "UGE"; break;
default: error("Invalid ICmp Predicate");
}
break;
case Instruction::FCmp:
Out << "getFCmp(FCmpInst::FCMP_";
switch (CE->getPredicate()) {
case FCmpInst::FCMP_FALSE: Out << "FALSE"; break;
case FCmpInst::FCMP_ORD: Out << "ORD"; break;
case FCmpInst::FCMP_UNO: Out << "UNO"; break;
case FCmpInst::FCMP_OEQ: Out << "OEQ"; break;
case FCmpInst::FCMP_UEQ: Out << "UEQ"; break;
case FCmpInst::FCMP_ONE: Out << "ONE"; break;
case FCmpInst::FCMP_UNE: Out << "UNE"; break;
case FCmpInst::FCMP_OLT: Out << "OLT"; break;
case FCmpInst::FCMP_ULT: Out << "ULT"; break;
case FCmpInst::FCMP_OGT: Out << "OGT"; break;
case FCmpInst::FCMP_UGT: Out << "UGT"; break;
case FCmpInst::FCMP_OLE: Out << "OLE"; break;
case FCmpInst::FCMP_ULE: Out << "ULE"; break;
case FCmpInst::FCMP_OGE: Out << "OGE"; break;
case FCmpInst::FCMP_UGE: Out << "UGE"; break;
case FCmpInst::FCMP_TRUE: Out << "TRUE"; break;
default: error("Invalid FCmp Predicate");
}
break;
case Instruction::Shl: Out << "getShl("; break;
case Instruction::LShr: Out << "getLShr("; break;
case Instruction::AShr: Out << "getAShr("; break;
case Instruction::Select: Out << "getSelect("; break;
case Instruction::ExtractElement: Out << "getExtractElement("; break;
case Instruction::InsertElement: Out << "getInsertElement("; break;
case Instruction::ShuffleVector: Out << "getShuffleVector("; break;
default:
error("Invalid constant expression");
break;
}
Out << getCppName(CE->getOperand(0));
for (unsigned i = 1; i < CE->getNumOperands(); ++i)
Out << ", " << getCppName(CE->getOperand(i));
Out << ");";
}
} else {
error("Bad Constant");
Out << "Constant* " << constName << " = 0; ";
}
nl(Out);
}
void
CppWriter::printConstants(const Module* M) {
// Traverse all the global variables looking for constant initializers
for (Module::const_global_iterator I = TheModule->global_begin(),
E = TheModule->global_end(); I != E; ++I)
if (I->hasInitializer())
printConstant(I->getInitializer());
// Traverse the LLVM functions looking for constants
for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
FI != FE; ++FI) {
// Add all of the basic blocks and instructions
for (Function::const_iterator BB = FI->begin(),
E = FI->end(); BB != E; ++BB) {
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
++I) {
for (unsigned i = 0; i < I->getNumOperands(); ++i) {
if (Constant* C = dyn_cast<Constant>(I->getOperand(i))) {
printConstant(C);
}
}
}
}
}
}
void CppWriter::printVariableUses(const GlobalVariable *GV) {
nl(Out) << "// Type Definitions";
nl(Out);
printType(GV->getType());
if (GV->hasInitializer()) {
Constant* Init = GV->getInitializer();
printType(Init->getType());
if (Function* F = dyn_cast<Function>(Init)) {
nl(Out)<< "/ Function Declarations"; nl(Out);
printFunctionHead(F);
} else if (GlobalVariable* gv = dyn_cast<GlobalVariable>(Init)) {
nl(Out) << "// Global Variable Declarations"; nl(Out);
printVariableHead(gv);
} else {
nl(Out) << "// Constant Definitions"; nl(Out);
printConstant(gv);
}
if (GlobalVariable* gv = dyn_cast<GlobalVariable>(Init)) {
nl(Out) << "// Global Variable Definitions"; nl(Out);
printVariableBody(gv);
}
}
}
void CppWriter::printVariableHead(const GlobalVariable *GV) {
nl(Out) << "GlobalVariable* " << getCppName(GV);
if (is_inline) {
Out << " = mod->getGlobalVariable(";
printEscapedString(GV->getName());
Out << ", " << getCppName(GV->getType()->getElementType()) << ",true)";
nl(Out) << "if (!" << getCppName(GV) << ") {";
in(); nl(Out) << getCppName(GV);
}
Out << " = new GlobalVariable(";
nl(Out) << "/*Type=*/";
printCppName(GV->getType()->getElementType());
Out << ",";
nl(Out) << "/*isConstant=*/" << (GV->isConstant()?"true":"false");
Out << ",";
nl(Out) << "/*Linkage=*/";
printLinkageType(GV->getLinkage());
Out << ",";
nl(Out) << "/*Initializer=*/0, ";
if (GV->hasInitializer()) {
Out << "// has initializer, specified below";
}
nl(Out) << "/*Name=*/\"";
printEscapedString(GV->getName());
Out << "\",";
nl(Out) << "mod);";
nl(Out);
if (GV->hasSection()) {
printCppName(GV);
Out << "->setSection(\"";
