llvm-6502/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp

826 lines
28 KiB
C++
Raw Normal View History

//===-- ExternalFunctions.cpp - Implement External Functions --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains both code to deal with invoking "external" functions, but
// also contains code that implements "exported" external functions.
//
// External functions in the interpreter are implemented by
// using the system's dynamic loader to look up the address of the function
// we want to invoke. If a function is found, then one of the
// many lle_* wrapper functions in this file will translate its arguments from
// GenericValues to the types the function is actually expecting, before the
// function is called.
//
//===----------------------------------------------------------------------===//
#include "Interpreter.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/Support/Streams.h"
#include "llvm/System/DynamicLibrary.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Support/ManagedStatic.h"
#include <csignal>
#include <map>
#include <cmath>
#include <cstring>
#ifdef __linux__
#include <cxxabi.h>
#endif
using std::vector;
using namespace llvm;
typedef GenericValue (*ExFunc)(FunctionType *, const vector<GenericValue> &);
static ManagedStatic<std::map<const Function *, ExFunc> > Functions;
static std::map<std::string, ExFunc> FuncNames;
static Interpreter *TheInterpreter;
static char getTypeID(const Type *Ty) {
switch (Ty->getTypeID()) {
case Type::VoidTyID: return 'V';
case Type::IntegerTyID:
switch (cast<IntegerType>(Ty)->getBitWidth()) {
case 1: return 'o';
case 8: return 'B';
case 16: return 'S';
case 32: return 'I';
case 64: return 'L';
default: return 'N';
}
case Type::FloatTyID: return 'F';
case Type::DoubleTyID: return 'D';
case Type::PointerTyID: return 'P';
case Type::FunctionTyID:return 'M';
case Type::StructTyID: return 'T';
case Type::ArrayTyID: return 'A';
case Type::OpaqueTyID: return 'O';
default: return 'U';
}
}
// Try to find address of external function given a Function object.
// Please note, that interpreter doesn't know how to assemble a
// real call in general case (this is JIT job), that's why it assumes,
// that all external functions has the same (and pretty "general") signature.
// The typical example of such functions are "lle_X_" ones.
static ExFunc lookupFunction(const Function *F) {
// Function not found, look it up... start by figuring out what the
// composite function name should be.
std::string ExtName = "lle_";
const FunctionType *FT = F->getFunctionType();
for (unsigned i = 0, e = FT->getNumContainedTypes(); i != e; ++i)
ExtName += getTypeID(FT->getContainedType(i));
ExtName += "_" + F->getName();
ExFunc FnPtr = FuncNames[ExtName];
if (FnPtr == 0)
FnPtr = FuncNames["lle_X_"+F->getName()];
if (FnPtr == 0) // Try calling a generic function... if it exists...
FnPtr = (ExFunc)(intptr_t)sys::DynamicLibrary::SearchForAddressOfSymbol(
("lle_X_"+F->getName()).c_str());
if (FnPtr == 0)
FnPtr = (ExFunc)(intptr_t)
sys::DynamicLibrary::SearchForAddressOfSymbol(F->getName());
if (FnPtr != 0)
Functions->insert(std::make_pair(F, FnPtr)); // Cache for later
return FnPtr;
}
GenericValue Interpreter::callExternalFunction(Function *F,
const std::vector<GenericValue> &ArgVals) {
TheInterpreter = this;
// Do a lookup to see if the function is in our cache... this should just be a
// deferred annotation!
std::map<const Function *, ExFunc>::iterator FI = Functions->find(F);
ExFunc Fn = (FI == Functions->end()) ? lookupFunction(F) : FI->second;
if (Fn == 0) {
cerr << "Tried to execute an unknown external function: "
<< F->getType()->getDescription() << " " << F->getName() << "\n";
if (F->getName() == "__main")
return GenericValue();
abort();
}
// TODO: FIXME when types are not const!
GenericValue Result = Fn(const_cast<FunctionType*>(F->getFunctionType()),
ArgVals);
return Result;
}
//===----------------------------------------------------------------------===//
// Functions "exported" to the running application...
