llvm-6502/lib/IR/Type.cpp

761 lines
25 KiB
C++
Raw Normal View History

//===-- Type.cpp - Implement the Type class -------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Type class for the IR library.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/Type.h"
#include "LLVMContextImpl.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/IR/Module.h"
#include <algorithm>
#include <cstdarg>
using namespace llvm;
//===----------------------------------------------------------------------===//
// Type Class Implementation
//===----------------------------------------------------------------------===//
Type *Type::getPrimitiveType(LLVMContext &C, TypeID IDNumber) {
switch (IDNumber) {
case VoidTyID : return getVoidTy(C);
case HalfTyID : return getHalfTy(C);
case FloatTyID : return getFloatTy(C);
case DoubleTyID : return getDoubleTy(C);
case X86_FP80TyID : return getX86_FP80Ty(C);
case FP128TyID : return getFP128Ty(C);
case PPC_FP128TyID : return getPPC_FP128Ty(C);
case LabelTyID : return getLabelTy(C);
case MetadataTyID : return getMetadataTy(C);
case X86_MMXTyID : return getX86_MMXTy(C);
default:
return nullptr;
}
}
/// getScalarType - If this is a vector type, return the element type,
/// otherwise return this.
Type *Type::getScalarType() {
if (VectorType *VTy = dyn_cast<VectorType>(this))
return VTy->getElementType();
return this;
}
const Type *Type::getScalarType() const {
if (const VectorType *VTy = dyn_cast<VectorType>(this))
return VTy->getElementType();
return this;
}
/// isIntegerTy - Return true if this is an IntegerType of the specified width.
bool Type::isIntegerTy(unsigned Bitwidth) const {
return isIntegerTy() && cast<IntegerType>(this)->getBitWidth() == Bitwidth;
}
// canLosslesslyBitCastTo - Return true if this type can be converted to
// 'Ty' without any reinterpretation of bits. For example, i8* to i32*.
//
bool Type::canLosslesslyBitCastTo(Type *Ty) const {
// Identity cast means no change so return true
if (this == Ty)
return true;
// They are not convertible unless they are at least first class types
if (!this->isFirstClassType() || !Ty->isFirstClassType())
return false;
// Vector -> Vector conversions are always lossless if the two vector types
// have the same size, otherwise not. Also, 64-bit vector types can be
// converted to x86mmx.
if (const VectorType *thisPTy = dyn_cast<VectorType>(this)) {
if (const VectorType *thatPTy = dyn_cast<VectorType>(Ty))
return thisPTy->getBitWidth() == thatPTy->getBitWidth();
if (Ty->getTypeID() == Type::X86_MMXTyID &&
thisPTy->getBitWidth() == 64)
return true;
}
if (this->getTypeID() == Type::X86_MMXTyID)
if (const VectorType *thatPTy = dyn_cast<VectorType>(Ty))
if (thatPTy->getBitWidth() == 64)
return true;
// At this point we have only various mismatches of the first class types
// remaining and ptr->ptr. Just select the lossless conversions. Everything
// else is not lossless.
if (this->isPointerTy())
return Ty->isPointerTy();
return false; // Other types have no identity values
}
bool Type::isEmptyTy() const {
const ArrayType *ATy = dyn_cast<ArrayType>(this);
if (ATy) {
unsigned NumElements = ATy->getNumElements();
return NumElements == 0 || ATy->getElementType()->isEmptyTy();
}
const StructType *STy = dyn_cast<StructType>(this);
if (STy) {
unsigned NumElements = STy->getNumElements();
for (unsigned i = 0; i < NumElements; ++i)
if (!STy->getElementType(i)->isEmptyTy())
return false;
return true;
}
return false;
}
unsigned Type::getPrimitiveSizeInBits() const {
switch (getTypeID()) {
case Type::HalfTyID: return 16;
case Type::FloatTyID: return 32;
case Type::DoubleTyID: return 64;
case Type::X86_FP80TyID: return 80;
case Type::FP128TyID: return 128;
case Type::PPC_FP128TyID: return 128;
case Type::X86_MMXTyID: return 64;
case Type::IntegerTyID: return cast<IntegerType>(this)->getBitWidth();
case Type::VectorTyID: return cast<VectorType>(this)->getBitWidth();
default: return 0;
}
}
/// getScalarSizeInBits - If this is a vector type, return the
/// getPrimitiveSizeInBits value for the element type. Otherwise return the
/// getPrimitiveSizeInBits value for this type.
