643 lines
20 KiB
C
Raw Normal View History

//===-------------------- Graph.h - PBQP Graph ------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// PBQP Graph class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_PBQP_GRAPH_H
#define LLVM_CODEGEN_PBQP_GRAPH_H
#include "llvm/ADT/ilist.h"
#include "llvm/ADT/ilist_node.h"
#include "llvm/Support/Compiler.h"
#include <list>
#include <map>
#include <set>
namespace PBQP {
class GraphBase {
public:
typedef unsigned NodeId;
typedef unsigned EdgeId;
/// \brief Returns a value representing an invalid (non-existent) node.
static NodeId invalidNodeId() {
return std::numeric_limits<NodeId>::max();
}
/// \brief Returns a value representing an invalid (non-existent) edge.
static EdgeId invalidEdgeId() {
return std::numeric_limits<EdgeId>::max();
}
};
/// PBQP Graph class.
/// Instances of this class describe PBQP problems.
///
template <typename SolverT>
class Graph : public GraphBase {
private:
typedef typename SolverT::CostAllocator CostAllocator;
public:
typedef typename SolverT::RawVector RawVector;
typedef typename SolverT::RawMatrix RawMatrix;
typedef typename SolverT::Vector Vector;
typedef typename SolverT::Matrix Matrix;
typedef typename CostAllocator::VectorPtr VectorPtr;
typedef typename CostAllocator::MatrixPtr MatrixPtr;
typedef typename SolverT::NodeMetadata NodeMetadata;
typedef typename SolverT::EdgeMetadata EdgeMetadata;
private:
class NodeEntry {
public:
typedef std::vector<EdgeId> AdjEdgeList;
typedef AdjEdgeList::size_type AdjEdgeIdx;
typedef AdjEdgeList::const_iterator AdjEdgeItr;
static AdjEdgeIdx getInvalidAdjEdgeIdx() {
return std::numeric_limits<AdjEdgeIdx>::max();
}
NodeEntry(VectorPtr Costs) : Costs(Costs) {}
AdjEdgeIdx addAdjEdgeId(EdgeId EId) {
AdjEdgeIdx Idx = AdjEdgeIds.size();
AdjEdgeIds.push_back(EId);
return Idx;
}
void removeAdjEdgeId(Graph &G, NodeId ThisNId, AdjEdgeIdx Idx) {
// Swap-and-pop for fast removal.
// 1) Update the adj index of the edge currently at back().
// 2) Move last Edge down to Idx.
// 3) pop_back()
// If Idx == size() - 1 then the setAdjEdgeIdx and swap are
// redundant, but both operations are cheap.
G.getEdge(AdjEdgeIds.back()).setAdjEdgeIdx(ThisNId, Idx);
AdjEdgeIds[Idx] = AdjEdgeIds.back();
AdjEdgeIds.pop_back();
}
const AdjEdgeList& getAdjEdgeIds() const { return AdjEdgeIds; }
VectorPtr Costs;
NodeMetadata Metadata;
private:
AdjEdgeList AdjEdgeIds;
};
class EdgeEntry {
public:
EdgeEntry(NodeId N1Id, NodeId N2Id, MatrixPtr Costs)
: Costs(Costs) {
NIds[0] = N1Id;
NIds[1] = N2Id;
ThisEdgeAdjIdxs[0] = NodeEntry::getInvalidAdjEdgeIdx();
ThisEdgeAdjIdxs[1] = NodeEntry::getInvalidAdjEdgeIdx();
}
void invalidate() {
NIds[0] = NIds[1] = Graph::invalidNodeId();
ThisEdgeAdjIdxs[0] = ThisEdgeAdjIdxs[1] =
NodeEntry::getInvalidAdjEdgeIdx();