//
extern "C" { // Don't add C++ manglings to llvm mangling :)
// void putchar(ubyte)
GenericValue lle_X_putchar(FunctionType *FT, const vector<GenericValue> &Args){
cout << ((char)Args[0].IntVal.getZExtValue()) << std::flush;
return Args[0];
}
// void _IO_putc(int c, FILE* fp)
GenericValue lle_X__IO_putc(FunctionType *FT, const vector<GenericValue> &Args){
#ifdef __linux__
_IO_putc((char)Args[0].IntVal.getZExtValue(), (FILE*) Args[1].PointerVal);
#else
assert(0 && "Can't call _IO_putc on this platform");
#endif
return Args[0];
}
// void atexit(Function*)
GenericValue lle_X_atexit(FunctionType *FT, const vector<GenericValue> &Args) {
assert(Args.size() == 1);
TheInterpreter->addAtExitHandler((Function*)GVTOP(Args[0]));
GenericValue GV;
GV.IntVal = 0;
return GV;
}
// void exit(int)
GenericValue lle_X_exit(FunctionType *FT, const vector<GenericValue> &Args) {
TheInterpreter->exitCalled(Args[0]);
return GenericValue();
}
// void abort(void)
GenericValue lle_X_abort(FunctionType *FT, const vector<GenericValue> &Args) {
raise (SIGABRT);
return GenericValue();
}
// void *malloc(uint)
GenericValue lle_X_malloc(FunctionType *FT, const vector<GenericValue> &Args) {
assert(Args.size() == 1 && "Malloc expects one argument!");
assert(isa<PointerType>(FT->getReturnType()) && "malloc must return pointer");
return PTOGV(malloc(Args[0].IntVal.getZExtValue()));
}
// void *calloc(uint, uint)
GenericValue lle_X_calloc(FunctionType *FT, const vector<GenericValue> &Args) {
assert(Args.size() == 2 && "calloc expects two arguments!");
assert(isa<PointerType>(FT->getReturnType()) && "calloc must return pointer");
return PTOGV(calloc(Args[0].IntVal.getZExtValue(),
Args[1].IntVal.getZExtValue()));
}
// void *calloc(uint, uint)
GenericValue lle_X_realloc(FunctionType *FT, const vector<GenericValue> &Args) {
assert(Args.size() == 2 && "calloc expects two arguments!");
assert(isa<PointerType>(FT->getReturnType()) &&"realloc must return pointer");
return PTOGV(realloc(GVTOP(Args[0]), Args[1].IntVal.getZExtValue()));
}
// void free(void *)
GenericValue lle_X_free(FunctionType *FT, const vector<GenericValue> &Args) {
assert(Args.size() == 1);
free(GVTOP(Args[0]));
return GenericValue();
}
// int atoi(char *)
GenericValue lle_X_atoi(FunctionType *FT, const vector<GenericValue> &Args) {
assert(Args.size() == 1);
GenericValue GV;
GV.IntVal = APInt(32, atoi((char*)GVTOP(Args[0])));
return GV;
}
// double pow(double, double)
GenericValue lle_X_pow(FunctionType *FT, const vector<GenericValue> &Args) {
assert(Args.size() == 2);
GenericValue GV;
GV.DoubleVal = pow(Args[0].DoubleVal, Args[1].DoubleVal);
return GV;
}
// double sin(double)
GenericValue lle_X_sin(FunctionType *FT, const vector<GenericValue> &Args) {
assert(Args.size() == 1);
GenericValue GV;
GV.DoubleVal = sin(Args[0].DoubleVal);
return GV;
}
// double cos(double)
GenericValue lle_X_cos(FunctionType *FT, const vector<GenericValue> &Args) {
assert(Args.size() == 1);
GenericValue GV;
GV.DoubleVal = cos(Args[0].DoubleVal);
return GV;
}
// double exp(double)
GenericValue lle_X_exp(FunctionType *FT, const vector<GenericValue> &Args) {
assert(Args.size() == 1);
GenericValue GV;
GV.DoubleVal = exp(Args[0].DoubleVal);
return GV;
}
// double sqrt(double)
GenericValue lle_X_sqrt(FunctionType *FT, const vector<GenericValue> &Args) {
assert(Args.size() == 1);
GenericValue GV;
GV.DoubleVal = sqrt(Args[0].DoubleVal);
return GV;
}
// double log(double)
GenericValue lle_X_log(FunctionType *FT, const vector<GenericValue> &Args) {
assert(Args.size() == 1);
GenericValue GV;
GV.DoubleVal = log(Args[0].DoubleVal);
return GV;
}
// double floor(double)
GenericValue lle_X_floor(FunctionType *FT, const vector<GenericValue> &Args) {
assert(Args.size() == 1);