unsigned Type::getScalarSizeInBits() const {
return getScalarType()->getPrimitiveSizeInBits();
}
/// getFPMantissaWidth - Return the width of the mantissa of this type. This
/// is only valid on floating point types. If the FP type does not
/// have a stable mantissa (e.g. ppc long double), this method returns -1.
int Type::getFPMantissaWidth() const {
if (const VectorType *VTy = dyn_cast<VectorType>(this))
return VTy->getElementType()->getFPMantissaWidth();
assert(isFloatingPointTy() && "Not a floating point type!");
if (getTypeID() == HalfTyID) return 11;
if (getTypeID() == FloatTyID) return 24;
if (getTypeID() == DoubleTyID) return 53;
if (getTypeID() == X86_FP80TyID) return 64;
if (getTypeID() == FP128TyID) return 113;
assert(getTypeID() == PPC_FP128TyID && "unknown fp type");
return -1;
}
/// isSizedDerivedType - Derived types like structures and arrays are sized
/// iff all of the members of the type are sized as well. Since asking for
/// their size is relatively uncommon, move this operation out of line.
bool Type::isSizedDerivedType(SmallPtrSet<const Type*, 4> *Visited) const {
if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
return ATy->getElementType()->isSized(Visited);
if (const VectorType *VTy = dyn_cast<VectorType>(this))
return VTy->getElementType()->isSized(Visited);
return cast<StructType>(this)->isSized(Visited);
}
//===----------------------------------------------------------------------===//
// Subclass Helper Methods
//===----------------------------------------------------------------------===//
unsigned Type::getIntegerBitWidth() const {
return cast<IntegerType>(this)->getBitWidth();
}
bool Type::isFunctionVarArg() const {
return cast<FunctionType>(this)->isVarArg();
}
Type *Type::getFunctionParamType(unsigned i) const {
return cast<FunctionType>(this)->getParamType(i);
}
unsigned Type::getFunctionNumParams() const {
return cast<FunctionType>(this)->getNumParams();
}
StringRef Type::getStructName() const {
return cast<StructType>(this)->getName();
}
unsigned Type::getStructNumElements() const {
return cast<StructType>(this)->getNumElements();
}
Type *Type::getStructElementType(unsigned N) const {
return cast<StructType>(this)->getElementType(N);
}
Type *Type::getSequentialElementType() const {
return cast<SequentialType>(this)->getElementType();
}
uint64_t Type::getArrayNumElements() const {
return cast<ArrayType>(this)->getNumElements();
}
unsigned Type::getVectorNumElements() const {
return cast<VectorType>(this)->getNumElements();
}
unsigned Type::getPointerAddressSpace() const {
return cast<PointerType>(getScalarType())->getAddressSpace();
}
//===----------------------------------------------------------------------===//
// Primitive 'Type' data
//===----------------------------------------------------------------------===//
Type *Type::getVoidTy(LLVMContext &C) { return &C.pImpl->VoidTy; }
Type *Type::getLabelTy(LLVMContext &C) { return &C.pImpl->LabelTy; }
Type *Type::getHalfTy(LLVMContext &C) { return &C.pImpl->HalfTy; }
Type *Type::getFloatTy(LLVMContext &C) { return &C.pImpl->FloatTy; }
Type *Type::getDoubleTy(LLVMContext &C) { return &C.pImpl->DoubleTy; }
Type *Type::getMetadataTy(LLVMContext &C) { return &C.pImpl->MetadataTy; }
Type *Type::getX86_FP80Ty(LLVMContext &C) { return &C.pImpl->X86_FP80Ty; }
Type *Type::getFP128Ty(LLVMContext &C) { return &C.pImpl->FP128Ty; }
Type *Type::getPPC_FP128Ty(LLVMContext &C) { return &C.pImpl->PPC_FP128Ty; }
Type *Type::getX86_MMXTy(LLVMContext &C) { return &C.pImpl->X86_MMXTy; }
IntegerType *Type::getInt1Ty(LLVMContext &C) { return &C.pImpl->Int1Ty; }
IntegerType *Type::getInt8Ty(LLVMContext &C) { return &C.pImpl->Int8Ty; }