Costs = nullptr;
}
void connectToN(Graph &G, EdgeId ThisEdgeId, unsigned NIdx) {
assert(ThisEdgeAdjIdxs[NIdx] == NodeEntry::getInvalidAdjEdgeIdx() &&
"Edge already connected to NIds[NIdx].");
NodeEntry &N = G.getNode(NIds[NIdx]);
ThisEdgeAdjIdxs[NIdx] = N.addAdjEdgeId(ThisEdgeId);
}
void connectTo(Graph &G, EdgeId ThisEdgeId, NodeId NId) {
if (NId == NIds[0])
connectToN(G, ThisEdgeId, 0);
else {
assert(NId == NIds[1] && "Edge does not connect NId.");
connectToN(G, ThisEdgeId, 1);
}
}
void connect(Graph &G, EdgeId ThisEdgeId) {
connectToN(G, ThisEdgeId, 0);
connectToN(G, ThisEdgeId, 1);
}
void setAdjEdgeIdx(NodeId NId, typename NodeEntry::AdjEdgeIdx NewIdx) {
if (NId == NIds[0])
ThisEdgeAdjIdxs[0] = NewIdx;
else {
assert(NId == NIds[1] && "Edge not connected to NId");
ThisEdgeAdjIdxs[1] = NewIdx;
}
}
void disconnectFromN(Graph &G, unsigned NIdx) {
assert(ThisEdgeAdjIdxs[NIdx] != NodeEntry::getInvalidAdjEdgeIdx() &&
"Edge not connected to NIds[NIdx].");
NodeEntry &N = G.getNode(NIds[NIdx]);
N.removeAdjEdgeId(G, NIds[NIdx], ThisEdgeAdjIdxs[NIdx]);
ThisEdgeAdjIdxs[NIdx] = NodeEntry::getInvalidAdjEdgeIdx();
}
void disconnectFrom(Graph &G, NodeId NId) {
if (NId == NIds[0])
disconnectFromN(G, 0);
else {
assert(NId == NIds[1] && "Edge does not connect NId");
disconnectFromN(G, 1);
}
}
NodeId getN1Id() const { return NIds[0]; }
NodeId getN2Id() const { return NIds[1]; }
MatrixPtr Costs;
EdgeMetadata Metadata;
private:
NodeId NIds[2];
typename NodeEntry::AdjEdgeIdx ThisEdgeAdjIdxs[2];
};
// ----- MEMBERS -----
CostAllocator CostAlloc;
SolverT *Solver;
typedef std::vector<NodeEntry> NodeVector;
typedef std::vector<NodeId> FreeNodeVector;
NodeVector Nodes;
FreeNodeVector FreeNodeIds;
typedef std::vector<EdgeEntry> EdgeVector;
typedef std::vector<EdgeId> FreeEdgeVector;
EdgeVector Edges;
FreeEdgeVector FreeEdgeIds;
// ----- INTERNAL METHODS -----
NodeEntry& getNode(NodeId NId) { return Nodes[NId]; }
const NodeEntry& getNode(NodeId NId) const { return Nodes[NId]; }
EdgeEntry& getEdge(EdgeId EId) { return Edges[EId]; }
const EdgeEntry& getEdge(EdgeId EId) const { return Edges[EId]; }
NodeId addConstructedNode(const NodeEntry &N) {
NodeId NId = 0;
if (!FreeNodeIds.empty()) {
NId = FreeNodeIds.back();
FreeNodeIds.pop_back();
Nodes[NId] = std::move(N);
} else {
NId = Nodes.size();
Nodes.push_back(std::move(N));
}
return NId;
}
EdgeId addConstructedEdge(const EdgeEntry &E) {
assert(findEdge(E.getN1Id(), E.getN2Id()) == invalidEdgeId() &&
"Attempt to add duplicate edge.");
EdgeId EId = 0;
if (!FreeEdgeIds.empty()) {
EId = FreeEdgeIds.back();
FreeEdgeIds.pop_back();
Edges[EId] = std::move(E);
} else {
EId = Edges.size();
Edges.push_back(std::move(E));
}
EdgeEntry &NE = getEdge(EId);
// Add the edge to the adjacency sets of its nodes.