printEscapedString(GV->getSection());
Out << "\");";
nl(Out);
}
if (GV->getAlignment()) {
printCppName(GV);
Out << "->setAlignment(" << utostr(GV->getAlignment()) << ");";
nl(Out);
};
if (is_inline) {
out(); Out << "}"; nl(Out);
}
}
void
CppWriter::printVariableBody(const GlobalVariable *GV) {
if (GV->hasInitializer()) {
printCppName(GV);
Out << "->setInitializer(";
//if (!isa<GlobalValue(GV->getInitializer()))
//else
Out << getCppName(GV->getInitializer()) << ");";
nl(Out);
}
}
std::string
CppWriter::getOpName(Value* V) {
if (!isa<Instruction>(V) || DefinedValues.find(V) != DefinedValues.end())
return getCppName(V);
// See if its alread in the map of forward references, if so just return the
// name we already set up for it
ForwardRefMap::const_iterator I = ForwardRefs.find(V);
if (I != ForwardRefs.end())
return I->second;
// This is a new forward reference. Generate a unique name for it
std::string result(std::string("fwdref_") + utostr(uniqueNum++));
// Yes, this is a hack. An Argument is the smallest instantiable value that
// we can make as a placeholder for the real value. We'll replace these
// Argument instances later.
Out << "Argument* " << result << " = new Argument("
<< getCppName(V->getType()) << ");";
nl(Out);
ForwardRefs[V] = result;
return result;
}
// printInstruction - This member is called for each Instruction in a function.
void
CppWriter::printInstruction(const Instruction *I, const std::string& bbname) {
std::string iName(getCppName(I));
// Before we emit this instruction, we need to take care of generating any
// forward references. So, we get the names of all the operands in advance
std::string* opNames = new std::string[I->getNumOperands()];
for (unsigned i = 0; i < I->getNumOperands(); i++) {
opNames[i] = getOpName(I->getOperand(i));
}
switch (I->getOpcode()) {
case Instruction::Ret: {
const ReturnInst* ret = cast<ReturnInst>(I);
Out << "new ReturnInst("
<< (ret->getReturnValue() ? opNames[0] + ", " : "") << bbname << ");";
break;
}
case Instruction::Br: {
const BranchInst* br = cast<BranchInst>(I);
Out << "new BranchInst(" ;
if (br->getNumOperands() == 3 ) {
Out << opNames[0] << ", "
<< opNames[1] << ", "
<< opNames[2] << ", ";
} else if (br->getNumOperands() == 1) {
Out << opNames[0] << ", ";
} else {
error("Branch with 2 operands?");
}
Out << bbname << ");";
break;
}
case Instruction::Switch: {
const SwitchInst* sw = cast<SwitchInst>(I);
Out << "SwitchInst* " << iName << " = new SwitchInst("
<< opNames[0] << ", "
<< opNames[1] << ", "
<< sw->getNumCases() << ", " << bbname << ");";
nl(Out);
for (unsigned i = 2; i < sw->getNumOperands(); i += 2 ) {
Out << iName << "->addCase("
<< opNames[i] << ", "
<< opNames[i+1] << ");";
nl(Out);
}
break;
}
case Instruction::Invoke: {
const InvokeInst* inv = cast<InvokeInst>(I);
Out << "std::vector<Value*> " << iName << "_params;";
nl(Out);
for (unsigned i = 3; i < inv->getNumOperands(); ++i) {
Out << iName << "_params.push_back("
<< opNames[i] << ");";
nl(Out);
}
Out << "InvokeInst *" << iName << " = new InvokeInst("
<< opNames[0] << ", "
<< opNames[1] << ", "
<< opNames[2] << ", "
<< "&" << iName << "_params[0], " << inv->getNumOperands() - 3
<< ", \"";
printEscapedString(inv->getName());
Out << "\", " << bbname << ");";
nl(Out) << iName << "->setCallingConv(";
printCallingConv(inv->getCallingConv());
Out << ");";
break;
}
case Instruction::Unwind: {
Out << "new UnwindInst("
<< bbname << ");";
break;
}
case Instruction::Unreachable:{
Out << "new UnreachableInst("
<< bbname << ");";
break;
}
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::FDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::FRem:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:{
Out << "BinaryOperator* " << iName << " = BinaryOperator::create(";
switch (I->getOpcode()) {
case Instruction::Add: Out << "Instruction::Add"; break;
case Instruction::Sub: Out << "Instruction::Sub"; break;
case Instruction::Mul: Out << "Instruction::Mul"; break;
case Instruction::UDiv:Out << "Instruction::UDiv"; break;
