mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-21 19:32:16 +00:00
18961504fc
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@2777 91177308-0d34-0410-b5e6-96231b3b80d8
302 lines
11 KiB
C++
302 lines
11 KiB
C++
//===-- llvm/Type.h - Classes for handling data types ------------*- C++ -*--=//
|
|
//
|
|
// This file contains the declaration of the Type class. For more "Type" type
|
|
// stuff, look in DerivedTypes.h.
|
|
//
|
|
// Note that instances of the Type class are immutable: once they are created,
|
|
// they are never changed. Also note that only one instance of a particular
|
|
// type is ever created. Thus seeing if two types are equal is a matter of
|
|
// doing a trivial pointer comparison.
|
|
//
|
|
// Types, once allocated, are never free'd.
|
|
//
|
|
// Opaque types are simple derived types with no state. There may be many
|
|
// different Opaque type objects floating around, but two are only considered
|
|
// identical if they are pointer equals of each other. This allows us to have
|
|
// two opaque types that end up resolving to different concrete types later.
|
|
//
|
|
// Opaque types are also kinda wierd and scary and different because they have
|
|
// to keep a list of uses of the type. When, through linking, parsing, or
|
|
// bytecode reading, they become resolved, they need to find and update all
|
|
// users of the unknown type, causing them to reference a new, more concrete
|
|
// type. Opaque types are deleted when their use list dwindles to zero users.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_TYPE_H
|
|
#define LLVM_TYPE_H
|
|
|
|
#include "llvm/Value.h"
|
|
#include "Support/GraphTraits.h"
|
|
|
|
class DerivedType;
|
|
class FunctionType;
|
|
class ArrayType;
|
|
class PointerType;
|
|
class StructType;
|
|
class OpaqueType;
|
|
|
|
class Type : public Value {
|
|
public:
|
|
//===--------------------------------------------------------------------===//
|
|
// Definitions of all of the base types for the Type system. Based on this
|
|
// value, you can cast to a "DerivedType" subclass (see DerivedTypes.h)
|
|
// Note: If you add an element to this, you need to add an element to the
|
|
// Type::getPrimitiveType function, or else things will break!
|
|
//
|
|
enum PrimitiveID {
|
|
VoidTyID = 0 , BoolTyID, // 0, 1: Basics...
|
|
UByteTyID , SByteTyID, // 2, 3: 8 bit types...
|
|
UShortTyID , ShortTyID, // 4, 5: 16 bit types...
|
|
UIntTyID , IntTyID, // 6, 7: 32 bit types...
|
|
ULongTyID , LongTyID, // 8, 9: 64 bit types...
|
|
|
|
FloatTyID , DoubleTyID, // 10,11: Floating point types...
|
|
|
|
TypeTyID, // 12 : Type definitions
|
|
LabelTyID , // 13 : Labels...
|
|
|
|
// Derived types... see DerivedTypes.h file...
|
|
// Make sure FirstDerivedTyID stays up to date!!!
|
|
FunctionTyID , StructTyID, // Functions... Structs...
|
|
ArrayTyID , PointerTyID, // Array... pointer...
|
|
OpaqueTyID, // Opaque type instances...
|
|
//PackedTyID , // SIMD 'packed' format... TODO
|
|
//...
|
|
|
|
NumPrimitiveIDs, // Must remain as last defined ID
|
|
FirstDerivedTyID = FunctionTyID,
|
|
};
|
|
|
|
private:
|
|
PrimitiveID ID; // The current base type of this type...
|
|
unsigned UID; // The unique ID number for this class
|
|
std::string Desc; // The printed name of the string...
|
|
bool Abstract; // True if type contains an OpaqueType
|
|
bool Recursive; // True if the type is recursive
|
|
|
|
protected:
|
|
// ctor is protected, so only subclasses can create Type objects...
|
|
Type(const std::string &Name, PrimitiveID id);
|
|
virtual ~Type() {}
|
|
|
|
// When types are refined, they update their description to be more concrete.
|
|
//
|
|
inline void setDescription(const std::string &D) { Desc = D; }
|
|
|
|
// setName - Associate the name with this type in the symbol table, but don't
|
|
// set the local name to be equal specified name.
|
|
//
|
|
virtual void setName(const std::string &Name, SymbolTable *ST = 0);
|
|
|
|
// Types can become nonabstract later, if they are refined.
