llvm-6502/lib/CodeGen/SelectionDAG/ScheduleDAGEmit.cpp

718 lines
27 KiB
C++
Raw Normal View History

//===---- ScheduleDAGEmit.cpp - Emit routines for the ScheduleDAG class ---===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements the Emit routines for the ScheduleDAG class, which creates
// MachineInstrs according to the computed schedule.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "pre-RA-sched"
#include "llvm/CodeGen/ScheduleDAG.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
using namespace llvm;
STATISTIC(NumCommutes, "Number of instructions commuted");
/// getInstrOperandRegClass - Return register class of the operand of an
/// instruction of the specified TargetInstrDesc.
static const TargetRegisterClass*
getInstrOperandRegClass(const TargetRegisterInfo *TRI,
const TargetInstrInfo *TII, const TargetInstrDesc &II,
unsigned Op) {
if (Op >= II.getNumOperands()) {
assert(II.isVariadic() && "Invalid operand # of instruction");
return NULL;
}
if (II.OpInfo[Op].isLookupPtrRegClass())
return TII->getPointerRegClass();
return TRI->getRegClass(II.OpInfo[Op].RegClass);
}
/// EmitCopyFromReg - Generate machine code for an CopyFromReg node or an
/// implicit physical register output.
void ScheduleDAG::EmitCopyFromReg(SDNode *Node, unsigned ResNo,
bool IsClone, unsigned SrcReg,
DenseMap<SDValue, unsigned> &VRBaseMap) {
unsigned VRBase = 0;
if (TargetRegisterInfo::isVirtualRegister(SrcReg)) {
// Just use the input register directly!
SDValue Op(Node, ResNo);
if (IsClone)
VRBaseMap.erase(Op);
bool isNew = VRBaseMap.insert(std::make_pair(Op, SrcReg)).second;
isNew = isNew; // Silence compiler warning.
assert(isNew && "Node emitted out of order - early");
return;
}
// If the node is only used by a CopyToReg and the dest reg is a vreg, use
// the CopyToReg'd destination register instead of creating a new vreg.
bool MatchReg = true;
const TargetRegisterClass *UseRC = NULL;
for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end();
UI != E; ++UI) {
SDNode *User = *UI;
bool Match = true;
if (User->getOpcode() == ISD::CopyToReg &&
User->getOperand(2).getNode() == Node &&
User->getOperand(2).getResNo() == ResNo) {
unsigned DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
if (TargetRegisterInfo::isVirtualRegister(DestReg)) {
VRBase = DestReg;
Match = false;
} else if (DestReg != SrcReg)
Match = false;
} else {
for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
SDValue Op = User->getOperand(i);
if (Op.getNode() != Node || Op.getResNo() != ResNo)
continue;
MVT VT = Node->getValueType(Op.getResNo());
if (VT == MVT::Other || VT == MVT::Flag)
continue;
Match = false;
if (User->isMachineOpcode()) {
const TargetInstrDesc &II = TII->get(User->getMachineOpcode());
const TargetRegisterClass *RC =
getInstrOperandRegClass(TRI,TII,II,i+II.getNumDefs());
if (!UseRC)
UseRC = RC;
else if (RC)
assert(UseRC == RC &&
"Multiple uses expecting different register classes!");
}
}
}
MatchReg &= Match;
if (VRBase)
break;
}
MVT VT = Node->getValueType(ResNo);
const TargetRegisterClass *SrcRC = 0, *DstRC = 0;
SrcRC = TRI->getPhysicalRegisterRegClass(SrcReg, VT);
// Figure out the register class to create for the destreg.
if (VRBase) {
DstRC = MRI.getRegClass(VRBase);
} else if (UseRC) {
assert(UseRC->hasType(VT) && "Incompatible phys register def and uses!");
DstRC = UseRC;
} else {
DstRC = TLI->getRegClassFor(VT);
}
// If all uses are reading from the src physical register and copying the
// register is either impossible or very expensive, then don't create a copy.
if (MatchReg && SrcRC->getCopyCost() < 0) {
VRBase = SrcReg;
} else {
// Create the reg, emit the copy.