case Instruction::SDiv:Out << "Instruction::SDiv"; break;
case Instruction::FDiv:Out << "Instruction::FDiv"; break;
case Instruction::URem:Out << "Instruction::URem"; break;
case Instruction::SRem:Out << "Instruction::SRem"; break;
case Instruction::FRem:Out << "Instruction::FRem"; break;
case Instruction::And: Out << "Instruction::And"; break;
case Instruction::Or: Out << "Instruction::Or"; break;
case Instruction::Xor: Out << "Instruction::Xor"; break;
case Instruction::Shl: Out << "Instruction::Shl"; break;
case Instruction::LShr:Out << "Instruction::LShr"; break;
case Instruction::AShr:Out << "Instruction::AShr"; break;
default: Out << "Instruction::BadOpCode"; break;
}
Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
printEscapedString(I->getName());
Out << "\", " << bbname << ");";
break;
}
case Instruction::FCmp: {
Out << "FCmpInst* " << iName << " = new FCmpInst(";
switch (cast<FCmpInst>(I)->getPredicate()) {
case FCmpInst::FCMP_FALSE: Out << "FCmpInst::FCMP_FALSE"; break;
case FCmpInst::FCMP_OEQ : Out << "FCmpInst::FCMP_OEQ"; break;
case FCmpInst::FCMP_OGT : Out << "FCmpInst::FCMP_OGT"; break;
case FCmpInst::FCMP_OGE : Out << "FCmpInst::FCMP_OGE"; break;
case FCmpInst::FCMP_OLT : Out << "FCmpInst::FCMP_OLT"; break;
case FCmpInst::FCMP_OLE : Out << "FCmpInst::FCMP_OLE"; break;
case FCmpInst::FCMP_ONE : Out << "FCmpInst::FCMP_ONE"; break;
case FCmpInst::FCMP_ORD : Out << "FCmpInst::FCMP_ORD"; break;
case FCmpInst::FCMP_UNO : Out << "FCmpInst::FCMP_UNO"; break;
case FCmpInst::FCMP_UEQ : Out << "FCmpInst::FCMP_UEQ"; break;
case FCmpInst::FCMP_UGT : Out << "FCmpInst::FCMP_UGT"; break;
case FCmpInst::FCMP_UGE : Out << "FCmpInst::FCMP_UGE"; break;
case FCmpInst::FCMP_ULT : Out << "FCmpInst::FCMP_ULT"; break;
case FCmpInst::FCMP_ULE : Out << "FCmpInst::FCMP_ULE"; break;
case FCmpInst::FCMP_UNE : Out << "FCmpInst::FCMP_UNE"; break;
case FCmpInst::FCMP_TRUE : Out << "FCmpInst::FCMP_TRUE"; break;
default: Out << "FCmpInst::BAD_ICMP_PREDICATE"; break;
}
Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
printEscapedString(I->getName());
Out << "\", " << bbname << ");";
break;
}
case Instruction::ICmp: {
Out << "ICmpInst* " << iName << " = new ICmpInst(";
switch (cast<ICmpInst>(I)->getPredicate()) {
case ICmpInst::ICMP_EQ: Out << "ICmpInst::ICMP_EQ"; break;
case ICmpInst::ICMP_NE: Out << "ICmpInst::ICMP_NE"; break;
case ICmpInst::ICMP_ULE: Out << "ICmpInst::ICMP_ULE"; break;
case ICmpInst::ICMP_SLE: Out << "ICmpInst::ICMP_SLE"; break;
case ICmpInst::ICMP_UGE: Out << "ICmpInst::ICMP_UGE"; break;
case ICmpInst::ICMP_SGE: Out << "ICmpInst::ICMP_SGE"; break;
case ICmpInst::ICMP_ULT: Out << "ICmpInst::ICMP_ULT"; break;
case ICmpInst::ICMP_SLT: Out << "ICmpInst::ICMP_SLT"; break;
case ICmpInst::ICMP_UGT: Out << "ICmpInst::ICMP_UGT"; break;
case ICmpInst::ICMP_SGT: Out << "ICmpInst::ICMP_SGT"; break;
default: Out << "ICmpInst::BAD_ICMP_PREDICATE"; break;
}
Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
printEscapedString(I->getName());
Out << "\", " << bbname << ");";
break;
}
case Instruction::Malloc: {
const MallocInst* mallocI = cast<MallocInst>(I);
Out << "MallocInst* " << iName << " = new MallocInst("
<< getCppName(mallocI->getAllocatedType()) << ", ";
if (mallocI->isArrayAllocation())
Out << opNames[0] << ", " ;
Out << "\"";
printEscapedString(mallocI->getName());
Out << "\", " << bbname << ");";
if (mallocI->getAlignment())
nl(Out) << iName << "->setAlignment("
<< mallocI->getAlignment() << ");";
break;
}
case Instruction::Free: {
Out << "FreeInst* " << iName << " = new FreeInst("
<< getCppName(I->getOperand(0)) << ", " << bbname << ");";
break;
}
case Instruction::Alloca: {
const AllocaInst* allocaI = cast<AllocaInst>(I);
Out << "AllocaInst* " << iName << " = new AllocaInst("
<< getCppName(allocaI->getAllocatedType()) << ", ";
if (allocaI->isArrayAllocation())
Out << opNames[0] << ", ";
Out << "\"";
printEscapedString(allocaI->getName());
Out << "\", " << bbname << ");";
if (allocaI->getAlignment())
nl(Out) << iName << "->setAlignment("