IntegerType *Type::getInt16Ty(LLVMContext &C) { return &C.pImpl->Int16Ty; }
IntegerType *Type::getInt32Ty(LLVMContext &C) { return &C.pImpl->Int32Ty; }
IntegerType *Type::getInt64Ty(LLVMContext &C) { return &C.pImpl->Int64Ty; }
IntegerType *Type::getIntNTy(LLVMContext &C, unsigned N) {
return IntegerType::get(C, N);
}
PointerType *Type::getHalfPtrTy(LLVMContext &C, unsigned AS) {
return getHalfTy(C)->getPointerTo(AS);
}
PointerType *Type::getFloatPtrTy(LLVMContext &C, unsigned AS) {
return getFloatTy(C)->getPointerTo(AS);
}
PointerType *Type::getDoublePtrTy(LLVMContext &C, unsigned AS) {
return getDoubleTy(C)->getPointerTo(AS);
}
PointerType *Type::getX86_FP80PtrTy(LLVMContext &C, unsigned AS) {
return getX86_FP80Ty(C)->getPointerTo(AS);
}
PointerType *Type::getFP128PtrTy(LLVMContext &C, unsigned AS) {
return getFP128Ty(C)->getPointerTo(AS);
}
PointerType *Type::getPPC_FP128PtrTy(LLVMContext &C, unsigned AS) {
return getPPC_FP128Ty(C)->getPointerTo(AS);
}
PointerType *Type::getX86_MMXPtrTy(LLVMContext &C, unsigned AS) {
return getX86_MMXTy(C)->getPointerTo(AS);
}
PointerType *Type::getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS) {
return getIntNTy(C, N)->getPointerTo(AS);
}
PointerType *Type::getInt1PtrTy(LLVMContext &C, unsigned AS) {
return getInt1Ty(C)->getPointerTo(AS);
}
PointerType *Type::getInt8PtrTy(LLVMContext &C, unsigned AS) {
return getInt8Ty(C)->getPointerTo(AS);
}
PointerType *Type::getInt16PtrTy(LLVMContext &C, unsigned AS) {
return getInt16Ty(C)->getPointerTo(AS);
}
PointerType *Type::getInt32PtrTy(LLVMContext &C, unsigned AS) {
return getInt32Ty(C)->getPointerTo(AS);
}
PointerType *Type::getInt64PtrTy(LLVMContext &C, unsigned AS) {
return getInt64Ty(C)->getPointerTo(AS);
}
//===----------------------------------------------------------------------===//
// IntegerType Implementation
//===----------------------------------------------------------------------===//
IntegerType *IntegerType::get(LLVMContext &C, unsigned NumBits) {
assert(NumBits >= MIN_INT_BITS && "bitwidth too small");
assert(NumBits <= MAX_INT_BITS && "bitwidth too large");
// Check for the built-in integer types
switch (NumBits) {
case 1: return cast<IntegerType>(Type::getInt1Ty(C));
case 8: return cast<IntegerType>(Type::getInt8Ty(C));
case 16: return cast<IntegerType>(Type::getInt16Ty(C));
case 32: return cast<IntegerType>(Type::getInt32Ty(C));
case 64: return cast<IntegerType>(Type::getInt64Ty(C));
default:
break;
}
IntegerType *&Entry = C.pImpl->IntegerTypes[NumBits];
if (!Entry)
Entry = new (C.pImpl->TypeAllocator) IntegerType(C, NumBits);
return Entry;
}
bool IntegerType::isPowerOf2ByteWidth() const {
unsigned BitWidth = getBitWidth();
return (BitWidth > 7) && isPowerOf2_32(BitWidth);
}
APInt IntegerType::getMask() const {
return APInt::getAllOnesValue(getBitWidth());
}
//===----------------------------------------------------------------------===//
// FunctionType Implementation
//===----------------------------------------------------------------------===//
FunctionType::FunctionType(Type *Result, ArrayRef<Type*> Params,
bool IsVarArgs)
: Type(Result->getContext(), FunctionTyID) {
Type **SubTys = reinterpret_cast<Type**>(this+1);
assert(isValidReturnType(Result) && "invalid return type for function");
setSubclassData(IsVarArgs);
SubTys[0] = const_cast<Type*>(Result);
for (unsigned i = 0, e = Params.size(); i != e; ++i) {
assert(isValidArgumentType(Params[i]) &&
"Not a valid type for function argument!");
SubTys[i+1] = Params[i];
}
ContainedTys = SubTys;
NumContainedTys = Params.size() + 1; // + 1 for result type
}
// FunctionType::get - The factory function for the FunctionType class.
