llvm-6502/lib/CodeGen/CalcSpillWeights.cpp

229 lines
7.8 KiB
C++
Raw Normal View History

//===------------------------ CalcSpillWeights.cpp ------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "calcspillweights"
#include "llvm/Function.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
using namespace llvm;
char CalculateSpillWeights::ID = 0;
INITIALIZE_PASS_BEGIN(CalculateSpillWeights, "calcspillweights",
"Calculate spill weights", false, false)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_END(CalculateSpillWeights, "calcspillweights",
"Calculate spill weights", false, false)
void CalculateSpillWeights::getAnalysisUsage(AnalysisUsage &au) const {
au.addRequired<LiveIntervals>();
au.addRequired<MachineLoopInfo>();
au.setPreservesAll();
MachineFunctionPass::getAnalysisUsage(au);
}
bool CalculateSpillWeights::runOnMachineFunction(MachineFunction &fn) {
DEBUG(dbgs() << "********** Compute Spill Weights **********\n"
<< "********** Function: "
<< fn.getFunction()->getName() << '\n');
LiveIntervals &lis = getAnalysis<LiveIntervals>();
VirtRegAuxInfo vrai(fn, lis, getAnalysis<MachineLoopInfo>());
for (LiveIntervals::iterator I = lis.begin(), E = lis.end(); I != E; ++I) {
LiveInterval &li = *I->second;
if (TargetRegisterInfo::isVirtualRegister(li.reg))
vrai.CalculateWeightAndHint(li);
}
return false;
}
// Return the preferred allocation register for reg, given a COPY instruction.
static unsigned copyHint(const MachineInstr *mi, unsigned reg,
const TargetRegisterInfo &tri,
const MachineRegisterInfo &mri) {
unsigned sub, hreg, hsub;
if (mi->getOperand(0).getReg() == reg) {
sub = mi->getOperand(0).getSubReg();
hreg = mi->getOperand(1).getReg();
hsub = mi->getOperand(1).getSubReg();
} else {
sub = mi->getOperand(1).getSubReg();
hreg = mi->getOperand(0).getReg();
hsub = mi->getOperand(0).getSubReg();
}
if (!hreg)
return 0;
if (TargetRegisterInfo::isVirtualRegister(hreg))
return sub == hsub ? hreg : 0;
const TargetRegisterClass *rc = mri.getRegClass(reg);
// Only allow physreg hints in rc.
if (sub == 0)
return rc->contains(hreg) ? hreg : 0;
// reg:sub should match the physreg hreg.
return tri.getMatchingSuperReg(hreg, sub, rc);
}
void VirtRegAuxInfo::CalculateWeightAndHint(LiveInterval &li) {
MachineRegisterInfo &mri = mf_.getRegInfo();
const TargetRegisterInfo &tri = *mf_.getTarget().getRegisterInfo();
MachineBasicBlock *mbb = 0;
MachineLoop *loop = 0;
unsigned loopDepth = 0;
bool isExiting = false;
float totalWeight = 0;
SmallPtrSet<MachineInstr*, 8> visited;
// Find the best physreg hist and the best virtreg hint.
float bestPhys = 0, bestVirt = 0;
unsigned hintPhys = 0, hintVirt = 0;
// Don't recompute a target specific hint.
bool noHint = mri.getRegAllocationHint(li.reg).first != 0;
for (MachineRegisterInfo::reg_iterator I = mri.reg_begin(li.reg);
MachineInstr *mi = I.skipInstruction();) {
if (mi->isIdentityCopy() || mi->isImplicitDef() || mi->isDebugValue())
continue;
if (!visited.insert(mi))
continue;
// Get loop info for mi.
if (mi->getParent() != mbb) {
mbb = mi->getParent();
loop = loops_.getLoopFor(mbb);
loopDepth = loop ? loop->getLoopDepth() : 0;
isExiting = loop ? loop->isLoopExiting(mbb) : false;
}
// Calculate instr weight.