<< allocaI->getAlignment() << ");";
break;
}
case Instruction::Load:{
const LoadInst* load = cast<LoadInst>(I);
Out << "LoadInst* " << iName << " = new LoadInst("
<< opNames[0] << ", \"";
printEscapedString(load->getName());
Out << "\", " << (load->isVolatile() ? "true" : "false" )
<< ", " << bbname << ");";
break;
}
case Instruction::Store: {
const StoreInst* store = cast<StoreInst>(I);
Out << "StoreInst* " << iName << " = new StoreInst("
<< opNames[0] << ", "
<< opNames[1] << ", "
<< (store->isVolatile() ? "true" : "false")
<< ", " << bbname << ");";
break;
}
case Instruction::GetElementPtr: {
const GetElementPtrInst* gep = cast<GetElementPtrInst>(I);
if (gep->getNumOperands() <= 2) {
Out << "GetElementPtrInst* " << iName << " = new GetElementPtrInst("
<< opNames[0];
if (gep->getNumOperands() == 2)
Out << ", " << opNames[1];
} else {
Out << "std::vector<Value*> " << iName << "_indices;";
nl(Out);
for (unsigned i = 1; i < gep->getNumOperands(); ++i ) {
Out << iName << "_indices.push_back("
<< opNames[i] << ");";
nl(Out);
}
Out << "Instruction* " << iName << " = new GetElementPtrInst("
<< opNames[0] << ", &" << iName << "_indices[0], "
<< gep->getNumOperands() - 1;
}
Out << ", \"";
printEscapedString(gep->getName());
Out << "\", " << bbname << ");";
break;
}
case Instruction::PHI: {
const PHINode* phi = cast<PHINode>(I);
Out << "PHINode* " << iName << " = new PHINode("
<< getCppName(phi->getType()) << ", \"";
printEscapedString(phi->getName());
Out << "\", " << bbname << ");";
nl(Out) << iName << "->reserveOperandSpace("
<< phi->getNumIncomingValues()
<< ");";
nl(Out);
for (unsigned i = 0; i < phi->getNumOperands(); i+=2) {
Out << iName << "->addIncoming("
<< opNames[i] << ", " << opNames[i+1] << ");";
nl(Out);
}
break;
}
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::BitCast: {
const CastInst* cst = cast<CastInst>(I);
Out << "CastInst* " << iName << " = new ";
switch (I->getOpcode()) {
case Instruction::Trunc: Out << "TruncInst"; break;
case Instruction::ZExt: Out << "ZExtInst"; break;
case Instruction::SExt: Out << "SExtInst"; break;
case Instruction::FPTrunc: Out << "FPTruncInst"; break;
case Instruction::FPExt: Out << "FPExtInst"; break;
case Instruction::FPToUI: Out << "FPToUIInst"; break;
case Instruction::FPToSI: Out << "FPToSIInst"; break;
case Instruction::UIToFP: Out << "UIToFPInst"; break;
case Instruction::SIToFP: Out << "SIToFPInst"; break;
case Instruction::PtrToInt: Out << "PtrToIntInst"; break;
case Instruction::IntToPtr: Out << "IntToPtrInst"; break;
case Instruction::BitCast: Out << "BitCastInst"; break;
default: assert(!"Unreachable"); break;
}
Out << "(" << opNames[0] << ", "
<< getCppName(cst->getType()) << ", \"";
printEscapedString(cst->getName());
Out << "\", " << bbname << ");";
break;
}
case Instruction::Call:{
const CallInst* call = cast<CallInst>(I);
if (InlineAsm* ila = dyn_cast<InlineAsm>(call->getOperand(0))) {
Out << "InlineAsm* " << getCppName(ila) << " = InlineAsm::get("
<< getCppName(ila->getFunctionType()) << ", \""
<< ila->getAsmString() << "\", \""
<< ila->getConstraintString() << "\","
<< (ila->hasSideEffects() ? "true" : "false") << ");";
nl(Out);
}
if (call->getNumOperands() > 2) {
Out << "std::vector<Value*> " << iName << "_params;";
nl(Out);
for (unsigned i = 1; i < call->getNumOperands(); ++i) {
Out << iName << "_params.push_back(" << opNames[i] << ");";
nl(Out);
}
Out << "CallInst* " << iName << " = new CallInst("
<< opNames[0] << ", " << iName << "_params.begin(), "
<< iName << "_params.end(), \"";
} else if (call->getNumOperands() == 2) {
Out << "CallInst* " << iName << " = new CallInst("
<< opNames[0] << ", " << opNames[1] << ", \"";
} else {
Out << "CallInst* " << iName << " = new CallInst(" << opNames[0]
<< ", \"";
}
printEscapedString(call->getName());
Out << "\", " << bbname << ");";
nl(Out) << iName << "->setCallingConv(";
printCallingConv(call->getCallingConv());
Out << ");";
nl(Out) << iName << "->setTailCall("
<< (call->isTailCall() ? "true":"false");
Out << ");";
break;
}
case Instruction::Select: {