FunctionType *FunctionType::get(Type *ReturnType,
ArrayRef<Type*> Params, bool isVarArg) {
LLVMContextImpl *pImpl = ReturnType->getContext().pImpl;
FunctionTypeKeyInfo::KeyTy Key(ReturnType, Params, isVarArg);
LLVMContextImpl::FunctionTypeMap::iterator I =
pImpl->FunctionTypes.find_as(Key);
FunctionType *FT;
if (I == pImpl->FunctionTypes.end()) {
FT = (FunctionType*) pImpl->TypeAllocator.
Allocate(sizeof(FunctionType) + sizeof(Type*) * (Params.size() + 1),
AlignOf<FunctionType>::Alignment);
new (FT) FunctionType(ReturnType, Params, isVarArg);
pImpl->FunctionTypes[FT] = true;
} else {
FT = I->first;
}
return FT;
}
FunctionType *FunctionType::get(Type *Result, bool isVarArg) {
return get(Result, None, isVarArg);
}
/// isValidReturnType - Return true if the specified type is valid as a return
/// type.
bool FunctionType::isValidReturnType(Type *RetTy) {
return !RetTy->isFunctionTy() && !RetTy->isLabelTy() &&
!RetTy->isMetadataTy();
}
/// isValidArgumentType - Return true if the specified type is valid as an
/// argument type.
bool FunctionType::isValidArgumentType(Type *ArgTy) {
return ArgTy->isFirstClassType();
}
//===----------------------------------------------------------------------===//
// StructType Implementation
//===----------------------------------------------------------------------===//
// Primitive Constructors.
StructType *StructType::get(LLVMContext &Context, ArrayRef<Type*> ETypes,
bool isPacked) {
LLVMContextImpl *pImpl = Context.pImpl;
AnonStructTypeKeyInfo::KeyTy Key(ETypes, isPacked);
LLVMContextImpl::StructTypeMap::iterator I =
pImpl->AnonStructTypes.find_as(Key);
StructType *ST;
if (I == pImpl->AnonStructTypes.end()) {
// Value not found. Create a new type!
ST = new (Context.pImpl->TypeAllocator) StructType(Context);
ST->setSubclassData(SCDB_IsLiteral); // Literal struct.
ST->setBody(ETypes, isPacked);
Context.pImpl->AnonStructTypes[ST] = true;
} else {
ST = I->first;
}
return ST;
}
void StructType::setBody(ArrayRef<Type*> Elements, bool isPacked) {
assert(isOpaque() && "Struct body already set!");
setSubclassData(getSubclassData() | SCDB_HasBody);
if (isPacked)
setSubclassData(getSubclassData() | SCDB_Packed);
unsigned NumElements = Elements.size();
Type **Elts = getContext().pImpl->TypeAllocator.Allocate<Type*>(NumElements);
memcpy(Elts, Elements.data(), sizeof(Elements[0]) * NumElements);
ContainedTys = Elts;
NumContainedTys = NumElements;
}
void StructType::setName(StringRef Name) {
if (Name == getName()) return;
StringMap<StructType *> &SymbolTable = getContext().pImpl->NamedStructTypes;
typedef StringMap<StructType *>::MapEntryTy EntryTy;
// If this struct already had a name, remove its symbol table entry. Don't
// delete the data yet because it may be part of the new name.
if (SymbolTableEntry)
SymbolTable.remove((EntryTy *)SymbolTableEntry);
// If this is just removing the name, we're done.
if (Name.empty()) {
if (SymbolTableEntry) {
// Delete the old string data.
((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
SymbolTableEntry = nullptr;
}
return;
}
// Look up the entry for the name.
EntryTy *Entry = &getContext().pImpl->NamedStructTypes.GetOrCreateValue(Name);
// While we have a name collision, try a random rename.
if (Entry->getValue()) {
SmallString<64> TempStr(Name);
TempStr.push_back('.');
raw_svector_ostream TmpStream(TempStr);
unsigned NameSize = Name.size();
do {
TempStr.resize(NameSize + 1);
TmpStream.resync();
TmpStream << getContext().pImpl->NamedStructTypesUniqueID++;
Entry = &getContext().pImpl->
NamedStructTypes.GetOrCreateValue(TmpStream.str());
} while (Entry->getValue());
}
// Okay, we found an entry that isn't used. It's us!
Entry->setValue(this);
// Delete the old string data.
if (SymbolTableEntry)
((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
SymbolTableEntry = Entry;
}
//===----------------------------------------------------------------------===//
// StructType Helper functions.