bool reads, writes;
tie(reads, writes) = mi->readsWritesVirtualRegister(li.reg);
float weight = LiveIntervals::getSpillWeight(writes, reads, loopDepth);
// Give extra weight to what looks like a loop induction variable update.
if (writes && isExiting && lis_.isLiveOutOfMBB(li, mbb))
weight *= 3;
totalWeight += weight;
// Get allocation hints from copies.
if (noHint || !mi->isCopy())
continue;
unsigned hint = copyHint(mi, li.reg, tri, mri);
if (!hint)
continue;
float hweight = hint_[hint] += weight;
if (TargetRegisterInfo::isPhysicalRegister(hint)) {
if (hweight > bestPhys && lis_.isAllocatable(hint))
bestPhys = hweight, hintPhys = hint;
} else {
if (hweight > bestVirt)
bestVirt = hweight, hintVirt = hint;
}
}
hint_.clear();
// Always prefer the physreg hint.
if (unsigned hint = hintPhys ? hintPhys : hintVirt) {
mri.setRegAllocationHint(li.reg, 0, hint);
// Weakly boost the spill weifght of hinted registers.
totalWeight *= 1.01F;
}
// Mark li as unspillable if all live ranges are tiny.
if (li.isZeroLength()) {
li.markNotSpillable();
return;
}
// If all of the definitions of the interval are re-materializable,
// it is a preferred candidate for spilling. If none of the defs are
// loads, then it's potentially very cheap to re-materialize.
// FIXME: this gets much more complicated once we support non-trivial
// re-materialization.
bool isLoad = false;
SmallVector<LiveInterval*, 4> spillIs;
if (lis_.isReMaterializable(li, spillIs, isLoad)) {
if (isLoad)
totalWeight *= 0.9F;
else
totalWeight *= 0.5F;
}
li.weight = totalWeight;
lis_.normalizeSpillWeight(li);
}
void VirtRegAuxInfo::CalculateRegClass(unsigned reg) {
MachineRegisterInfo &mri = mf_.getRegInfo();
const TargetRegisterInfo *tri = mf_.getTarget().getRegisterInfo();
const TargetRegisterClass *orc = mri.getRegClass(reg);
SmallPtrSet<const TargetRegisterClass*,8> rcs;
for (MachineRegisterInfo::reg_nodbg_iterator I = mri.reg_nodbg_begin(reg),
E = mri.reg_nodbg_end(); I != E; ++I) {
// The targets don't have accurate enough regclass descriptions that we can
// handle subregs. We need something similar to
// TRI::getMatchingSuperRegClass, but returning a super class instead of a
// sub class.
if (I.getOperand().getSubReg()) {
DEBUG(dbgs() << "Cannot handle subregs: " << I.getOperand() << '\n');
return;
}
if (const TargetRegisterClass *rc =
I->getDesc().getRegClass(I.getOperandNo(), tri))
rcs.insert(rc);
}
// If we found no regclass constraints, just leave reg as is.
// In theory, we could inflate to the largest superclass of reg's existing
// class, but that might not be legal for the current cpu setting.
// This could happen if reg is only used by COPY instructions, so we may need
// to improve on this.
if (rcs.empty()) {
return;
}
// Compute the intersection of all classes in rcs.
// This ought to be independent of iteration order, but if the target register
// classes don't form a proper algebra, it is possible to get different
// results. The solution is to make sure the intersection of any two register
// classes is also a register class or the null set.
const TargetRegisterClass *rc = 0;
for (SmallPtrSet<const TargetRegisterClass*,8>::iterator I = rcs.begin(),
E = rcs.end(); I != E; ++I) {
rc = rc ? getCommonSubClass(rc, *I) : *I;
assert(rc && "Incompatible regclass constraints found");
}
if (rc == orc)
return;
DEBUG(dbgs() << "Inflating " << orc->getName() << ':' << PrintReg(reg)
<< " to " << rc->getName() <<".\n");
mri.setRegClass(reg, rc);
}