llvm-6502/tools/llvm-upgrade/UpgradeInternals.h

396 lines
12 KiB
C
Raw Normal View History

//===-- ParserInternals.h - Definitions internal to the parser --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This header file defines the various variables that are shared among the
// different components of the parser...
//
//===----------------------------------------------------------------------===//
#ifndef PARSER_INTERNALS_H
#define PARSER_INTERNALS_H
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/ADT/StringExtras.h"
#include <list>
#include <iostream>
// Global variables exported from the lexer.
extern int yydebug;
extern void error(const std::string& msg, int line = -1);
extern char* Upgradetext;
extern int Upgradeleng;
extern int Upgradelineno;
namespace llvm {
class Module;
Module* UpgradeAssembly(const std::string &infile, std::istream& in,
bool debug, bool addAttrs);
extern std::istream* LexInput;
// UnEscapeLexed - Run through the specified buffer and change \xx codes to the
// appropriate character. If AllowNull is set to false, a \00 value will cause
// an error.
//
// If AllowNull is set to true, the return value of the function points to the
// last character of the string in memory.
//
char *UnEscapeLexed(char *Buffer, bool AllowNull = false);
/// InlineAsmDescriptor - This is a simple class that holds info about inline
/// asm blocks, for use by ValID.
struct InlineAsmDescriptor {
std::string AsmString, Constraints;
bool HasSideEffects;
InlineAsmDescriptor(const std::string &as, const std::string &c, bool HSE)
: AsmString(as), Constraints(c), HasSideEffects(HSE) {}
};
/// This class keeps track of the signedness of a type or value. It allows the
/// signedness of a composite type to be captured in a relatively simple form.
/// This is needed in order to retain the signedness of pre LLVM 2.0 types so
/// they can be upgraded properly. Signedness of composite types must be
/// captured in order to accurately get the signedness of a value through a
/// GEP instruction.
/// @brief Class to track signedness of types and values.
struct Signedness {
/// The basic kinds of signedness values.
enum Kind {
Signless, ///< The type doesn't have any sign.
Unsigned, ///< The type is an unsigned integer.
Signed, ///< The type is a signed integer.
Named, ///< The type is a named type (probably forward ref or up ref).
Composite ///< The type is composite (struct, array, pointer).
};
private:
/// @brief Keeps track of Signedness for composite types
typedef std::vector<Signedness> SignVector;
Kind kind; ///< The kind of signedness node
union {
SignVector *sv; ///< The vector of Signedness for composite types
std::string *name; ///< The name of the type for named types.
};
public:
/// The Signedness class is used as a member of a union so it cannot have
/// a constructor or assignment operator. This function suffices.
/// @brief Copy one signedness value to another
void copy(const Signedness &that);
/// The Signedness class is used as a member of a union so it cannot have
/// a destructor.
/// @brief Release memory, if any allocated.
void destroy();
/// @brief Make a Signless node.
void makeSignless() { kind = Signless; sv = 0; }
/// @brief Make a Signed node.
void makeSigned() { kind = Signed; sv = 0; }
/// @brief Make an Unsigned node.
void makeUnsigned() { kind = Unsigned; sv = 0; }
/// @brief Make a Named node.
void makeNamed(const std::string& nm){
kind = Named; name = new std::string(nm);
}
/// @brief Make an empty Composite node.
void makeComposite() { kind = Composite; sv = new SignVector(); }
/// @brief Make an Composite node, with the first element given.
void makeComposite(const Signedness &S) {
kind = Composite;
sv = new SignVector();
sv->push_back(S);
}
/// @brief Add an element to a Composite node.
void add(const Signedness &S) {
assert(isComposite() && "Must be composite to use add");
sv->push_back(S);
}
bool operator<(const Signedness &that) const;
bool operator==(const Signedness &that) const;
bool isSigned() const { return kind == Signed; }
bool isUnsigned() const { return kind == Unsigned; }
bool isSignless() const { return kind == Signless; }
bool isNamed() const { return kind == Named; }
bool isComposite() const { return kind == Composite; }
/// This is used by GetElementPtr to extract the sign of an element.