GenericValue GV;
GV.DoubleVal = floor(Args[0].DoubleVal);
return GV;
}
#ifdef HAVE_RAND48
// double drand48()
GenericValue lle_X_drand48(FunctionType *FT, const vector<GenericValue> &Args) {
assert(Args.empty());
GenericValue GV;
GV.DoubleVal = drand48();
return GV;
}
// long lrand48()
GenericValue lle_X_lrand48(FunctionType *FT, const vector<GenericValue> &Args) {
assert(Args.empty());
GenericValue GV;
GV.IntVal = APInt(32, lrand48());
return GV;
}
// void srand48(long)
GenericValue lle_X_srand48(FunctionType *FT, const vector<GenericValue> &Args) {
assert(Args.size() == 1);
srand48(Args[0].IntVal.getZExtValue());
return GenericValue();
}
#endif
// int rand()
GenericValue lle_X_rand(FunctionType *FT, const vector<GenericValue> &Args) {
assert(Args.empty());
GenericValue GV;
GV.IntVal = APInt(32, rand());
return GV;
}
// void srand(uint)
GenericValue lle_X_srand(FunctionType *FT, const vector<GenericValue> &Args) {
assert(Args.size() == 1);
srand(Args[0].IntVal.getZExtValue());
return GenericValue();
}
// int puts(const char*)
GenericValue lle_X_puts(FunctionType *FT, const vector<GenericValue> &Args) {
assert(Args.size() == 1);
GenericValue GV;
GV.IntVal = APInt(32, puts((char*)GVTOP(Args[0])));
return GV;
}
// int sprintf(sbyte *, sbyte *, ...) - a very rough implementation to make
// output useful.
GenericValue lle_X_sprintf(FunctionType *FT, const vector<GenericValue> &Args) {
char *OutputBuffer = (char *)GVTOP(Args[0]);
const char *FmtStr = (const char *)GVTOP(Args[1]);
unsigned ArgNo = 2;
// printf should return # chars printed. This is completely incorrect, but
// close enough for now.
GenericValue GV;
GV.IntVal = APInt(32, strlen(FmtStr));
while (1) {
switch (*FmtStr) {
case 0: return GV; // Null terminator...
default: // Normal nonspecial character
sprintf(OutputBuffer++, "%c", *FmtStr++);
break;
case '\\': { // Handle escape codes
sprintf(OutputBuffer, "%c%c", *FmtStr, *(FmtStr+1));
FmtStr += 2; OutputBuffer += 2;
break;
}
case '%': { // Handle format specifiers
char FmtBuf[100] = "", Buffer[1000] = "";
char *FB = FmtBuf;
*FB++ = *FmtStr++;
char Last = *FB++ = *FmtStr++;
unsigned HowLong = 0;
while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' &&
Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' &&
Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' &&
Last != 'p' && Last != 's' && Last != '%') {
if (Last == 'l' || Last == 'L') HowLong++; // Keep track of l's
Last = *FB++ = *FmtStr++;
}
*FB = 0;
switch (Last) {
case '%':
sprintf(Buffer, FmtBuf); break;
case 'c':
sprintf(Buffer, FmtBuf, uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
break;
case 'd': case 'i':
case 'u': case 'o':
case 'x': case 'X':
if (HowLong >= 1) {
if (HowLong == 1 &&
TheInterpreter->getTargetData()->getPointerSizeInBits() == 64 &&
sizeof(long) < sizeof(int64_t)) {
// Make sure we use %lld with a 64 bit argument because we might be
// compiling LLI on a 32 bit compiler.
unsigned Size = strlen(FmtBuf);
FmtBuf[Size] = FmtBuf[Size-1];
FmtBuf[Size+1] = 0;
FmtBuf[Size-1] = 'l';
}
sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal.getZExtValue());
} else
sprintf(Buffer, FmtBuf,uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
break;
case 'e': case 'E': case 'g': case 'G': case 'f':
sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break;
case 'p':
sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break;
case 's':
sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break;
default: cerr << "<unknown printf code '" << *FmtStr << "'!>";
ArgNo++; break;
}
strcpy(OutputBuffer, Buffer);
OutputBuffer += strlen(Buffer);
}
break;
}
}
return GV;
}
// int printf(sbyte *, ...) - a very rough implementation to make output useful.
