302 lines
11 KiB
C
Raw Normal View History

//===-- llvm/Type.h - Classes for handling data types ------------*- C++ -*--=//
//
// This file contains the declaration of the Type class. For more "Type" type
// stuff, look in DerivedTypes.h.
//
// Note that instances of the Type class are immutable: once they are created,
// they are never changed. Also note that only one instance of a particular
// type is ever created. Thus seeing if two types are equal is a matter of
// doing a trivial pointer comparison.
//
// Types, once allocated, are never free'd.
//
// Opaque types are simple derived types with no state. There may be many
// different Opaque type objects floating around, but two are only considered
// identical if they are pointer equals of each other. This allows us to have
// two opaque types that end up resolving to different concrete types later.
//
// Opaque types are also kinda wierd and scary and different because they have
// to keep a list of uses of the type. When, through linking, parsing, or
// bytecode reading, they become resolved, they need to find and update all
// users of the unknown type, causing them to reference a new, more concrete
// type. Opaque types are deleted when their use list dwindles to zero users.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TYPE_H
#define LLVM_TYPE_H
#include "llvm/Value.h"
#include "Support/GraphTraits.h"
class DerivedType;
class FunctionType;
class ArrayType;
class PointerType;
class StructType;
class OpaqueType;
class Type : public Value {
public:
//===--------------------------------------------------------------------===//
// Definitions of all of the base types for the Type system. Based on this
// value, you can cast to a "DerivedType" subclass (see DerivedTypes.h)
// Note: If you add an element to this, you need to add an element to the
// Type::getPrimitiveType function, or else things will break!
//
enum PrimitiveID {
VoidTyID = 0 , BoolTyID, // 0, 1: Basics...
UByteTyID , SByteTyID, // 2, 3: 8 bit types...
UShortTyID , ShortTyID, // 4, 5: 16 bit types...
UIntTyID , IntTyID, // 6, 7: 32 bit types...
ULongTyID , LongTyID, // 8, 9: 64 bit types...
FloatTyID , DoubleTyID, // 10,11: Floating point types...
TypeTyID, // 12 : Type definitions
LabelTyID , // 13 : Labels...
// Derived types... see DerivedTypes.h file...
// Make sure FirstDerivedTyID stays up to date!!!
FunctionTyID , StructTyID, // Functions... Structs...
ArrayTyID , PointerTyID, // Array... pointer...
OpaqueTyID, // Opaque type instances...
//PackedTyID , // SIMD 'packed' format... TODO
//...
NumPrimitiveIDs, // Must remain as last defined ID
FirstDerivedTyID = FunctionTyID,
};
private:
PrimitiveID ID; // The current base type of this type...
unsigned UID; // The unique ID number for this class
std::string Desc; // The printed name of the string...
bool Abstract; // True if type contains an OpaqueType
bool Recursive; // True if the type is recursive
protected:
// ctor is protected, so only subclasses can create Type objects...
Type(const std::string &Name, PrimitiveID id);
virtual ~Type() {}
// When types are refined, they update their description to be more concrete.
//
inline void setDescription(const std::string &D) { Desc = D; }
// setName - Associate the name with this type in the symbol table, but don't
// set the local name to be equal specified name.
//
virtual void setName(const std::string &Name, SymbolTable *ST = 0);
// Types can become nonabstract later, if they are refined.
//
inline void setAbstract(bool Val) { Abstract = Val; }
// Types can become recursive later, if they are refined.
//
inline void setRecursive(bool Val) { Recursive = Val; }
public:
virtual void print(std::ostream &O) const;
//===--------------------------------------------------------------------===//
// Property accessors for dealing with types...
//
// getPrimitiveID - Return the base type of the type. This will return one
// of the PrimitiveID enum elements defined above.
//
inline PrimitiveID getPrimitiveID() const { return ID; }
// getUniqueID - Returns the UID of the type. This can be thought of as a
// small integer version of the pointer to the type class. Two types that are
// structurally different have different UIDs. This can be used for indexing
// types into an array.
//
inline unsigned getUniqueID() const { return UID; }
// getDescription - Return the string representation of the type...
inline const std::string &getDescription() const { return Desc; }
// isSigned - Return whether a numeric type is signed.
virtual bool isSigned() const { return 0; }
// isUnsigned - Return whether a numeric type is unsigned. This is not
// quite the complement of isSigned... nonnumeric types return false as they
// do with isSigned.
//
virtual bool isUnsigned() const { return 0; }
// isIntegral - Equilivent to isSigned() || isUnsigned, but with only a single
// virtual function invocation.
//
virtual bool isIntegral() const { return 0; }
// isFloatingPoint - Return true if this is one of the two floating point
// types
bool isFloatingPoint() const { return ID == FloatTyID || ID == DoubleTyID; }
// isAbstract - True if the type is either an Opaque type, or is a derived
// type that includes an opaque type somewhere in it.
//
inline bool isAbstract() const { return Abstract; }
// isRecursive - True if the type graph contains a cycle.