VRBase = MRI.createVirtualRegister(DstRC);
bool Emitted =
TII->copyRegToReg(*BB, BB->end(), VRBase, SrcReg, DstRC, SrcRC);
Emitted = Emitted; // Silence compiler warning.
assert(Emitted && "Unable to issue a copy instruction!");
}
SDValue Op(Node, ResNo);
if (IsClone)
VRBaseMap.erase(Op);
bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
isNew = isNew; // Silence compiler warning.
assert(isNew && "Node emitted out of order - early");
}
/// getDstOfCopyToRegUse - If the only use of the specified result number of
/// node is a CopyToReg, return its destination register. Return 0 otherwise.
unsigned ScheduleDAG::getDstOfOnlyCopyToRegUse(SDNode *Node,
unsigned ResNo) const {
if (!Node->hasOneUse())
return 0;
SDNode *User = *Node->use_begin();
if (User->getOpcode() == ISD::CopyToReg &&
User->getOperand(2).getNode() == Node &&
User->getOperand(2).getResNo() == ResNo) {
unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
if (TargetRegisterInfo::isVirtualRegister(Reg))
return Reg;
}
return 0;
}
void ScheduleDAG::CreateVirtualRegisters(SDNode *Node, MachineInstr *MI,
const TargetInstrDesc &II,
DenseMap<SDValue, unsigned> &VRBaseMap) {
assert(Node->getMachineOpcode() != TargetInstrInfo::IMPLICIT_DEF &&
"IMPLICIT_DEF should have been handled as a special case elsewhere!");
for (unsigned i = 0; i < II.getNumDefs(); ++i) {
// If the specific node value is only used by a CopyToReg and the dest reg
// is a vreg, use the CopyToReg'd destination register instead of creating
// a new vreg.
unsigned VRBase = 0;
for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end();
UI != E; ++UI) {
SDNode *User = *UI;
if (User->getOpcode() == ISD::CopyToReg &&
User->getOperand(2).getNode() == Node &&
User->getOperand(2).getResNo() == i) {
unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
VRBase = Reg;
MI->addOperand(MachineOperand::CreateReg(Reg, true));
break;
}
}
}
// Create the result registers for this node and add the result regs to
// the machine instruction.
if (VRBase == 0) {
const TargetRegisterClass *RC = getInstrOperandRegClass(TRI, TII, II, i);
assert(RC && "Isn't a register operand!");
VRBase = MRI.createVirtualRegister(RC);
MI->addOperand(MachineOperand::CreateReg(VRBase, true));
}
SDValue Op(Node, i);
bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
isNew = isNew; // Silence compiler warning.
assert(isNew && "Node emitted out of order - early");
}
}
/// getVR - Return the virtual register corresponding to the specified result
/// of the specified node.
unsigned ScheduleDAG::getVR(SDValue Op,
DenseMap<SDValue, unsigned> &VRBaseMap) {
if (Op.isMachineOpcode() &&
Op.getMachineOpcode() == TargetInstrInfo::IMPLICIT_DEF) {
// Add an IMPLICIT_DEF instruction before every use.
unsigned VReg = getDstOfOnlyCopyToRegUse(Op.getNode(), Op.getResNo());
// IMPLICIT_DEF can produce any type of result so its TargetInstrDesc
// does not include operand register class info.
if (!VReg) {
const TargetRegisterClass *RC = TLI->getRegClassFor(Op.getValueType());
VReg = MRI.createVirtualRegister(RC);
}
BuildMI(BB, TII->get(TargetInstrInfo::IMPLICIT_DEF), VReg);
return VReg;
}
DenseMap<SDValue, unsigned>::iterator I = VRBaseMap.find(Op);
assert(I != VRBaseMap.end() && "Node emitted out of order - late");
return I->second;
}
/// AddOperand - Add the specified operand to the specified machine instr. II
/// specifies the instruction information for the node, and IIOpNum is the
/// operand number (in the II) that we are adding. IIOpNum and II are used for
/// assertions only.