NE.connect(*this, EId);
return EId;
}
Graph(const Graph &Other) {}
void operator=(const Graph &Other) {}
public:
typedef typename NodeEntry::AdjEdgeItr AdjEdgeItr;
class NodeItr {
public:
NodeItr(NodeId CurNId, const Graph &G)
: CurNId(CurNId), EndNId(G.Nodes.size()), FreeNodeIds(G.FreeNodeIds) {
this->CurNId = findNextInUse(CurNId); // Move to first in-use node id
}
bool operator==(const NodeItr &O) const { return CurNId == O.CurNId; }
bool operator!=(const NodeItr &O) const { return !(*this == O); }
NodeItr& operator++() { CurNId = findNextInUse(++CurNId); return *this; }
NodeId operator*() const { return CurNId; }
private:
NodeId findNextInUse(NodeId NId) const {
while (NId < EndNId &&
std::find(FreeNodeIds.begin(), FreeNodeIds.end(), NId) !=
FreeNodeIds.end()) {
++NId;
}
return NId;
}
NodeId CurNId, EndNId;
const FreeNodeVector &FreeNodeIds;
};
class EdgeItr {
public:
EdgeItr(EdgeId CurEId, const Graph &G)
: CurEId(CurEId), EndEId(G.Edges.size()), FreeEdgeIds(G.FreeEdgeIds) {
this->CurEId = findNextInUse(CurEId); // Move to first in-use edge id
}
bool operator==(const EdgeItr &O) const { return CurEId == O.CurEId; }
bool operator!=(const EdgeItr &O) const { return !(*this == O); }
EdgeItr& operator++() { CurEId = findNextInUse(++CurEId); return *this; }
EdgeId operator*() const { return CurEId; }
private:
EdgeId findNextInUse(EdgeId EId) const {
while (EId < EndEId &&
std::find(FreeEdgeIds.begin(), FreeEdgeIds.end(), EId) !=
FreeEdgeIds.end()) {
++EId;
}
return EId;
}
EdgeId CurEId, EndEId;
const FreeEdgeVector &FreeEdgeIds;
};
class NodeIdSet {
public:
NodeIdSet(const Graph &G) : G(G) { }
NodeItr begin() const { return NodeItr(0, G); }
NodeItr end() const { return NodeItr(G.Nodes.size(), G); }
bool empty() const { return G.Nodes.empty(); }
typename NodeVector::size_type size() const {
return G.Nodes.size() - G.FreeNodeIds.size();
}
private:
const Graph& G;
};
class EdgeIdSet {
public:
EdgeIdSet(const Graph &G) : G(G) { }
EdgeItr begin() const { return EdgeItr(0, G); }
EdgeItr end() const { return EdgeItr(G.Edges.size(), G); }
bool empty() const { return G.Edges.empty(); }
typename NodeVector::size_type size() const {
return G.Edges.size() - G.FreeEdgeIds.size();
}
private:
const Graph& G;
};
class AdjEdgeIdSet {
public:
AdjEdgeIdSet(const NodeEntry &NE) : NE(NE) { }
typename NodeEntry::AdjEdgeItr begin() const {
return NE.getAdjEdgeIds().begin();
}
typename NodeEntry::AdjEdgeItr end() const {
return NE.getAdjEdgeIds().end();
}
bool empty() const { return NE.getAdjEdgeIds().empty(); }
typename NodeEntry::AdjEdgeList::size_type size() const {
return NE.getAdjEdgeIds().size();
}
private:
const NodeEntry &NE;
};
/// \brief Construct an empty PBQP graph.