GenericValue lle_X_printf(FunctionType *FT, const vector<GenericValue> &Args) {
char Buffer[10000];
vector<GenericValue> NewArgs;
NewArgs.push_back(PTOGV((void*)&Buffer[0]));
NewArgs.insert(NewArgs.end(), Args.begin(), Args.end());
GenericValue GV = lle_X_sprintf(FT, NewArgs);
cout << Buffer;
return GV;
}
static void ByteswapSCANFResults(const char *Fmt, void *Arg0, void *Arg1,
void *Arg2, void *Arg3, void *Arg4, void *Arg5,
void *Arg6, void *Arg7, void *Arg8) {
void *Args[] = { Arg0, Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8, 0 };
// Loop over the format string, munging read values as appropriate (performs
// byteswaps as necessary).
unsigned ArgNo = 0;
while (*Fmt) {
if (*Fmt++ == '%') {
// Read any flag characters that may be present...
bool Suppress = false;
bool Half = false;
bool Long = false;
bool LongLong = false; // long long or long double
while (1) {
switch (*Fmt++) {
case '*': Suppress = true; break;
case 'a': /*Allocate = true;*/ break; // We don't need to track this
case 'h': Half = true; break;
case 'l': Long = true; break;
case 'q':
case 'L': LongLong = true; break;
default:
if (Fmt[-1] > '9' || Fmt[-1] < '0') // Ignore field width specs
goto Out;
}
}
Out:
// Read the conversion character
if (!Suppress && Fmt[-1] != '%') { // Nothing to do?
unsigned Size = 0;
const Type *Ty = 0;
switch (Fmt[-1]) {
case 'i': case 'o': case 'u': case 'x': case 'X': case 'n': case 'p':
case 'd':
if (Long || LongLong) {
Size = 8; Ty = Type::Int64Ty;
} else if (Half) {
Size = 4; Ty = Type::Int16Ty;
} else {
Size = 4; Ty = Type::Int32Ty;
}
break;
case 'e': case 'g': case 'E':
case 'f':
if (Long || LongLong) {
Size = 8; Ty = Type::DoubleTy;
} else {
Size = 4; Ty = Type::FloatTy;
}
break;
case 's': case 'c': case '[': // No byteswap needed
Size = 1;
Ty = Type::Int8Ty;
break;
default: break;
}
if (Size) {
GenericValue GV;
void *Arg = Args[ArgNo++];
memcpy(&GV, Arg, Size);
TheInterpreter->StoreValueToMemory(GV, (GenericValue*)Arg, Ty);
}
}
}
}
}
// int sscanf(const char *format, ...);
GenericValue lle_X_sscanf(FunctionType *FT, const vector<GenericValue> &args) {
assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!");
char *Args[10];
for (unsigned i = 0; i < args.size(); ++i)
Args[i] = (char*)GVTOP(args[i]);
GenericValue GV;
GV.IntVal = APInt(32, sscanf(Args[0], Args[1], Args[2], Args[3], Args[4],
Args[5], Args[6], Args[7], Args[8], Args[9]));
ByteswapSCANFResults(Args[1], Args[2], Args[3], Args[4],
Args[5], Args[6], Args[7], Args[8], Args[9], 0);
return GV;
}
// int scanf(const char *format, ...);
GenericValue lle_X_scanf(FunctionType *FT, const vector<GenericValue> &args) {
assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!");
char *Args[10];
for (unsigned i = 0; i < args.size(); ++i)
Args[i] = (char*)GVTOP(args[i]);
GenericValue GV;
GV.IntVal = APInt(32, scanf( Args[0], Args[1], Args[2], Args[3], Args[4],
Args[5], Args[6], Args[7], Args[8], Args[9]));
ByteswapSCANFResults(Args[0], Args[1], Args[2], Args[3], Args[4],
Args[5], Args[6], Args[7], Args[8], Args[9]);
return GV;
}
// int clock(void) - Profiling implementation
GenericValue lle_i_clock(FunctionType *FT, const vector<GenericValue> &Args) {
extern unsigned int clock(void);
GenericValue GV;
GV.IntVal = APInt(32, clock());
return GV;
}
//===----------------------------------------------------------------------===//
// String Functions...