/// @brief Get a specific element from a Composite node.
Signedness get(uint64_t idx) const {
assert(isComposite() && "Invalid Signedness type for get()");
assert(sv && idx < sv->size() && "Invalid index");
return (*sv)[idx];
}
/// @brief Get the name from a Named node.
const std::string& getName() const {
assert(isNamed() && "Can't get name from non-name Sign");
return *name;
}
#ifndef NDEBUG
void dump() const;
#endif
};
// ValID - Represents a reference of a definition of some sort. This may either
// be a numeric reference or a symbolic (%var) reference. This is just a
// discriminated union.
//
// Note that I can't implement this class in a straight forward manner with
// constructors and stuff because it goes in a union.
//
struct ValID {
enum {
NumberVal, NameVal, ConstSIntVal, ConstUIntVal, ConstFPVal, ConstNullVal,
ConstUndefVal, ConstZeroVal, ConstantVal, InlineAsmVal
} Type;
union {
int Num; // If it's a numeric reference
char *Name; // If it's a named reference. Memory must be free'd.
int64_t ConstPool64; // Constant pool reference. This is the value
uint64_t UConstPool64;// Unsigned constant pool reference.
double ConstPoolFP; // Floating point constant pool reference
Constant *ConstantValue; // Fully resolved constant for ConstantVal case.
InlineAsmDescriptor *IAD;
};
Signedness S;
static ValID create(int Num) {
ValID D; D.Type = NumberVal; D.Num = Num; D.S.makeSignless();
return D;
}
static ValID create(char *Name) {
ValID D; D.Type = NameVal; D.Name = Name; D.S.makeSignless();
return D;
}
static ValID create(int64_t Val) {
ValID D; D.Type = ConstSIntVal; D.ConstPool64 = Val;
D.S.makeSigned();
return D;
}
static ValID create(uint64_t Val) {
ValID D; D.Type = ConstUIntVal; D.UConstPool64 = Val;
D.S.makeUnsigned();
return D;
}
static ValID create(double Val) {
ValID D; D.Type = ConstFPVal; D.ConstPoolFP = Val;
D.S.makeSignless();
return D;
}
static ValID createNull() {
ValID D; D.Type = ConstNullVal;
D.S.makeSignless();
return D;
}
static ValID createUndef() {
ValID D; D.Type = ConstUndefVal;
D.S.makeSignless();
return D;
}
static ValID createZeroInit() {
ValID D; D.Type = ConstZeroVal;
D.S.makeSignless();
return D;
}
static ValID create(Constant *Val) {
ValID D; D.Type = ConstantVal; D.ConstantValue = Val;
D.S.makeSignless();
return D;
}
static ValID createInlineAsm(const std::string &AsmString,
const std::string &Constraints,
bool HasSideEffects) {
ValID D;
D.Type = InlineAsmVal;
D.IAD = new InlineAsmDescriptor(AsmString, Constraints, HasSideEffects);
D.S.makeSignless();
return D;
}
inline void destroy() const {
if (Type == NameVal)
free(Name); // Free this strdup'd memory.