void ScheduleDAG::AddOperand(MachineInstr *MI, SDValue Op,
unsigned IIOpNum,
const TargetInstrDesc *II,
DenseMap<SDValue, unsigned> &VRBaseMap) {
if (Op.isMachineOpcode()) {
// Note that this case is redundant with the final else block, but we
// include it because it is the most common and it makes the logic
// simpler here.
assert(Op.getValueType() != MVT::Other &&
Op.getValueType() != MVT::Flag &&
"Chain and flag operands should occur at end of operand list!");
// Get/emit the operand.
unsigned VReg = getVR(Op, VRBaseMap);
const TargetInstrDesc &TID = MI->getDesc();
bool isOptDef = IIOpNum < TID.getNumOperands() &&
TID.OpInfo[IIOpNum].isOptionalDef();
MI->addOperand(MachineOperand::CreateReg(VReg, isOptDef));
// Verify that it is right.
assert(TargetRegisterInfo::isVirtualRegister(VReg) && "Not a vreg?");
#ifndef NDEBUG
if (II) {
// There may be no register class for this operand if it is a variadic
// argument (RC will be NULL in this case). In this case, we just assume
// the regclass is ok.
const TargetRegisterClass *RC =
getInstrOperandRegClass(TRI, TII, *II, IIOpNum);
assert((RC || II->isVariadic()) && "Expected reg class info!");
const TargetRegisterClass *VRC = MRI.getRegClass(VReg);
if (RC && VRC != RC) {
cerr << "Register class of operand and regclass of use don't agree!\n";
cerr << "Operand = " << IIOpNum << "\n";
cerr << "Op->Val = "; Op.getNode()->dump(DAG); cerr << "\n";
cerr << "MI = "; MI->print(cerr);
cerr << "VReg = " << VReg << "\n";
cerr << "VReg RegClass size = " << VRC->getSize()
<< ", align = " << VRC->getAlignment() << "\n";
cerr << "Expected RegClass size = " << RC->getSize()
<< ", align = " << RC->getAlignment() << "\n";
cerr << "Fatal error, aborting.\n";
abort();
}
}
#endif
} else if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
MI->addOperand(MachineOperand::CreateImm(C->getZExtValue()));
} else if (ConstantFPSDNode *F = dyn_cast<ConstantFPSDNode>(Op)) {
const ConstantFP *CFP = F->getConstantFPValue();
MI->addOperand(MachineOperand::CreateFPImm(CFP));
} else if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Op)) {
MI->addOperand(MachineOperand::CreateReg(R->getReg(), false));
} else if (GlobalAddressSDNode *TGA = dyn_cast<GlobalAddressSDNode>(Op)) {
MI->addOperand(MachineOperand::CreateGA(TGA->getGlobal(),TGA->getOffset()));
} else if (BasicBlockSDNode *BB = dyn_cast<BasicBlockSDNode>(Op)) {
MI->addOperand(MachineOperand::CreateMBB(BB->getBasicBlock()));
} else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
MI->addOperand(MachineOperand::CreateFI(FI->getIndex()));
} else if (JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Op)) {
MI->addOperand(MachineOperand::CreateJTI(JT->getIndex()));
} else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) {
int Offset = CP->getOffset();
unsigned Align = CP->getAlignment();
const Type *Type = CP->getType();
// MachineConstantPool wants an explicit alignment.
if (Align == 0) {
Align = TM.getTargetData()->getPreferredTypeAlignmentShift(Type);
if (Align == 0) {
// Alignment of vector types. FIXME!