//===----------------------------------------------------------------------===//
// int strcmp(const char *S1, const char *S2);
GenericValue lle_X_strcmp(FunctionType *FT, const vector<GenericValue> &Args) {
assert(Args.size() == 2);
GenericValue Ret;
Ret.IntVal = APInt(32, strcmp((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1])));
return Ret;
}
// char *strcat(char *Dest, const char *src);
GenericValue lle_X_strcat(FunctionType *FT, const vector<GenericValue> &Args) {
assert(Args.size() == 2);
assert(isa<PointerType>(FT->getReturnType()) &&"strcat must return pointer");
return PTOGV(strcat((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1])));
}
// char *strcpy(char *Dest, const char *src);
GenericValue lle_X_strcpy(FunctionType *FT, const vector<GenericValue> &Args) {
assert(Args.size() == 2);
assert(isa<PointerType>(FT->getReturnType()) &&"strcpy must return pointer");
return PTOGV(strcpy((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1])));
}
static GenericValue size_t_to_GV (size_t n) {
GenericValue Ret;
if (sizeof (size_t) == sizeof (uint64_t)) {
Ret.IntVal = APInt(64, n);
} else {
assert (sizeof (size_t) == sizeof (unsigned int));
Ret.IntVal = APInt(32, n);
}
return Ret;
}
static size_t GV_to_size_t (GenericValue GV) {
size_t count;
if (sizeof (size_t) == sizeof (uint64_t)) {
count = (size_t)GV.IntVal.getZExtValue();
} else {
assert (sizeof (size_t) == sizeof (unsigned int));
count = (size_t)GV.IntVal.getZExtValue();
}
return count;
}
// size_t strlen(const char *src);
GenericValue lle_X_strlen(FunctionType *FT, const vector<GenericValue> &Args) {
assert(Args.size() == 1);
size_t strlenResult = strlen ((char *) GVTOP (Args[0]));
return size_t_to_GV (strlenResult);
}
// char *strdup(const char *src);
GenericValue lle_X_strdup(FunctionType *FT, const vector<GenericValue> &Args) {
assert(Args.size() == 1);
assert(isa<PointerType>(FT->getReturnType()) && "strdup must return pointer");
return PTOGV(strdup((char*)GVTOP(Args[0])));
}
// char *__strdup(const char *src);
GenericValue lle_X___strdup(FunctionType *FT, const vector<GenericValue> &Args) {
assert(Args.size() == 1);
assert(isa<PointerType>(FT->getReturnType()) &&"_strdup must return pointer");
return PTOGV(strdup((char*)GVTOP(Args[0])));
}
// void *memset(void *S, int C, size_t N)
GenericValue lle_X_memset(FunctionType *FT, const vector<GenericValue> &Args) {
assert(Args.size() == 3);
size_t count = GV_to_size_t (Args[2]);
assert(isa<PointerType>(FT->getReturnType()) && "memset must return pointer");
return PTOGV(memset(GVTOP(Args[0]), uint32_t(Args[1].IntVal.getZExtValue()),
count));
}
// void *memcpy(void *Dest, void *src, size_t Size);
GenericValue lle_X_memcpy(FunctionType *FT, const vector<GenericValue> &Args) {
assert(Args.size() == 3);
assert(isa<PointerType>(FT->getReturnType()) && "memcpy must return pointer");
size_t count = GV_to_size_t (Args[2]);
return PTOGV(memcpy((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]), count));
}
// void *memcpy(void *Dest, void *src, size_t Size);
GenericValue lle_X_memmove(FunctionType *FT, const vector<GenericValue> &Args) {
assert(Args.size() == 3);
assert(isa<PointerType>(FT->getReturnType()) && "memmove must return pointer");
size_t count = GV_to_size_t (Args[2]);
return PTOGV(memmove((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]), count));
}
//===----------------------------------------------------------------------===//
// IO Functions...
//===----------------------------------------------------------------------===//
// getFILE - Turn a pointer in the host address space into a legit pointer in
// the interpreter address space. This is an identity transformation.