Graph() : Solver(nullptr) { }
/// \brief Lock this graph to the given solver instance in preparation
/// for running the solver. This method will call solver.handleAddNode for
/// each node in the graph, and handleAddEdge for each edge, to give the
/// solver an opportunity to set up any requried metadata.
void setSolver(SolverT &S) {
assert(!Solver && "Solver already set. Call unsetSolver().");
Solver = &S;
for (auto NId : nodeIds())
Solver->handleAddNode(NId);
for (auto EId : edgeIds())
Solver->handleAddEdge(EId);
}
/// \brief Release from solver instance.
void unsetSolver() {
assert(Solver && "Solver not set.");
Solver = nullptr;
}
/// \brief Add a node with the given costs.
/// @param Costs Cost vector for the new node.
/// @return Node iterator for the added node.
template <typename OtherVectorT>
NodeId addNode(OtherVectorT Costs) {
// Get cost vector from the problem domain
VectorPtr AllocatedCosts = CostAlloc.getVector(std::move(Costs));
NodeId NId = addConstructedNode(NodeEntry(AllocatedCosts));
if (Solver)
Solver->handleAddNode(NId);
return NId;
}
/// \brief Add an edge between the given nodes with the given costs.
/// @param N1Id First node.
/// @param N2Id Second node.
/// @return Edge iterator for the added edge.
template <typename OtherVectorT>
EdgeId addEdge(NodeId N1Id, NodeId N2Id, OtherVectorT Costs) {
assert(getNodeCosts(N1Id).getLength() == Costs.getRows() &&
getNodeCosts(N2Id).getLength() == Costs.getCols() &&
"Matrix dimensions mismatch.");
// Get cost matrix from the problem domain.
MatrixPtr AllocatedCosts = CostAlloc.getMatrix(std::move(Costs));
EdgeId EId = addConstructedEdge(EdgeEntry(N1Id, N2Id, AllocatedCosts));
if (Solver)
Solver->handleAddEdge(EId);
return EId;
}
/// \brief Returns true if the graph is empty.
bool empty() const { return NodeIdSet(*this).empty(); }
NodeIdSet nodeIds() const { return NodeIdSet(*this); }
EdgeIdSet edgeIds() const { return EdgeIdSet(*this); }
AdjEdgeIdSet adjEdgeIds(NodeId NId) { return AdjEdgeIdSet(getNode(NId)); }
/// \brief Get the number of nodes in the graph.
/// @return Number of nodes in the graph.
unsigned getNumNodes() const { return NodeIdSet(*this).size(); }
/// \brief Get the number of edges in the graph.
/// @return Number of edges in the graph.
unsigned getNumEdges() const { return EdgeIdSet(*this).size(); }
/// \brief Set a node's cost vector.
/// @param NId Node to update.
/// @param Costs New costs to set.
template <typename OtherVectorT>
void setNodeCosts(NodeId NId, OtherVectorT Costs) {
VectorPtr AllocatedCosts = CostAlloc.getVector(std::move(Costs));
if (Solver)
Solver->handleSetNodeCosts(NId, *AllocatedCosts);
getNode(NId).Costs = AllocatedCosts;
}
/// \brief Get a node's cost vector (const version).
/// @param NId Node id.
/// @return Node cost vector.