Align = TM.getTargetData()->getABITypeSize(Type);
Align = Log2_64(Align);
}
}
unsigned Idx;
if (CP->isMachineConstantPoolEntry())
Idx = ConstPool->getConstantPoolIndex(CP->getMachineCPVal(), Align);
else
Idx = ConstPool->getConstantPoolIndex(CP->getConstVal(), Align);
MI->addOperand(MachineOperand::CreateCPI(Idx, Offset));
} else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) {
MI->addOperand(MachineOperand::CreateES(ES->getSymbol()));
} else {
assert(Op.getValueType() != MVT::Other &&
Op.getValueType() != MVT::Flag &&
"Chain and flag operands should occur at end of operand list!");
unsigned VReg = getVR(Op, VRBaseMap);
MI->addOperand(MachineOperand::CreateReg(VReg, false));
// Verify that it is right. Note that the reg class of the physreg and the
// vreg don't necessarily need to match, but the target copy insertion has
// to be able to handle it. This handles things like copies from ST(0) to
// an FP vreg on x86.
assert(TargetRegisterInfo::isVirtualRegister(VReg) && "Not a vreg?");
if (II && !II->isVariadic()) {
assert(getInstrOperandRegClass(TRI, TII, *II, IIOpNum) &&
"Don't have operand info for this instruction!");
}
}
}
void ScheduleDAG::AddMemOperand(MachineInstr *MI, const MachineMemOperand &MO) {
MI->addMemOperand(*MF, MO);
}
/// getSubRegisterRegClass - Returns the register class of specified register
/// class' "SubIdx"'th sub-register class.
static const TargetRegisterClass*
getSubRegisterRegClass(const TargetRegisterClass *TRC, unsigned SubIdx) {
// Pick the register class of the subregister
TargetRegisterInfo::regclass_iterator I =
TRC->subregclasses_begin() + SubIdx-1;
assert(I < TRC->subregclasses_end() &&
"Invalid subregister index for register class");
return *I;
}
/// getSuperRegisterRegClass - Returns the register class of a superreg A whose
/// "SubIdx"'th sub-register class is the specified register class and whose
/// type matches the specified type.
static const TargetRegisterClass*
getSuperRegisterRegClass(const TargetRegisterClass *TRC,
unsigned SubIdx, MVT VT) {
// Pick the register class of the superegister for this type
for (TargetRegisterInfo::regclass_iterator I = TRC->superregclasses_begin(),
E = TRC->superregclasses_end(); I != E; ++I)
if ((*I)->hasType(VT) && getSubRegisterRegClass(*I, SubIdx) == TRC)
return *I;
assert(false && "Couldn't find the register class");
return 0;
}
/// EmitSubregNode - Generate machine code for subreg nodes.
///
void ScheduleDAG::EmitSubregNode(SDNode *Node,
DenseMap<SDValue, unsigned> &VRBaseMap) {
unsigned VRBase = 0;
unsigned Opc = Node->getMachineOpcode();
// If the node is only used by a CopyToReg and the dest reg is a vreg, use
// the CopyToReg'd destination register instead of creating a new vreg.
for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end();
UI != E; ++UI) {
SDNode *User = *UI;
if (User->getOpcode() == ISD::CopyToReg &&
User->getOperand(2).getNode() == Node) {
unsigned DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
if (TargetRegisterInfo::isVirtualRegister(DestReg)) {
VRBase = DestReg;
break;
}
}
}
if (Opc == TargetInstrInfo::EXTRACT_SUBREG) {
unsigned SubIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
// Create the extract_subreg machine instruction.
MachineInstr *MI = BuildMI(*MF, TII->get(TargetInstrInfo::EXTRACT_SUBREG));
// Figure out the register class to create for the destreg.