else if (Type == InlineAsmVal)
delete IAD;
}
inline ValID copy() const {
if (Type != NameVal) return *this;
ValID Result = *this;
Result.Name = strdup(Name);
return Result;
}
inline std::string getName() const {
switch (Type) {
case NumberVal : return std::string("#") + itostr(Num);
case NameVal : return Name;
case ConstFPVal : return ftostr(ConstPoolFP);
case ConstNullVal : return "null";
case ConstUndefVal : return "undef";
case ConstZeroVal : return "zeroinitializer";
case ConstUIntVal :
case ConstSIntVal : return std::string("%") + itostr(ConstPool64);
case ConstantVal:
if (ConstantValue == ConstantInt::get(Type::Int1Ty, true))
return "true";
if (ConstantValue == ConstantInt::get(Type::Int1Ty, false))
return "false";
return "<constant expression>";
default:
assert(0 && "Unknown value!");
abort();
return "";
}
}
bool operator<(const ValID &V) const {
if (Type != V.Type) return Type < V.Type;
switch (Type) {
case NumberVal: return Num < V.Num;
case NameVal: return strcmp(Name, V.Name) < 0;
case ConstSIntVal: return ConstPool64 < V.ConstPool64;
case ConstUIntVal: return UConstPool64 < V.UConstPool64;
case ConstFPVal: return ConstPoolFP < V.ConstPoolFP;
case ConstNullVal: return false;
case ConstUndefVal: return false;
case ConstZeroVal: return false;
case ConstantVal: return ConstantValue < V.ConstantValue;
default: assert(0 && "Unknown value type!"); return false;
}
}
};
/// The following enums are used to keep track of prior opcodes. The lexer will
/// retain the ability to parse obsolete opcode mnemonics and generates semantic
/// values containing one of these enumerators.
enum TermOps {
RetOp, BrOp, SwitchOp, InvokeOp, UnwindOp, UnreachableOp
};
enum BinaryOps {
AddOp, SubOp, MulOp,
DivOp, UDivOp, SDivOp, FDivOp,
RemOp, URemOp, SRemOp, FRemOp,
AndOp, OrOp, XorOp,
ShlOp, ShrOp, LShrOp, AShrOp,
SetEQ, SetNE, SetLE, SetGE, SetLT, SetGT
};
enum MemoryOps {
MallocOp, FreeOp, AllocaOp, LoadOp, StoreOp, GetElementPtrOp
};
enum OtherOps {
PHIOp, CallOp, SelectOp, UserOp1, UserOp2, VAArg,
ExtractElementOp, InsertElementOp, ShuffleVectorOp,
ICmpOp, FCmpOp
};
enum CastOps {
CastOp, TruncOp, ZExtOp, SExtOp, FPTruncOp, FPExtOp, FPToUIOp, FPToSIOp,
UIToFPOp, SIToFPOp, PtrToIntOp, IntToPtrOp, BitCastOp
};
// An enumeration for the old calling conventions, ala LLVM 1.9
namespace OldCallingConv {
enum ID {
C = 0, CSRet = 1, Fast = 8, Cold = 9, X86_StdCall = 64, X86_FastCall = 65,
None = 99999
};
}
/// These structures are used as the semantic values returned from various
/// productions in the grammar. They simply bundle an LLVM IR object with
/// its Signedness value. These help track signedness through the various
/// productions.
struct TypeInfo {
const llvm::Type *T;
Signedness S;
bool operator<(const TypeInfo& that) const {
if (this == &that)
return false;
if (T < that.T)
return true;
if (T == that.T) {
bool result = S < that.S;
//#define TYPEINFO_DEBUG
#ifdef TYPEINFO_DEBUG
std::cerr << (result?"true ":"false ") << T->getDescription() << " (";
S.dump();
std::cerr << ") < " << that.T->getDescription() << " (";
that.S.dump();
std::cerr << ")\n";
#endif
return result;
}
return false;
}
bool operator==(const TypeInfo& that) const {
if (this == &that)
return true;
return T == that.T && S == that.S;
}
void destroy() { S.destroy(); }
};
struct PATypeInfo {
llvm::PATypeHolder* PAT;
Signedness S;
void destroy() { S.destroy(); delete PAT; }
};
struct ConstInfo {
llvm::Constant* C;
Signedness S;
void destroy() { S.destroy(); }
};
struct ValueInfo {
llvm::Value* V;
Signedness S;
void destroy() { S.destroy(); }
};
struct InstrInfo {
llvm::Instruction *I;
Signedness S;
void destroy() { S.destroy(); }
};
struct TermInstInfo {
llvm::TerminatorInst *TI;
Signedness S;
void destroy() { S.destroy(); }
};
struct PHIListInfo {
std::list<std::pair<llvm::Value*, llvm::BasicBlock*> > *P;
Signedness S;
void destroy() { S.destroy(); delete P; }
};
} // End llvm namespace
#endif