const SelectInst* sel = cast<SelectInst>(I);
Out << "SelectInst* " << getCppName(sel) << " = new SelectInst(";
Out << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", \"";
printEscapedString(sel->getName());
Out << "\", " << bbname << ");";
break;
}
case Instruction::UserOp1:
/// FALL THROUGH
case Instruction::UserOp2: {
/// FIXME: What should be done here?
break;
}
case Instruction::VAArg: {
const VAArgInst* va = cast<VAArgInst>(I);
Out << "VAArgInst* " << getCppName(va) << " = new VAArgInst("
<< opNames[0] << ", " << getCppName(va->getType()) << ", \"";
printEscapedString(va->getName());
Out << "\", " << bbname << ");";
break;
}
case Instruction::ExtractElement: {
const ExtractElementInst* eei = cast<ExtractElementInst>(I);
Out << "ExtractElementInst* " << getCppName(eei)
<< " = new ExtractElementInst(" << opNames[0]
<< ", " << opNames[1] << ", \"";
printEscapedString(eei->getName());
Out << "\", " << bbname << ");";
break;
}
case Instruction::InsertElement: {
const InsertElementInst* iei = cast<InsertElementInst>(I);
Out << "InsertElementInst* " << getCppName(iei)
<< " = new InsertElementInst(" << opNames[0]
<< ", " << opNames[1] << ", " << opNames[2] << ", \"";
printEscapedString(iei->getName());
Out << "\", " << bbname << ");";
break;
}
case Instruction::ShuffleVector: {
const ShuffleVectorInst* svi = cast<ShuffleVectorInst>(I);
Out << "ShuffleVectorInst* " << getCppName(svi)
<< " = new ShuffleVectorInst(" << opNames[0]
<< ", " << opNames[1] << ", " << opNames[2] << ", \"";
printEscapedString(svi->getName());
Out << "\", " << bbname << ");";
break;
}
}
DefinedValues.insert(I);
nl(Out);
delete [] opNames;
}
// Print out the types, constants and declarations needed by one function
void CppWriter::printFunctionUses(const Function* F) {
nl(Out) << "// Type Definitions"; nl(Out);
if (!is_inline) {
// Print the function's return type
printType(F->getReturnType());
// Print the function's function type
printType(F->getFunctionType());
// Print the types of each of the function's arguments
for(Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
AI != AE; ++AI) {
printType(AI->getType());
}
}
// Print type definitions for every type referenced by an instruction and
// make a note of any global values or constants that are referenced
SmallPtrSet<GlobalValue*,64> gvs;
SmallPtrSet<Constant*,64> consts;
for (Function::const_iterator BB = F->begin(), BE = F->end(); BB != BE; ++BB){
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
I != E; ++I) {
// Print the type of the instruction itself
printType(I->getType());
// Print the type of each of the instruction's operands
for (unsigned i = 0; i < I->getNumOperands(); ++i) {
Value* operand = I->getOperand(i);
printType(operand->getType());
// If the operand references a GVal or Constant, make a note of it
if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) {
gvs.insert(GV);
if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
if (GVar->hasInitializer())
consts.insert(GVar->getInitializer());
} else if (Constant* C = dyn_cast<Constant>(operand))
consts.insert(C);
}
}
}
// Print the function declarations for any functions encountered
nl(Out) << "// Function Declarations"; nl(Out);
for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end();
I != E; ++I) {
if (Function* Fun = dyn_cast<Function>(*I)) {
if (!is_inline || Fun != F)
printFunctionHead(Fun);
}
}
// Print the global variable declarations for any variables encountered
nl(Out) << "// Global Variable Declarations"; nl(Out);
for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end();
I != E; ++I) {
if (GlobalVariable* F = dyn_cast<GlobalVariable>(*I))
printVariableHead(F);
}
// Print the constants found
nl(Out) << "// Constant Definitions"; nl(Out);
for (SmallPtrSet<Constant*,64>::iterator I = consts.begin(), E = consts.end();
I != E; ++I) {
printConstant(*I);
}
// Process the global variables definitions now that all the constants have
// been emitted. These definitions just couple the gvars with their constant
// initializers.