#define getFILE(ptr) ((FILE*)ptr)
// FILE *fopen(const char *filename, const char *mode);
GenericValue lle_X_fopen(FunctionType *FT, const vector<GenericValue> &Args) {
assert(Args.size() == 2);
assert(isa<PointerType>(FT->getReturnType()) && "fopen must return pointer");
return PTOGV(fopen((const char *)GVTOP(Args[0]),
(const char *)GVTOP(Args[1])));
}
// int fclose(FILE *F);
GenericValue lle_X_fclose(FunctionType *FT, const vector<GenericValue> &Args) {
assert(Args.size() == 1);
GenericValue GV;
GV.IntVal = APInt(32, fclose(getFILE(GVTOP(Args[0]))));
return GV;
}
// int feof(FILE *stream);
GenericValue lle_X_feof(FunctionType *FT, const vector<GenericValue> &Args) {
assert(Args.size() == 1);
GenericValue GV;
GV.IntVal = APInt(32, feof(getFILE(GVTOP(Args[0]))));
return GV;
}
// size_t fread(void *ptr, size_t size, size_t nitems, FILE *stream);
GenericValue lle_X_fread(FunctionType *FT, const vector<GenericValue> &Args) {
assert(Args.size() == 4);
size_t result;
result = fread((void*)GVTOP(Args[0]), GV_to_size_t (Args[1]),
GV_to_size_t (Args[2]), getFILE(GVTOP(Args[3])));
return size_t_to_GV (result);
}
// size_t fwrite(const void *ptr, size_t size, size_t nitems, FILE *stream);
GenericValue lle_X_fwrite(FunctionType *FT, const vector<GenericValue> &Args) {
assert(Args.size() == 4);
size_t result;
result = fwrite((void*)GVTOP(Args[0]), GV_to_size_t (Args[1]),
GV_to_size_t (Args[2]), getFILE(GVTOP(Args[3])));
return size_t_to_GV (result);
}
// char *fgets(char *s, int n, FILE *stream);
GenericValue lle_X_fgets(FunctionType *FT, const vector<GenericValue> &Args) {
assert(Args.size() == 3);
return PTOGV(fgets((char*)GVTOP(Args[0]), Args[1].IntVal.getZExtValue(),
getFILE(GVTOP(Args[2]))));
}
// FILE *freopen(const char *path, const char *mode, FILE *stream);
GenericValue lle_X_freopen(FunctionType *FT, const vector<GenericValue> &Args) {
assert(Args.size() == 3);
assert(isa<PointerType>(FT->getReturnType()) &&"freopen must return pointer");
return PTOGV(freopen((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]),
getFILE(GVTOP(Args[2]))));
}
// int fflush(FILE *stream);
GenericValue lle_X_fflush(FunctionType *FT, const vector<GenericValue> &Args) {
assert(Args.size() == 1);
GenericValue GV;
GV.IntVal = APInt(32, fflush(getFILE(GVTOP(Args[0]))));
return GV;
}
// int getc(FILE *stream);
GenericValue lle_X_getc(FunctionType *FT, const vector<GenericValue> &Args) {
assert(Args.size() == 1);
GenericValue GV;
GV.IntVal = APInt(32, getc(getFILE(GVTOP(Args[0]))));
return GV;
}
// int _IO_getc(FILE *stream);
GenericValue lle_X__IO_getc(FunctionType *F, const vector<GenericValue> &Args) {
return lle_X_getc(F, Args);
}
// int fputc(int C, FILE *stream);
GenericValue lle_X_fputc(FunctionType *FT, const vector<GenericValue> &Args) {
assert(Args.size() == 2);
GenericValue GV;
GV.IntVal = APInt(32, fputc(Args[0].IntVal.getZExtValue(),
getFILE(GVTOP(Args[1]))));
return GV;
}
// int ungetc(int C, FILE *stream);
GenericValue lle_X_ungetc(FunctionType *FT, const vector<GenericValue> &Args) {
assert(Args.size() == 2);
GenericValue GV;
GV.IntVal = APInt(32, ungetc(Args[0].IntVal.getZExtValue(),
getFILE(GVTOP(Args[1]))));
return GV;
}
// int ferror (FILE *stream);
GenericValue lle_X_ferror(FunctionType *FT, const vector<GenericValue> &Args) {
assert(Args.size() == 1);
GenericValue GV;
GV.IntVal = APInt(32, ferror (getFILE(GVTOP(Args[0]))));
return GV;
}
// int fprintf(FILE *,sbyte *, ...) - a very rough implementation to make output
// useful.