StructType *StructType::create(LLVMContext &Context, StringRef Name) {
StructType *ST = new (Context.pImpl->TypeAllocator) StructType(Context);
if (!Name.empty())
ST->setName(Name);
return ST;
}
StructType *StructType::get(LLVMContext &Context, bool isPacked) {
return get(Context, None, isPacked);
}
StructType *StructType::get(Type *type, ...) {
assert(type && "Cannot create a struct type with no elements with this");
LLVMContext &Ctx = type->getContext();
va_list ap;
SmallVector<llvm::Type*, 8> StructFields;
va_start(ap, type);
while (type) {
StructFields.push_back(type);
type = va_arg(ap, llvm::Type*);
}
return llvm::StructType::get(Ctx, StructFields);
}
StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements,
StringRef Name, bool isPacked) {
StructType *ST = create(Context, Name);
ST->setBody(Elements, isPacked);
return ST;
}
StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements) {
return create(Context, Elements, StringRef());
}
StructType *StructType::create(LLVMContext &Context) {
return create(Context, StringRef());
}
StructType *StructType::create(ArrayRef<Type*> Elements, StringRef Name,
bool isPacked) {
assert(!Elements.empty() &&
"This method may not be invoked with an empty list");
return create(Elements[0]->getContext(), Elements, Name, isPacked);
}
StructType *StructType::create(ArrayRef<Type*> Elements) {
assert(!Elements.empty() &&
"This method may not be invoked with an empty list");
return create(Elements[0]->getContext(), Elements, StringRef());
}
StructType *StructType::create(StringRef Name, Type *type, ...) {
assert(type && "Cannot create a struct type with no elements with this");
LLVMContext &Ctx = type->getContext();
va_list ap;
SmallVector<llvm::Type*, 8> StructFields;
va_start(ap, type);
while (type) {
StructFields.push_back(type);
type = va_arg(ap, llvm::Type*);
}
return llvm::StructType::create(Ctx, StructFields, Name);
}
bool StructType::isSized(SmallPtrSet<const Type*, 4> *Visited) const {
if ((getSubclassData() & SCDB_IsSized) != 0)
return true;
if (isOpaque())
return false;
if (Visited && !Visited->insert(this))
return false;
// Okay, our struct is sized if all of the elements are, but if one of the
// elements is opaque, the struct isn't sized *yet*, but may become sized in
// the future, so just bail out without caching.
for (element_iterator I = element_begin(), E = element_end(); I != E; ++I)
if (!(*I)->isSized(Visited))
return false;
// Here we cheat a bit and cast away const-ness. The goal is to memoize when
// we find a sized type, as types can only move from opaque to sized, not the
// other way.
const_cast<StructType*>(this)->setSubclassData(
getSubclassData() | SCDB_IsSized);
return true;
}
StringRef StructType::getName() const {
assert(!isLiteral() && "Literal structs never have names");
if (!SymbolTableEntry) return StringRef();
return ((StringMapEntry<StructType*> *)SymbolTableEntry)->getKey();
}
void StructType::setBody(Type *type, ...) {
assert(type && "Cannot create a struct type with no elements with this");
va_list ap;
SmallVector<llvm::Type*, 8> StructFields;
va_start(ap, type);
while (type) {
StructFields.push_back(type);
type = va_arg(ap, llvm::Type*);
}
setBody(StructFields);
}
bool StructType::isValidElementType(Type *ElemTy) {
return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
!ElemTy->isMetadataTy() && !ElemTy->isFunctionTy();
}
/// isLayoutIdentical - Return true if this is layout identical to the
/// specified struct.
bool StructType::isLayoutIdentical(StructType *Other) const {
if (this == Other) return true;
if (isPacked() != Other->isPacked() ||
getNumElements() != Other->getNumElements())
return false;
return std::equal(element_begin(), element_end(), Other->element_begin());
}
/// getTypeByName - Return the type with the specified name, or null if there
/// is none by that name.