|
|
//
|
|
inline void setAbstract(bool Val) { Abstract = Val; }
|
|
|
|
// Types can become recursive later, if they are refined.
|
|
//
|
|
inline void setRecursive(bool Val) { Recursive = Val; }
|
|
|
|
public:
|
|
virtual void print(std::ostream &O) const;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Property accessors for dealing with types...
|
|
//
|
|
|
|
// getPrimitiveID - Return the base type of the type. This will return one
|
|
// of the PrimitiveID enum elements defined above.
|
|
//
|
|
inline PrimitiveID getPrimitiveID() const { return ID; }
|
|
|
|
// getUniqueID - Returns the UID of the type. This can be thought of as a
|
|
// small integer version of the pointer to the type class. Two types that are
|
|
// structurally different have different UIDs. This can be used for indexing
|
|
// types into an array.
|
|
//
|
|
inline unsigned getUniqueID() const { return UID; }
|
|
|
|
// getDescription - Return the string representation of the type...
|
|
inline const std::string &getDescription() const { return Desc; }
|
|
|
|
// isSigned - Return whether a numeric type is signed.
|
|
virtual bool isSigned() const { return 0; }
|
|
|
|
// isUnsigned - Return whether a numeric type is unsigned. This is not
|
|
// quite the complement of isSigned... nonnumeric types return false as they
|
|
// do with isSigned.
|
|
//
|
|
virtual bool isUnsigned() const { return 0; }
|
|
|
|
// isIntegral - Equilivent to isSigned() || isUnsigned, but with only a single
|
|
// virtual function invocation.
|
|
//
|
|
virtual bool isIntegral() const { return 0; }
|
|
|
|
// isFloatingPoint - Return true if this is one of the two floating point
|
|
// types
|
|
bool isFloatingPoint() const { return ID == FloatTyID || ID == DoubleTyID; }
|
|
|
|
// isAbstract - True if the type is either an Opaque type, or is a derived
|
|
// type that includes an opaque type somewhere in it.
|
|
//
|
|
inline bool isAbstract() const { return Abstract; }
|
|
|
|
// isRecursive - True if the type graph contains a cycle.
|
|
//
|
|
inline bool isRecursive() const { return Recursive; }
|
|
|
|
// isLosslesslyConvertableTo - Return true if this type can be converted to
|
|
// 'Ty' without any reinterpretation of bits. For example, uint to int.
|
|
//
|
|
bool isLosslesslyConvertableTo(const Type *Ty) const;
|
|
|
|
|
|
// Here are some useful little methods to query what type derived types are
|
|
// Note that all other types can just compare to see if this == Type::xxxTy;
|
|
//
|
|
inline bool isPrimitiveType() const { return ID < FirstDerivedTyID; }
|
|
inline bool isDerivedType() const { return ID >= FirstDerivedTyID; }
|
|
|
|
// isFirstClassType - Return true if the value is holdable in a register.
|
|
inline bool isFirstClassType() const {
|
|
return isPrimitiveType() || ID == PointerTyID;
|
|
}
|
|
|
|
// isSized - Return true if it makes sense to take the size of this type. To
|
|
// get the actual size for a particular target, it is reasonable to use the
|
|
// TargetData subsystem to do this.
|
|
//
|
|
bool isSized() const {
|
|
return ID != VoidTyID && ID != TypeTyID &&
|
|
ID != FunctionTyID && ID != LabelTyID && ID != OpaqueTyID;
|
|
}
|
|
|
|
// getPrimitiveSize - Return the basic size of this type if it is a primative
|
|
// type. These are fixed by LLVM and are not target dependant. This will
|
|
// return zero if the type does not have a size or is not a primitive type.
|
|
//
|
|
unsigned getPrimitiveSize() const;
|
|
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Type Iteration support
|
|
//
|
|
class TypeIterator;
|
|
typedef TypeIterator subtype_iterator;
|
|
inline subtype_iterator subtype_begin() const; // DEFINED BELOW
|
|
inline subtype_iterator subtype_end() const; // DEFINED BELOW
|
|
|
|
// getContainedType - This method is used to implement the type iterator
|
|
// (defined a the end of the file). For derived types, this returns the types
|
|
// 'contained' in the derived type, returning 0 when 'i' becomes invalid. This
|
|
// allows the user to iterate over the types in a struct, for example, really
|
|
// easily.