unsigned VReg = getVR(Node->getOperand(0), VRBaseMap);
const TargetRegisterClass *TRC = MRI.getRegClass(VReg);
const TargetRegisterClass *SRC = getSubRegisterRegClass(TRC, SubIdx);
if (VRBase) {
// Grab the destination register
#ifndef NDEBUG
const TargetRegisterClass *DRC = MRI.getRegClass(VRBase);
assert(SRC && DRC && SRC == DRC &&
"Source subregister and destination must have the same class");
#endif
} else {
// Create the reg
assert(SRC && "Couldn't find source register class");
VRBase = MRI.createVirtualRegister(SRC);
}
// Add def, source, and subreg index
MI->addOperand(MachineOperand::CreateReg(VRBase, true));
AddOperand(MI, Node->getOperand(0), 0, 0, VRBaseMap);
MI->addOperand(MachineOperand::CreateImm(SubIdx));
BB->push_back(MI);
} else if (Opc == TargetInstrInfo::INSERT_SUBREG ||
Opc == TargetInstrInfo::SUBREG_TO_REG) {
SDValue N0 = Node->getOperand(0);
SDValue N1 = Node->getOperand(1);
SDValue N2 = Node->getOperand(2);
unsigned SubReg = getVR(N1, VRBaseMap);
unsigned SubIdx = cast<ConstantSDNode>(N2)->getZExtValue();
// Figure out the register class to create for the destreg.
const TargetRegisterClass *TRC = 0;
if (VRBase) {
TRC = MRI.getRegClass(VRBase);
} else {
TRC = getSuperRegisterRegClass(MRI.getRegClass(SubReg), SubIdx,
Node->getValueType(0));
assert(TRC && "Couldn't determine register class for insert_subreg");
VRBase = MRI.createVirtualRegister(TRC); // Create the reg
}
// Create the insert_subreg or subreg_to_reg machine instruction.
MachineInstr *MI = BuildMI(*MF, TII->get(Opc));
MI->addOperand(MachineOperand::CreateReg(VRBase, true));
// If creating a subreg_to_reg, then the first input operand
// is an implicit value immediate, otherwise it's a register
if (Opc == TargetInstrInfo::SUBREG_TO_REG) {
const ConstantSDNode *SD = cast<ConstantSDNode>(N0);
MI->addOperand(MachineOperand::CreateImm(SD->getZExtValue()));
} else
AddOperand(MI, N0, 0, 0, VRBaseMap);
// Add the subregster being inserted
AddOperand(MI, N1, 0, 0, VRBaseMap);
MI->addOperand(MachineOperand::CreateImm(SubIdx));
BB->push_back(MI);
} else
assert(0 && "Node is not insert_subreg, extract_subreg, or subreg_to_reg");
SDValue Op(Node, 0);
bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
isNew = isNew; // Silence compiler warning.
assert(isNew && "Node emitted out of order - early");
}
/// EmitNode - Generate machine code for an node and needed dependencies.
///
void ScheduleDAG::EmitNode(SDNode *Node, bool IsClone,
DenseMap<SDValue, unsigned> &VRBaseMap) {
// If machine instruction
if (Node->isMachineOpcode()) {
unsigned Opc = Node->getMachineOpcode();
// Handle subreg insert/extract specially
if (Opc == TargetInstrInfo::EXTRACT_SUBREG ||
Opc == TargetInstrInfo::INSERT_SUBREG ||
Opc == TargetInstrInfo::SUBREG_TO_REG) {
EmitSubregNode(Node, VRBaseMap);
return;
}
if (Opc == TargetInstrInfo::IMPLICIT_DEF)
// We want a unique VR for each IMPLICIT_DEF use.
return;
const TargetInstrDesc &II = TII->get(Opc);
unsigned NumResults = CountResults(Node);
unsigned NodeOperands = CountOperands(Node);
unsigned MemOperandsEnd = ComputeMemOperandsEnd(Node);
bool HasPhysRegOuts = (NumResults > II.getNumDefs()) &&
II.getImplicitDefs() != 0;
#ifndef NDEBUG
unsigned NumMIOperands = NodeOperands + NumResults;
assert((II.getNumOperands() == NumMIOperands ||
HasPhysRegOuts || II.isVariadic()) &&
"#operands for dag node doesn't match .td file!");
#endif
// Create the new machine instruction.