const Vector& getNodeCosts(NodeId NId) const {
return *getNode(NId).Costs;
}
NodeMetadata& getNodeMetadata(NodeId NId) {
return getNode(NId).Metadata;
New PBQP solver, and updates to the PBQP graph. The previous PBQP solver was very robust but consumed a lot of memory, performed a lot of redundant computation, and contained some unnecessarily tight coupling that prevented experimentation with novel solution techniques. This new solver is an attempt to address these shortcomings. Important/interesting changes: 1) The domain-independent PBQP solver class, HeuristicSolverImpl, is gone. It is replaced by a register allocation specific solver, PBQP::RegAlloc::Solver (see RegAllocSolver.h). The optimal reduction rules and the backpropagation algorithm have been extracted into stand-alone functions (see ReductionRules.h), which can be used to build domain specific PBQP solvers. This provides many more opportunities for domain-specific knowledge to inform the PBQP solvers' decisions. In theory this should allow us to generate better solutions. In practice, we can at least test out ideas now. As a side benefit, I believe the new solver is more readable than the old one. 2) The solver type is now a template parameter of the PBQP graph. This allows the graph to notify the solver of any modifications made (e.g. by domain independent rules) without the overhead of a virtual call. It also allows the solver to supply policy information to the graph (see below). 3) Significantly reduced memory overhead. Memory management policy is now an explicit property of the PBQP graph (via the CostAllocator typedef on the graph's solver template argument). Because PBQP graphs for register allocation tend to contain many redundant instances of single values (E.g. the value representing an interference constraint between GPRs), the new RASolver class uses a uniquing scheme. This massively reduces memory consumption for large register allocation problems. For example, looking at the largest interference graph in each of the SPEC2006 benchmarks (the largest graph will always set the memory consumption high-water mark for PBQP), the average memory reduction for the PBQP costs was 400x. That's times, not percent. The highest was 1400x. Yikes. So - this is fixed. "PBQP: No longer feasting upon every last byte of your RAM". Minor details: - Fully C++11'd. Never copy-construct another vector/matrix! - Cute tricks with cost metadata: Metadata that is derived solely from cost matrices/vectors is attached directly to the cost instances themselves. That way if you unique the costs you never have to recompute the metadata. 400x less memory means 400x less cost metadata (re)computation. Special thanks to Arnaud de Grandmaison, who has been the source of much encouragement, and of many very useful test cases. This new solver forms the basis for future work, of which there's plenty to do. I will be adding TODO notes shortly. - Lang. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202551 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-28 22:25:24 +00:00
}
const NodeMetadata& getNodeMetadata(NodeId NId) const {
return getNode(NId).Metadata;
New PBQP solver, and updates to the PBQP graph. The previous PBQP solver was very robust but consumed a lot of memory, performed a lot of redundant computation, and contained some unnecessarily tight coupling that prevented experimentation with novel solution techniques. This new solver is an attempt to address these shortcomings. Important/interesting changes: 1) The domain-independent PBQP solver class, HeuristicSolverImpl, is gone. It is replaced by a register allocation specific solver, PBQP::RegAlloc::Solver (see RegAllocSolver.h). The optimal reduction rules and the backpropagation algorithm have been extracted into stand-alone functions (see ReductionRules.h), which can be used to build domain specific PBQP solvers. This provides many more opportunities for domain-specific knowledge to inform the PBQP solvers' decisions. In theory this should allow us to generate better solutions. In practice, we can at least test out ideas now. As a side benefit, I believe the new solver is more readable than the old one. 2) The solver type is now a template parameter of the PBQP graph. This allows the graph to notify the solver of any modifications made (e.g. by domain independent rules) without the overhead of a virtual call. It also allows the solver to supply policy information to the graph (see below). 3) Significantly reduced memory overhead. Memory management policy is now an explicit property of the PBQP graph (via the CostAllocator typedef on the graph's solver template argument). Because PBQP graphs for register allocation tend to contain many redundant instances of single values (E.g. the value representing an interference constraint between GPRs), the new RASolver class uses a uniquing scheme. This massively reduces memory consumption for large register allocation problems. For example, looking at the largest interference graph in each of the SPEC2006 benchmarks (the largest graph will always set the memory consumption high-water mark for PBQP), the average memory reduction for the PBQP costs was 400x. That's times, not percent. The highest was 1400x. Yikes. So - this is fixed. "PBQP: No longer feasting upon every last byte of your RAM". Minor details: - Fully C++11'd. Never copy-construct another vector/matrix! - Cute tricks with cost metadata: Metadata that is derived solely from cost matrices/vectors is attached directly to the cost instances themselves. That way if you unique the costs you never have to recompute the metadata. 400x less memory means 400x less cost metadata (re)computation. Special thanks to Arnaud de Grandmaison, who has been the source of much encouragement, and of many very useful test cases. This new solver forms the basis for future work, of which there's plenty to do. I will be adding TODO notes shortly. - Lang. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202551 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-28 22:25:24 +00:00
}
typename NodeEntry::AdjEdgeList::size_type getNodeDegree(NodeId NId) const {
return getNode(NId).getAdjEdgeIds().size();
}
/// \brief Set an edge's cost matrix.