nl(Out) << "// Global Variable Definitions"; nl(Out);
for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end();
I != E; ++I) {
if (GlobalVariable* GV = dyn_cast<GlobalVariable>(*I))
printVariableBody(GV);
}
}
void CppWriter::printFunctionHead(const Function* F) {
nl(Out) << "Function* " << getCppName(F);
if (is_inline) {
Out << " = mod->getFunction(\"";
printEscapedString(F->getName());
Out << "\", " << getCppName(F->getFunctionType()) << ");";
nl(Out) << "if (!" << getCppName(F) << ") {";
nl(Out) << getCppName(F);
}
Out<< " = new Function(";
nl(Out,1) << "/*Type=*/" << getCppName(F->getFunctionType()) << ",";
nl(Out) << "/*Linkage=*/";
printLinkageType(F->getLinkage());
Out << ",";
nl(Out) << "/*Name=*/\"";
printEscapedString(F->getName());
Out << "\", mod); " << (F->isDeclaration()? "// (external, no body)" : "");
nl(Out,-1);
printCppName(F);
Out << "->setCallingConv(";
printCallingConv(F->getCallingConv());
Out << ");";
nl(Out);
if (F->hasSection()) {
printCppName(F);
Out << "->setSection(\"" << F->getSection() << "\");";
nl(Out);
}
if (F->getAlignment()) {
printCppName(F);
Out << "->setAlignment(" << F->getAlignment() << ");";
nl(Out);
}
if (is_inline) {
Out << "}";
nl(Out);
}
}
void CppWriter::printFunctionBody(const Function *F) {
if (F->isDeclaration())
return; // external functions have no bodies.
// Clear the DefinedValues and ForwardRefs maps because we can't have
// cross-function forward refs
ForwardRefs.clear();
DefinedValues.clear();
// Create all the argument values
if (!is_inline) {
if (!F->arg_empty()) {
Out << "Function::arg_iterator args = " << getCppName(F)
<< "->arg_begin();";
nl(Out);
}
for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
AI != AE; ++AI) {
Out << "Value* " << getCppName(AI) << " = args++;";
nl(Out);
if (AI->hasName()) {
Out << getCppName(AI) << "->setName(\"" << AI->getName() << "\");";
nl(Out);
}
}
}
// Create all the basic blocks
nl(Out);
for (Function::const_iterator BI = F->begin(), BE = F->end();
BI != BE; ++BI) {
std::string bbname(getCppName(BI));
Out << "BasicBlock* " << bbname << " = new BasicBlock(\"";
if (BI->hasName())
printEscapedString(BI->getName());
Out << "\"," << getCppName(BI->getParent()) << ",0);";
nl(Out);
}
// Output all of its basic blocks... for the function
for (Function::const_iterator BI = F->begin(), BE = F->end();
BI != BE; ++BI) {
std::string bbname(getCppName(BI));
nl(Out) << "// Block " << BI->getName() << " (" << bbname << ")";
nl(Out);
// Output all of the instructions in the basic block...
for (BasicBlock::const_iterator I = BI->begin(), E = BI->end();
I != E; ++I) {
printInstruction(I,bbname);
}
}
// Loop over the ForwardRefs and resolve them now that all instructions
// are generated.