MachineInstr *MI = BuildMI(*MF, II);
// Add result register values for things that are defined by this
// instruction.
if (NumResults)
CreateVirtualRegisters(Node, MI, II, VRBaseMap);
// Emit all of the actual operands of this instruction, adding them to the
// instruction as appropriate.
for (unsigned i = 0; i != NodeOperands; ++i)
AddOperand(MI, Node->getOperand(i), i+II.getNumDefs(), &II, VRBaseMap);
// Emit all of the memory operands of this instruction
for (unsigned i = NodeOperands; i != MemOperandsEnd; ++i)
AddMemOperand(MI, cast<MemOperandSDNode>(Node->getOperand(i))->MO);
// Commute node if it has been determined to be profitable.
if (CommuteSet.count(Node)) {
MachineInstr *NewMI = TII->commuteInstruction(MI);
if (NewMI == 0)
DOUT << "Sched: COMMUTING FAILED!\n";
else {
DOUT << "Sched: COMMUTED TO: " << *NewMI;
if (MI != NewMI) {
MF->DeleteMachineInstr(MI);
MI = NewMI;
}
++NumCommutes;
}
}
if (II.usesCustomDAGSchedInsertionHook())
// Insert this instruction into the basic block using a target
// specific inserter which may returns a new basic block.
BB = TLI->EmitInstrWithCustomInserter(MI, BB);
else
BB->push_back(MI);
// Additional results must be an physical register def.
if (HasPhysRegOuts) {
for (unsigned i = II.getNumDefs(); i < NumResults; ++i) {
unsigned Reg = II.getImplicitDefs()[i - II.getNumDefs()];
if (Node->hasAnyUseOfValue(i))
EmitCopyFromReg(Node, i, IsClone, Reg, VRBaseMap);
}
}
return;
}
switch (Node->getOpcode()) {
default:
#ifndef NDEBUG
Node->dump(DAG);
#endif
assert(0 && "This target-independent node should have been selected!");
break;
case ISD::EntryToken:
assert(0 && "EntryToken should have been excluded from the schedule!");
break;
case ISD::TokenFactor: // fall thru
break;
case ISD::CopyToReg: {
unsigned SrcReg;
SDValue SrcVal = Node->getOperand(2);
if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(SrcVal))
SrcReg = R->getReg();
else
SrcReg = getVR(SrcVal, VRBaseMap);
unsigned DestReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
if (SrcReg == DestReg) // Coalesced away the copy? Ignore.
break;
const TargetRegisterClass *SrcTRC = 0, *DstTRC = 0;
// Get the register classes of the src/dst.
if (TargetRegisterInfo::isVirtualRegister(SrcReg))
SrcTRC = MRI.getRegClass(SrcReg);
else
SrcTRC = TRI->getPhysicalRegisterRegClass(SrcReg,SrcVal.getValueType());
if (TargetRegisterInfo::isVirtualRegister(DestReg))
DstTRC = MRI.getRegClass(DestReg);
else
DstTRC = TRI->getPhysicalRegisterRegClass(DestReg,
Node->getOperand(1).getValueType());
TII->copyRegToReg(*BB, BB->end(), DestReg, SrcReg, DstTRC, SrcTRC);
break;
}
case ISD::CopyFromReg: {
unsigned SrcReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
EmitCopyFromReg(Node, 0, IsClone, SrcReg, VRBaseMap);
break;
}
case ISD::INLINEASM: {
unsigned NumOps = Node->getNumOperands();
if (Node->getOperand(NumOps-1).getValueType() == MVT::Flag)
--NumOps; // Ignore the flag operand.
// Create the inline asm machine instruction.
