llvm-6502/lib/Analysis/InductionVariable.cpp

295 lines
10 KiB
C++
Raw Normal View History

//===- InductionVariable.cpp - Induction variable classification ----------===//
//
// This file implements identification and classification of induction
// variables. Induction variables must contain a PHI node that exists in a
// loop header. Because of this, they are identified an managed by this PHI
// node.
//
// Induction variables are classified into a type. Knowing that an induction
// variable is of a specific type can constrain the values of the start and
// step. For example, a SimpleLinear induction variable must have a start and
// step values that are constants.
//
// Induction variables can be created with or without loop information. If no
// loop information is available, induction variables cannot be recognized to be
// more than SimpleLinear variables.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/InductionVariable.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/Expressions.h"
#include "llvm/BasicBlock.h"
#include "llvm/iPHINode.h"
#include "llvm/iOperators.h"
#include "llvm/iTerminators.h"
#include "llvm/Type.h"
#include "llvm/Constants.h"
#include "llvm/Support/CFG.h"
#include "llvm/Assembly/Writer.h"
#include "Support/Debug.h"
static bool isLoopInvariant(const Value *V, const Loop *L) {
if (const Instruction *I = dyn_cast<Instruction>(V))
return !L->contains(I->getParent());
// non-instructions all dominate instructions/blocks
return true;
}
enum InductionVariable::iType
InductionVariable::Classify(const Value *Start, const Value *Step,
const Loop *L) {
// Check for canonical and simple linear expressions now...
if (const ConstantInt *CStart = dyn_cast<ConstantInt>(Start))
if (const ConstantInt *CStep = dyn_cast<ConstantInt>(Step)) {
if (CStart->isNullValue() && CStep->equalsInt(1))
return Canonical;
else
return SimpleLinear;
}
// Without loop information, we cannot do any better, so bail now...
if (L == 0) return Unknown;
if (isLoopInvariant(Start, L) && isLoopInvariant(Step, L))
return Linear;
return Unknown;
}
// Create an induction variable for the specified value. If it is a PHI, and
// if it's recognizable, classify it and fill in instance variables.
//
InductionVariable::InductionVariable(PHINode *P, LoopInfo *LoopInfo): End(0) {
InductionType = Unknown; // Assume the worst
Phi = P;
// If the PHI node has more than two predecessors, we don't know how to
// handle it.
//
if (Phi->getNumIncomingValues() != 2) return;
// FIXME: Handle FP induction variables.
if (Phi->getType() == Type::FloatTy || Phi->getType() == Type::DoubleTy)
return;
// If we have loop information, make sure that this PHI node is in the header
// of a loop...
//
const Loop *L = LoopInfo ? LoopInfo->getLoopFor(Phi->getParent()) : 0;
if (L && L->getHeader() != Phi->getParent())
return;
Value *V1 = Phi->getIncomingValue(0);
Value *V2 = Phi->getIncomingValue(1);
if (L == 0) { // No loop information? Base everything on expression analysis
ExprType E1 = ClassifyExpression(V1);
ExprType E2 = ClassifyExpression(V2);
if (E1.ExprTy > E2.ExprTy) // Make E1 be the simpler expression
std::swap(E1, E2);
// E1 must be a constant incoming value, and E2 must be a linear expression
// with respect to the PHI node.
//
if (E1.ExprTy > ExprType::Constant || E2.ExprTy != ExprType::Linear ||
E2.Var != Phi)
return;
// Okay, we have found an induction variable. Save the start and step values
const Type *ETy = Phi->getType();
if (isa<PointerType>(ETy)) ETy = Type::ULongTy;
Start = (Value*)(E1.Offset ? E1.Offset : ConstantInt::get(ETy, 0));
Step = (Value*)(E2.Offset ? E2.Offset : ConstantInt::get(ETy, 0));
} else {
// Okay, at this point, we know that we have loop information...
// Make sure that V1 is the incoming value, and V2 is from the backedge of
// the loop.
if (L->contains(Phi->getIncomingBlock(0))) // Wrong order. Swap now.
std::swap(V1, V2);
Start = V1; // We know that Start has to be loop invariant...
Step = 0;
if (V2 == Phi) { // referencing the PHI directly? Must have zero step
Step = Constant::getNullValue(Phi->getType());
} else if (BinaryOperator *I = dyn_cast<BinaryOperator>(V2)) {
// TODO: This could be much better...
if (I->getOpcode() == Instruction::Add) {
if (I->getOperand(0) == Phi)
Step = I->getOperand(1);
else if (I->getOperand(1) == Phi)
Step = I->getOperand(0);
}
}
if (Step == 0) { // Unrecognized step value...
ExprType StepE = ClassifyExpression(V2);
if (StepE.ExprTy != ExprType::Linear ||
StepE.Var != Phi) return;
const Type *ETy = Phi->getType();
if (isa<PointerType>(ETy)) ETy = Type::ULongTy;
Step = (Value*)(StepE.Offset ? StepE.Offset : ConstantInt::get(ETy, 0));
} else { // We were able to get a step value, simplify with expr analysis
ExprType StepE = ClassifyExpression(Step);
if (StepE.ExprTy == ExprType::Linear && StepE.Offset == 0) {
// No offset from variable? Grab the variable
Step = StepE.Var;
} else if (StepE.ExprTy == ExprType::Constant) {
if (StepE.Offset)
Step = (Value*)StepE.Offset;
else
Step = Constant::getNullValue(Step->getType());
const Type *ETy = Phi->getType();
if (isa<PointerType>(ETy)) ETy = Type::ULongTy;
Step = (Value*)(StepE.Offset ? StepE.Offset : ConstantInt::get(ETy,0));
}
}
}
// Classify the induction variable type now...