if (!ForwardRefs.empty()) {
nl(Out) << "// Resolve Forward References";
nl(Out);
}
while (!ForwardRefs.empty()) {
ForwardRefMap::iterator I = ForwardRefs.begin();
Out << I->second << "->replaceAllUsesWith("
<< getCppName(I->first) << "); delete " << I->second << ";";
nl(Out);
ForwardRefs.erase(I);
}
}
void CppWriter::printInline(const std::string& fname, const std::string& func) {
const Function* F = TheModule->getFunction(func);
if (!F) {
error(std::string("Function '") + func + "' not found in input module");
return;
}
if (F->isDeclaration()) {
error(std::string("Function '") + func + "' is external!");
return;
}
nl(Out) << "BasicBlock* " << fname << "(Module* mod, Function *"
<< getCppName(F);
unsigned arg_count = 1;
for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
AI != AE; ++AI) {
Out << ", Value* arg_" << arg_count;
}
Out << ") {";
nl(Out);
is_inline = true;
printFunctionUses(F);
printFunctionBody(F);
is_inline = false;
Out << "return " << getCppName(F->begin()) << ";";
nl(Out) << "}";
nl(Out);
}
void CppWriter::printModuleBody() {
// Print out all the type definitions
nl(Out) << "// Type Definitions"; nl(Out);
printTypes(TheModule);
// Functions can call each other and global variables can reference them so
// define all the functions first before emitting their function bodies.
nl(Out) << "// Function Declarations"; nl(Out);
for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
I != E; ++I)
printFunctionHead(I);
// Process the global variables declarations. We can't initialze them until
// after the constants are printed so just print a header for each global
nl(Out) << "// Global Variable Declarations\n"; nl(Out);
for (Module::const_global_iterator I = TheModule->global_begin(),
E = TheModule->global_end(); I != E; ++I) {
printVariableHead(I);
}
// Print out all the constants definitions. Constants don't recurse except
// through GlobalValues. All GlobalValues have been declared at this point
// so we can proceed to generate the constants.
nl(Out) << "// Constant Definitions"; nl(Out);
printConstants(TheModule);
// Process the global variables definitions now that all the constants have
// been emitted. These definitions just couple the gvars with their constant
// initializers.
nl(Out) << "// Global Variable Definitions"; nl(Out);
for (Module::const_global_iterator I = TheModule->global_begin(),
E = TheModule->global_end(); I != E; ++I) {
printVariableBody(I);
}
// Finally, we can safely put out all of the function bodies.
nl(Out) << "// Function Definitions"; nl(Out);
for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
I != E; ++I) {
if (!I->isDeclaration()) {
nl(Out) << "// Function: " << I->getName() << " (" << getCppName(I)
<< ")";
nl(Out) << "{";
nl(Out,1);
printFunctionBody(I);
nl(Out,-1) << "}";
nl(Out);
}
}
}
void CppWriter::printProgram(
const std::string& fname,
const std::string& mName
) {
Out << "#include <llvm/Module.h>\n";
Out << "#include <llvm/DerivedTypes.h>\n";
Out << "#include <llvm/Constants.h>\n";
Out << "#include <llvm/GlobalVariable.h>\n";
Out << "#include <llvm/Function.h>\n";
Out << "#include <llvm/CallingConv.h>\n";
Out << "#include <llvm/BasicBlock.h>\n";
Out << "#include <llvm/Instructions.h>\n";
Out << "#include <llvm/InlineAsm.h>\n";
Out << "#include <llvm/ParameterAttributes.h>\n";
Out << "#include <llvm/Support/MathExtras.h>\n";
Out << "#include <llvm/Pass.h>\n";
Out << "#include <llvm/PassManager.h>\n";
Out << "#include <llvm/Analysis/Verifier.h>\n";
Out << "#include <llvm/Assembly/PrintModulePass.h>\n";
Out << "#include <algorithm>\n";
Out << "#include <iostream>\n\n";
Out << "using namespace llvm;\n\n";
Out << "Module* " << fname << "();\n\n";
Out << "int main(int argc, char**argv) {\n";
Out << " Module* Mod = " << fname << "();\n";
Out << " verifyModule(*Mod, PrintMessageAction);\n";
Out << " std::cerr.flush();\n";
Out << " std::cout.flush();\n";
Out << " PassManager PM;\n";
Out << " PM.add(new PrintModulePass(&llvm::cout));\n";
Out << " PM.run(*Mod);\n";
Out << " return 0;\n";
Out << "}\n\n";
printModule(fname,mName);
}
void CppWriter::printModule(
const std::string& fname,
const std::string& mName
) {
nl(Out) << "Module* " << fname << "() {";
nl(Out,1) << "// Module Construction";
nl(Out) << "Module* mod = new Module(\"" << mName << "\");";
if (!TheModule->getTargetTriple().empty()) {
nl(Out) << "mod->setDataLayout(\"" << TheModule->getDataLayout() << "\");";
}
if (!TheModule->getTargetTriple().empty()) {
nl(Out) << "mod->setTargetTriple(\"" << TheModule->getTargetTriple()
<< "\");";
}
if (!TheModule->getModuleInlineAsm().empty()) {
nl(Out) << "mod->setModuleInlineAsm(\"";
printEscapedString(TheModule->getModuleInlineAsm());
Out << "\");";
}
nl(Out);
// Loop over the dependent libraries and emit them.