GenericValue lle_X_fprintf(FunctionType *FT, const vector<GenericValue> &Args) {
assert(Args.size() >= 2);
char Buffer[10000];
vector<GenericValue> NewArgs;
NewArgs.push_back(PTOGV(Buffer));
NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end());
GenericValue GV = lle_X_sprintf(FT, NewArgs);
fputs(Buffer, getFILE(GVTOP(Args[0])));
return GV;
}
// int __cxa_guard_acquire (__guard *g);
GenericValue lle_X___cxa_guard_acquire(FunctionType *FT,
const vector<GenericValue> &Args) {
assert(Args.size() == 1);
GenericValue GV;
#ifdef __linux__
GV.IntVal = APInt(32, __cxxabiv1::__cxa_guard_acquire (
(__cxxabiv1::__guard*)GVTOP(Args[0])));
#else
assert(0 && "Can't call __cxa_guard_acquire on this platform");
#endif
return GV;
}
// void __cxa_guard_release (__guard *g);
GenericValue lle_X___cxa_guard_release(FunctionType *FT,
const vector<GenericValue> &Args) {
assert(Args.size() == 1);
#ifdef __linux__
__cxxabiv1::__cxa_guard_release ((__cxxabiv1::__guard*)GVTOP(Args[0]));
#else
assert(0 && "Can't call __cxa_guard_release on this platform");
#endif
return GenericValue();
}
} // End extern "C"
void Interpreter::initializeExternalFunctions() {
FuncNames["lle_X_putchar"] = lle_X_putchar;
FuncNames["lle_X__IO_putc"] = lle_X__IO_putc;
FuncNames["lle_X_exit"] = lle_X_exit;
FuncNames["lle_X_abort"] = lle_X_abort;
FuncNames["lle_X_malloc"] = lle_X_malloc;
FuncNames["lle_X_calloc"] = lle_X_calloc;
FuncNames["lle_X_realloc"] = lle_X_realloc;
FuncNames["lle_X_free"] = lle_X_free;
FuncNames["lle_X_atoi"] = lle_X_atoi;
FuncNames["lle_X_pow"] = lle_X_pow;
FuncNames["lle_X_sin"] = lle_X_sin;
FuncNames["lle_X_cos"] = lle_X_cos;
FuncNames["lle_X_exp"] = lle_X_exp;
FuncNames["lle_X_log"] = lle_X_log;
FuncNames["lle_X_floor"] = lle_X_floor;
FuncNames["lle_X_srand"] = lle_X_srand;
FuncNames["lle_X_rand"] = lle_X_rand;
#ifdef HAVE_RAND48
FuncNames["lle_X_drand48"] = lle_X_drand48;
FuncNames["lle_X_srand48"] = lle_X_srand48;
FuncNames["lle_X_lrand48"] = lle_X_lrand48;
#endif
FuncNames["lle_X_sqrt"] = lle_X_sqrt;
FuncNames["lle_X_puts"] = lle_X_puts;
FuncNames["lle_X_printf"] = lle_X_printf;
FuncNames["lle_X_sprintf"] = lle_X_sprintf;
FuncNames["lle_X_sscanf"] = lle_X_sscanf;
FuncNames["lle_X_scanf"] = lle_X_scanf;
FuncNames["lle_i_clock"] = lle_i_clock;
FuncNames["lle_X_strcmp"] = lle_X_strcmp;
FuncNames["lle_X_strcat"] = lle_X_strcat;
FuncNames["lle_X_strcpy"] = lle_X_strcpy;
FuncNames["lle_X_strlen"] = lle_X_strlen;
FuncNames["lle_X___strdup"] = lle_X___strdup;
FuncNames["lle_X_memset"] = lle_X_memset;
FuncNames["lle_X_memcpy"] = lle_X_memcpy;
FuncNames["lle_X_memmove"] = lle_X_memmove;
FuncNames["lle_X_fopen"] = lle_X_fopen;
FuncNames["lle_X_fclose"] = lle_X_fclose;
FuncNames["lle_X_feof"] = lle_X_feof;
FuncNames["lle_X_fread"] = lle_X_fread;
FuncNames["lle_X_fwrite"] = lle_X_fwrite;
FuncNames["lle_X_fgets"] = lle_X_fgets;
FuncNames["lle_X_fflush"] = lle_X_fflush;
FuncNames["lle_X_fgetc"] = lle_X_getc;
FuncNames["lle_X_getc"] = lle_X_getc;
FuncNames["lle_X__IO_getc"] = lle_X__IO_getc;
FuncNames["lle_X_fputc"] = lle_X_fputc;
FuncNames["lle_X_ungetc"] = lle_X_ungetc;
FuncNames["lle_X_fprintf"] = lle_X_fprintf;
FuncNames["lle_X_freopen"] = lle_X_freopen;
FuncNames["lle_X___cxa_guard_acquire"] = lle_X___cxa_guard_acquire;
FuncNames["lle_X____cxa_guard_release"] = lle_X___cxa_guard_release;
}