InductionType = InductionVariable::Classify(Start, Step, L);
}
Value *InductionVariable::getExecutionCount(LoopInfo *LoopInfo) {
if (InductionType != Canonical) return 0;
DEBUG(std::cerr << "entering getExecutionCount\n");
// Don't recompute if already available
if (End) {
DEBUG(std::cerr << "returning cached End value.\n");
return End;
}
const Loop *L = LoopInfo ? LoopInfo->getLoopFor(Phi->getParent()) : 0;
if (!L) {
DEBUG(std::cerr << "null loop. oops\n");
return 0;
}
// >1 backedge => cannot predict number of iterations
if (Phi->getNumIncomingValues() != 2) {
DEBUG(std::cerr << ">2 incoming values. oops\n");
return 0;
}
// Find final node: predecessor of the loop header that's also an exit
BasicBlock *terminator = 0;
for (pred_iterator PI = pred_begin(L->getHeader()),
PE = pred_end(L->getHeader()); PI != PE; ++PI)
if (L->isLoopExit(*PI)) {
terminator = *PI;
break;
}
// Break in the loop => cannot predict number of iterations
// break: any block which is an exit node whose successor is not in loop,
// and this block is not marked as the terminator
//
const std::vector<BasicBlock*> &blocks = L->getBlocks();
for (std::vector<BasicBlock*>::const_iterator I = blocks.begin(),
e = blocks.end(); I != e; ++I)
if (L->isLoopExit(*I) && *I != terminator)
for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI)
if (!L->contains(*SI)) {
DEBUG(std::cerr << "break found in loop");
return 0;
}
BranchInst *B = dyn_cast<BranchInst>(terminator->getTerminator());
if (!B) {
DEBUG(std::cerr << "Terminator is not a cond branch!");
return 0;
}
SetCondInst *SCI = dyn_cast<SetCondInst>(B->getCondition());
if (!SCI) {
DEBUG(std::cerr << "Not a cond branch on setcc!\n");
return 0;
}
DEBUG(std::cerr << "sci:" << *SCI);
Value *condVal0 = SCI->getOperand(0);
Value *condVal1 = SCI->getOperand(1);
// The induction variable is the one coming from the backedge
Value *indVar = Phi->getIncomingValue(L->contains(Phi->getIncomingBlock(1)));
// Check to see if indVar is one of the parameters in SCI and if the other is
// loop-invariant, it is the UB
if (indVar == condVal0) {
if (isLoopInvariant(condVal1, L))
End = condVal1;
else {
DEBUG(std::cerr << "not loop invariant 1\n");
return 0;
}
} else if (indVar == condVal1) {
if (isLoopInvariant(condVal0, L))
End = condVal0;
else {
DEBUG(std::cerr << "not loop invariant 0\n");
return 0;
}
} else {
DEBUG(std::cerr << "Loop condition doesn't directly uses indvar\n");
return 0;
}
switch (SCI->getOpcode()) {
case Instruction::SetLT:
case Instruction::SetNE: return End; // already done
case Instruction::SetLE:
// if compared to a constant int N, then predict N+1 iterations
if (ConstantSInt *ubSigned = dyn_cast<ConstantSInt>(End)) {
DEBUG(std::cerr << "signed int constant\n");
return ConstantSInt::get(ubSigned->getType(), ubSigned->getValue()+1);
} else if (ConstantUInt *ubUnsigned = dyn_cast<ConstantUInt>(End)) {
DEBUG(std::cerr << "unsigned int constant\n");
return ConstantUInt::get(ubUnsigned->getType(),
ubUnsigned->getValue()+1);
} else {
DEBUG(std::cerr << "symbolic bound\n");
// new expression N+1, insert right before the SCI. FIXME: If End is loop
// invariant, then so is this expression. We should insert it in the loop
// preheader if it exists.
return BinaryOperator::create(Instruction::Add, End,
ConstantInt::get(End->getType(), 1),
"tripcount", SCI);
}
default:
return 0; // cannot predict
}
}
void InductionVariable::print(std::ostream &o) const {
switch (InductionType) {
case InductionVariable::Canonical: o << "Canonical "; break;
case InductionVariable::SimpleLinear: o << "SimpleLinear "; break;
case InductionVariable::Linear: o << "Linear "; break;
case InductionVariable::Unknown: o << "Unrecognized "; break;
}
o << "Induction Variable: ";
if (Phi) {
WriteAsOperand(o, Phi);
o << ":\n" << Phi;
} else {
o << "\n";
}
if (InductionType == InductionVariable::Unknown) return;
o << " Start = "; WriteAsOperand(o, Start);
o << " Step = " ; WriteAsOperand(o, Step);
if (End) {
o << " End = " ; WriteAsOperand(o, End);
}
o << "\n";
}