Module::lib_iterator LI = TheModule->lib_begin();
Module::lib_iterator LE = TheModule->lib_end();
while (LI != LE) {
Out << "mod->addLibrary(\"" << *LI << "\");";
nl(Out);
++LI;
}
printModuleBody();
nl(Out) << "return mod;";
nl(Out,-1) << "}";
nl(Out);
}
void CppWriter::printContents(
const std::string& fname, // Name of generated function
const std::string& mName // Name of module generated module
) {
Out << "\nModule* " << fname << "(Module *mod) {\n";
Out << "\nmod->setModuleIdentifier(\"" << mName << "\");\n";
printModuleBody();
Out << "\nreturn mod;\n";
Out << "\n}\n";
}
void CppWriter::printFunction(
const std::string& fname, // Name of generated function
const std::string& funcName // Name of function to generate
) {
const Function* F = TheModule->getFunction(funcName);
if (!F) {
error(std::string("Function '") + funcName + "' not found in input module");
return;
}
Out << "\nFunction* " << fname << "(Module *mod) {\n";
printFunctionUses(F);
printFunctionHead(F);
printFunctionBody(F);
Out << "return " << getCppName(F) << ";\n";
Out << "}\n";
}
void CppWriter::printVariable(
const std::string& fname, /// Name of generated function
const std::string& varName // Name of variable to generate
) {
const GlobalVariable* GV = TheModule->getNamedGlobal(varName);
if (!GV) {
error(std::string("Variable '") + varName + "' not found in input module");
return;
}
Out << "\nGlobalVariable* " << fname << "(Module *mod) {\n";
printVariableUses(GV);
printVariableHead(GV);
printVariableBody(GV);
Out << "return " << getCppName(GV) << ";\n";
Out << "}\n";
}
void CppWriter::printType(
const std::string& fname, /// Name of generated function
const std::string& typeName // Name of type to generate
) {
const Type* Ty = TheModule->getTypeByName(typeName);
if (!Ty) {
error(std::string("Type '") + typeName + "' not found in input module");
return;
}
Out << "\nType* " << fname << "(Module *mod) {\n";
printType(Ty);
Out << "return " << getCppName(Ty) << ";\n";
Out << "}\n";
}
} // end anonymous llvm
namespace llvm {
void WriteModuleToCppFile(Module* mod, std::ostream& o) {
// Initialize a CppWriter for us to use
CppWriter W(o, mod);
// Emit a header
o << "// Generated by llvm2cpp - DO NOT MODIFY!\n\n";
// Get the name of the function we're supposed to generate
std::string fname = FuncName.getValue();
// Get the name of the thing we are to generate
std::string tgtname = NameToGenerate.getValue();
if (GenerationType == GenModule ||
GenerationType == GenContents ||
GenerationType == GenProgram) {
if (tgtname == "!bad!") {
if (mod->getModuleIdentifier() == "-")
tgtname = "<stdin>";
else
tgtname = mod->getModuleIdentifier();
}
} else if (tgtname == "!bad!") {
W.error("You must use the -for option with -gen-{function,variable,type}");
}
switch (WhatToGenerate(GenerationType)) {
case GenProgram:
if (fname.empty())
fname = "makeLLVMModule";
W.printProgram(fname,tgtname);
break;
case GenModule:
if (fname.empty())
fname = "makeLLVMModule";
W.printModule(fname,tgtname);
break;
case GenContents:
if (fname.empty())
fname = "makeLLVMModuleContents";
W.printContents(fname,tgtname);
break;
case GenFunction:
if (fname.empty())
fname = "makeLLVMFunction";
W.printFunction(fname,tgtname);
break;
case GenInline:
if (fname.empty())
fname = "makeLLVMInline";
W.printInline(fname,tgtname);
break;
case GenVariable:
if (fname.empty())
fname = "makeLLVMVariable";
W.printVariable(fname,tgtname);
break;
case GenType:
if (fname.empty())
fname = "makeLLVMType";
W.printType(fname,tgtname);
break;
default:
W.error("Invalid generation option");
}
}
}