//
inline bool isRecursive() const { return Recursive; }
// isLosslesslyConvertableTo - Return true if this type can be converted to
// 'Ty' without any reinterpretation of bits. For example, uint to int.
//
bool isLosslesslyConvertableTo(const Type *Ty) const;
// Here are some useful little methods to query what type derived types are
// Note that all other types can just compare to see if this == Type::xxxTy;
//
inline bool isPrimitiveType() const { return ID < FirstDerivedTyID; }
inline bool isDerivedType() const { return ID >= FirstDerivedTyID; }
// isFirstClassType - Return true if the value is holdable in a register.
inline bool isFirstClassType() const {
return isPrimitiveType() || ID == PointerTyID;
}
// isSized - Return true if it makes sense to take the size of this type. To
// get the actual size for a particular target, it is reasonable to use the
// TargetData subsystem to do this.
//
bool isSized() const {
return ID != VoidTyID && ID != TypeTyID &&
ID != FunctionTyID && ID != LabelTyID && ID != OpaqueTyID;
}
// getPrimitiveSize - Return the basic size of this type if it is a primative
// type. These are fixed by LLVM and are not target dependant. This will
// return zero if the type does not have a size or is not a primitive type.
//
unsigned getPrimitiveSize() const;
//===--------------------------------------------------------------------===//
// Type Iteration support
//
class TypeIterator;
typedef TypeIterator subtype_iterator;
inline subtype_iterator subtype_begin() const; // DEFINED BELOW
inline subtype_iterator subtype_end() const; // DEFINED BELOW
// getContainedType - This method is used to implement the type iterator
// (defined a the end of the file). For derived types, this returns the types
// 'contained' in the derived type, returning 0 when 'i' becomes invalid. This
// allows the user to iterate over the types in a struct, for example, really
// easily.
//
virtual const Type *getContainedType(unsigned i) const { return 0; }
// getNumContainedTypes - Return the number of types in the derived type
virtual unsigned getNumContainedTypes() const { return 0; }
//===--------------------------------------------------------------------===//
// Static members exported by the Type class itself. Useful for getting
// instances of Type.
//
// getPrimitiveType/getUniqueIDType - Return a type based on an identifier.
static const Type *getPrimitiveType(PrimitiveID IDNumber);
static const Type *getUniqueIDType(unsigned UID);
//===--------------------------------------------------------------------===//
// These are the builtin types that are always available...
//
static Type *VoidTy , *BoolTy;
static Type *SByteTy, *UByteTy,
*ShortTy, *UShortTy,
*IntTy , *UIntTy,
*LongTy , *ULongTy;
static Type *FloatTy, *DoubleTy;
static Type *TypeTy , *LabelTy;
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Type *T) { return true; }
static inline bool classof(const Value *V) {
return V->getValueType() == Value::TypeVal;
}
#include "llvm/Type.def"
private:
class TypeIterator : public std::bidirectional_iterator<const Type,
ptrdiff_t> {
const Type * const Ty;
unsigned Idx;
typedef TypeIterator _Self;
public:
inline TypeIterator(const Type *ty, unsigned idx) : Ty(ty), Idx(idx) {}
inline ~TypeIterator() {}
inline bool operator==(const _Self& x) const { return Idx == x.Idx; }
inline bool operator!=(const _Self& x) const { return !operator==(x); }
inline pointer operator*() const { return Ty->getContainedType(Idx); }
inline pointer operator->() const { return operator*(); }
inline _Self& operator++() { ++Idx; return *this; } // Preincrement
inline _Self operator++(int) { // Postincrement
_Self tmp = *this; ++*this; return tmp;
}
inline _Self& operator--() { --Idx; return *this; } // Predecrement
inline _Self operator--(int) { // Postdecrement
_Self tmp = *this; --*this; return tmp;
}
};
};
inline Type::TypeIterator Type::subtype_begin() const {
return TypeIterator(this, 0);
}
inline Type::TypeIterator Type::subtype_end() const {
return TypeIterator(this, getNumContainedTypes());
}
// Provide specializations of GraphTraits to be able to treat a type as a
// graph of sub types...
template <> struct GraphTraits<Type*> {
typedef Type NodeType;
typedef Type::subtype_iterator ChildIteratorType;
static inline NodeType *getEntryNode(Type *T) { return T; }
static inline ChildIteratorType child_begin(NodeType *N) {
return N->subtype_begin();
}
static inline ChildIteratorType child_end(NodeType *N) {
return N->subtype_end();
}
};
template <> struct GraphTraits<const Type*> {
typedef const Type NodeType;
typedef Type::subtype_iterator ChildIteratorType;
static inline NodeType *getEntryNode(const Type *T) { return T; }
static inline ChildIteratorType child_begin(NodeType *N) {
return N->subtype_begin();
}
static inline ChildIteratorType child_end(NodeType *N) {
return N->subtype_end();
}
};
template <> inline bool isa_impl<PointerType, Type>(const Type &Ty) {
return Ty.getPrimitiveID() == Type::PointerTyID;
}
#endif