StructType *Module::getTypeByName(StringRef Name) const {
return getContext().pImpl->NamedStructTypes.lookup(Name);
}
//===----------------------------------------------------------------------===//
// CompositeType Implementation
//===----------------------------------------------------------------------===//
Type *CompositeType::getTypeAtIndex(const Value *V) {
if (StructType *STy = dyn_cast<StructType>(this)) {
unsigned Idx =
(unsigned)cast<Constant>(V)->getUniqueInteger().getZExtValue();
assert(indexValid(Idx) && "Invalid structure index!");
return STy->getElementType(Idx);
}
return cast<SequentialType>(this)->getElementType();
}
Type *CompositeType::getTypeAtIndex(unsigned Idx) {
if (StructType *STy = dyn_cast<StructType>(this)) {
assert(indexValid(Idx) && "Invalid structure index!");
return STy->getElementType(Idx);
}
return cast<SequentialType>(this)->getElementType();
}
bool CompositeType::indexValid(const Value *V) const {
if (const StructType *STy = dyn_cast<StructType>(this)) {
// Structure indexes require (vectors of) 32-bit integer constants. In the
// vector case all of the indices must be equal.
if (!V->getType()->getScalarType()->isIntegerTy(32))
return false;
const Constant *C = dyn_cast<Constant>(V);
if (C && V->getType()->isVectorTy())
C = C->getSplatValue();
const ConstantInt *CU = dyn_cast_or_null<ConstantInt>(C);
return CU && CU->getZExtValue() < STy->getNumElements();
}
// Sequential types can be indexed by any integer.
return V->getType()->isIntOrIntVectorTy();
}
bool CompositeType::indexValid(unsigned Idx) const {
if (const StructType *STy = dyn_cast<StructType>(this))
return Idx < STy->getNumElements();
// Sequential types can be indexed by any integer.
return true;
}
//===----------------------------------------------------------------------===//
// ArrayType Implementation
//===----------------------------------------------------------------------===//
ArrayType::ArrayType(Type *ElType, uint64_t NumEl)
: SequentialType(ArrayTyID, ElType) {
NumElements = NumEl;
}
ArrayType *ArrayType::get(Type *elementType, uint64_t NumElements) {
Type *ElementType = const_cast<Type*>(elementType);
assert(isValidElementType(ElementType) && "Invalid type for array element!");
LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
ArrayType *&Entry =
pImpl->ArrayTypes[std::make_pair(ElementType, NumElements)];
if (!Entry)
Entry = new (pImpl->TypeAllocator) ArrayType(ElementType, NumElements);
return Entry;
}
bool ArrayType::isValidElementType(Type *ElemTy) {
return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
!ElemTy->isMetadataTy() && !ElemTy->isFunctionTy();
}
//===----------------------------------------------------------------------===//
// VectorType Implementation
//===----------------------------------------------------------------------===//
VectorType::VectorType(Type *ElType, unsigned NumEl)
: SequentialType(VectorTyID, ElType) {
NumElements = NumEl;
}
VectorType *VectorType::get(Type *elementType, unsigned NumElements) {
Type *ElementType = const_cast<Type*>(elementType);
assert(NumElements > 0 && "#Elements of a VectorType must be greater than 0");
assert(isValidElementType(ElementType) &&
"Elements of a VectorType must be a primitive type");
LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
VectorType *&Entry = ElementType->getContext().pImpl
->VectorTypes[std::make_pair(ElementType, NumElements)];
if (!Entry)
Entry = new (pImpl->TypeAllocator) VectorType(ElementType, NumElements);
return Entry;
}
bool VectorType::isValidElementType(Type *ElemTy) {
return ElemTy->isIntegerTy() || ElemTy->isFloatingPointTy() ||
ElemTy->isPointerTy();
}
//===----------------------------------------------------------------------===//
// PointerType Implementation
//===----------------------------------------------------------------------===//
PointerType *PointerType::get(Type *EltTy, unsigned AddressSpace) {
assert(EltTy && "Can't get a pointer to <null> type!");
assert(isValidElementType(EltTy) && "Invalid type for pointer element!");
LLVMContextImpl *CImpl = EltTy->getContext().pImpl;
// Since AddressSpace #0 is the common case, we special case it.
PointerType *&Entry = AddressSpace == 0 ? CImpl->PointerTypes[EltTy]
: CImpl->ASPointerTypes[std::make_pair(EltTy, AddressSpace)];
if (!Entry)
Entry = new (CImpl->TypeAllocator) PointerType(EltTy, AddressSpace);
return Entry;
}
PointerType::PointerType(Type *E, unsigned AddrSpace)
: SequentialType(PointerTyID, E) {
#ifndef NDEBUG
const unsigned oldNCT = NumContainedTys;
#endif
setSubclassData(AddrSpace);
// Check for miscompile. PR11652.
assert(oldNCT == NumContainedTys && "bitfield written out of bounds?");
}
PointerType *Type::getPointerTo(unsigned addrs) {
return PointerType::get(this, addrs);
}
bool PointerType::isValidElementType(Type *ElemTy) {
return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
!ElemTy->isMetadataTy();
}