MachineInstr *MI = BuildMI(*MF, TII->get(TargetInstrInfo::INLINEASM));
// Add the asm string as an external symbol operand.
const char *AsmStr =
cast<ExternalSymbolSDNode>(Node->getOperand(1))->getSymbol();
MI->addOperand(MachineOperand::CreateES(AsmStr));
// Add all of the operand registers to the instruction.
for (unsigned i = 2; i != NumOps;) {
unsigned Flags =
cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
unsigned NumVals = Flags >> 3;
MI->addOperand(MachineOperand::CreateImm(Flags));
++i; // Skip the ID value.
switch (Flags & 7) {
default: assert(0 && "Bad flags!");
case 2: // Def of register.
for (; NumVals; --NumVals, ++i) {
unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
MI->addOperand(MachineOperand::CreateReg(Reg, true));
}
break;
case 6: // Def of earlyclobber register.
for (; NumVals; --NumVals, ++i) {
unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
MI->addOperand(MachineOperand::CreateReg(Reg, true, false, false,
false, 0, true));
}
break;
case 1: // Use of register.
case 3: // Immediate.
case 4: // Addressing mode.
// The addressing mode has been selected, just add all of the
// operands to the machine instruction.
for (; NumVals; --NumVals, ++i)
AddOperand(MI, Node->getOperand(i), 0, 0, VRBaseMap);
break;
}
}
BB->push_back(MI);
break;
}
}
}
void ScheduleDAG::EmitNoop() {
TII->insertNoop(*BB, BB->end());
}
void ScheduleDAG::EmitCrossRCCopy(SUnit *SU,
DenseMap<SUnit*, unsigned> &VRBaseMap) {
for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
I != E; ++I) {
if (I->isCtrl) continue; // ignore chain preds
if (!I->Dep->getNode()) {
// Copy to physical register.
DenseMap<SUnit*, unsigned>::iterator VRI = VRBaseMap.find(I->Dep);
assert(VRI != VRBaseMap.end() && "Node emitted out of order - late");
// Find the destination physical register.
unsigned Reg = 0;
for (SUnit::const_succ_iterator II = SU->Succs.begin(),
EE = SU->Succs.end(); II != EE; ++II) {
if (I->Reg) {
Reg = I->Reg;
break;
}
}
assert(I->Reg && "Unknown physical register!");
TII->copyRegToReg(*BB, BB->end(), Reg, VRI->second,
SU->CopyDstRC, SU->CopySrcRC);
} else {
// Copy from physical register.
assert(I->Reg && "Unknown physical register!");
unsigned VRBase = MRI.createVirtualRegister(SU->CopyDstRC);
bool isNew = VRBaseMap.insert(std::make_pair(SU, VRBase)).second;
isNew = isNew; // Silence compiler warning.
assert(isNew && "Node emitted out of order - early");
TII->copyRegToReg(*BB, BB->end(), VRBase, I->Reg,
SU->CopyDstRC, SU->CopySrcRC);
}
break;
}
}
/// EmitSchedule - Emit the machine code in scheduled order.
MachineBasicBlock *ScheduleDAG::EmitSchedule() {
// For post-regalloc scheduling, we're rescheduling the instructions in the
// block, so start by removing them from the block.
if (!DAG)
while (!BB->empty())
BB->remove(BB->begin());
DenseMap<SDValue, unsigned> VRBaseMap;
DenseMap<SUnit*, unsigned> CopyVRBaseMap;
for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
SUnit *SU = Sequence[i];
if (!SU) {
// Null SUnit* is a noop.
EmitNoop();
continue;
}
// For post-regalloc scheduling, we already have the instruction;
// just append it to the block.
if (!DAG) {
BB->push_back(SU->getInstr());
continue;
}
// For pre-regalloc scheduling, create instructions corresponding to the
// SDNode and any flagged SDNodes and append them to the block.
SmallVector<SDNode *, 4> FlaggedNodes;
for (SDNode *N = SU->getNode()->getFlaggedNode(); N; N = N->getFlaggedNode())
FlaggedNodes.push_back(N);
while (!FlaggedNodes.empty()) {
EmitNode(FlaggedNodes.back(), SU->OrigNode != SU, VRBaseMap);
FlaggedNodes.pop_back();
}
if (!SU->getNode())
EmitCrossRCCopy(SU, CopyVRBaseMap);
else
EmitNode(SU->getNode(), SU->OrigNode != SU, VRBaseMap);
}
return BB;
}