|
|
//
|
|
virtual const Type *getContainedType(unsigned i) const { return 0; }
|
|
|
|
// getNumContainedTypes - Return the number of types in the derived type
|
|
virtual unsigned getNumContainedTypes() const { return 0; }
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Static members exported by the Type class itself. Useful for getting
|
|
// instances of Type.
|
|
//
|
|
|
|
// getPrimitiveType/getUniqueIDType - Return a type based on an identifier.
|
|
static const Type *getPrimitiveType(PrimitiveID IDNumber);
|
|
static const Type *getUniqueIDType(unsigned UID);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// These are the builtin types that are always available...
|
|
//
|
|
static Type *VoidTy , *BoolTy;
|
|
static Type *SByteTy, *UByteTy,
|
|
*ShortTy, *UShortTy,
|
|
*IntTy , *UIntTy,
|
|
*LongTy , *ULongTy;
|
|
static Type *FloatTy, *DoubleTy;
|
|
|
|
static Type *TypeTy , *LabelTy;
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const Type *T) { return true; }
|
|
static inline bool classof(const Value *V) {
|
|
return V->getValueType() == Value::TypeVal;
|
|
}
|
|
|
|
#include "llvm/Type.def"
|
|
|
|
private:
|
|
class TypeIterator : public std::bidirectional_iterator<const Type,
|
|
ptrdiff_t> {
|
|
const Type * const Ty;
|
|
unsigned Idx;
|
|
|
|
typedef TypeIterator _Self;
|
|
public:
|
|
inline TypeIterator(const Type *ty, unsigned idx) : Ty(ty), Idx(idx) {}
|
|
inline ~TypeIterator() {}
|
|
|
|
inline bool operator==(const _Self& x) const { return Idx == x.Idx; }
|
|
inline bool operator!=(const _Self& x) const { return !operator==(x); }
|
|
|
|
inline pointer operator*() const { return Ty->getContainedType(Idx); }
|
|
inline pointer operator->() const { return operator*(); }
|
|
|
|
inline _Self& operator++() { ++Idx; return *this; } // Preincrement
|
|
inline _Self operator++(int) { // Postincrement
|
|
_Self tmp = *this; ++*this; return tmp;
|
|
}
|
|
|
|
inline _Self& operator--() { --Idx; return *this; } // Predecrement
|
|
inline _Self operator--(int) { // Postdecrement
|
|
_Self tmp = *this; --*this; return tmp;
|
|
}
|
|
};
|
|
};
|
|
|
|
inline Type::TypeIterator Type::subtype_begin() const {
|
|
return TypeIterator(this, 0);
|
|
}
|
|
|
|
inline Type::TypeIterator Type::subtype_end() const {
|
|
return TypeIterator(this, getNumContainedTypes());
|
|
}
|
|
|
|
|
|
// Provide specializations of GraphTraits to be able to treat a type as a
|
|
// graph of sub types...
|
|
|
|
template <> struct GraphTraits<Type*> {
|
|
typedef Type NodeType;
|
|
typedef Type::subtype_iterator ChildIteratorType;
|
|
|
|
static inline NodeType *getEntryNode(Type *T) { return T; }
|
|
static inline ChildIteratorType child_begin(NodeType *N) {
|
|
return N->subtype_begin();
|
|
}
|
|
static inline ChildIteratorType child_end(NodeType *N) {
|
|
return N->subtype_end();
|
|
}
|
|
};
|
|
|
|
template <> struct GraphTraits<const Type*> {
|
|
typedef const Type NodeType;
|
|
typedef Type::subtype_iterator ChildIteratorType;
|
|
|
|
static inline NodeType *getEntryNode(const Type *T) { return T; }
|
|
static inline ChildIteratorType child_begin(NodeType *N) {
|
|
return N->subtype_begin();
|
|
}
|
|
static inline ChildIteratorType child_end(NodeType *N) {
|
|
return N->subtype_end();
|
|
}
|
|
};
|
|
|
|
template <> inline bool isa_impl<PointerType, Type>(const Type &Ty) {
|
|
return Ty.getPrimitiveID() == Type::PointerTyID;
|
|
}
|
|
|
|
#endif
|