/// @param EId Edge id.
/// @param Costs New cost matrix.
template <typename OtherMatrixT>
void setEdgeCosts(EdgeId EId, OtherMatrixT Costs) {
MatrixPtr AllocatedCosts = CostAlloc.getMatrix(std::move(Costs));
if (Solver)
Solver->handleSetEdgeCosts(EId, *AllocatedCosts);
getEdge(EId).Costs = AllocatedCosts;
}
/// \brief Get an edge's cost matrix (const version).
/// @param EId Edge id.
/// @return Edge cost matrix.
const Matrix& getEdgeCosts(EdgeId EId) const { return *getEdge(EId).Costs; }
EdgeMetadata& getEdgeMetadata(EdgeId NId) {
return getEdge(NId).Metadata;
}
const EdgeMetadata& getEdgeMetadata(EdgeId NId) const {
return getEdge(NId).Metadata;
}
/// \brief Get the first node connected to this edge.
/// @param EId Edge id.
/// @return The first node connected to the given edge.
NodeId getEdgeNode1Id(EdgeId EId) {
return getEdge(EId).getN1Id();
}
/// \brief Get the second node connected to this edge.
/// @param EId Edge id.
/// @return The second node connected to the given edge.
NodeId getEdgeNode2Id(EdgeId EId) {
return getEdge(EId).getN2Id();
}
/// \brief Get the "other" node connected to this edge.
/// @param EId Edge id.
/// @param NId Node id for the "given" node.
/// @return The iterator for the "other" node connected to this edge.
NodeId getEdgeOtherNodeId(EdgeId EId, NodeId NId) {
EdgeEntry &E = getEdge(EId);
if (E.getN1Id() == NId) {
return E.getN2Id();
} // else
return E.getN1Id();
}
/// \brief Get the edge connecting two nodes.
/// @param N1Id First node id.
/// @param N2Id Second node id.
/// @return An id for edge (N1Id, N2Id) if such an edge exists,
/// otherwise returns an invalid edge id.
EdgeId findEdge(NodeId N1Id, NodeId N2Id) {
for (auto AEId : adjEdgeIds(N1Id)) {
if ((getEdgeNode1Id(AEId) == N2Id) ||
(getEdgeNode2Id(AEId) == N2Id)) {
return AEId;
}
}
return invalidEdgeId();
}
/// \brief Remove a node from the graph.
/// @param NId Node id.
void removeNode(NodeId NId) {
if (Solver)
Solver->handleRemoveNode(NId);
NodeEntry &N = getNode(NId);
// TODO: Can this be for-each'd?
for (AdjEdgeItr AEItr = N.adjEdgesBegin(),
AEEnd = N.adjEdgesEnd();
AEItr != AEEnd;) {
EdgeId EId = *AEItr;
++AEItr;
removeEdge(EId);
}
FreeNodeIds.push_back(NId);
}
/// \brief Disconnect an edge from the given node.
///
/// Removes the given edge from the adjacency list of the given node.
/// This operation leaves the edge in an 'asymmetric' state: It will no
/// longer appear in an iteration over the given node's (NId's) edges, but
/// will appear in an iteration over the 'other', unnamed node's edges.
///
/// This does not correspond to any normal graph operation, but exists to
/// support efficient PBQP graph-reduction based solvers. It is used to
/// 'effectively' remove the unnamed node from the graph while the solver
/// is performing the reduction. The solver will later call reconnectNode
/// to restore the edge in the named node's adjacency list.
///
/// Since the degree of a node is the number of connected edges,
/// disconnecting an edge from a node 'u' will cause the degree of 'u' to
/// drop by 1.
///
/// A disconnected edge WILL still appear in an iteration over the graph
/// edges.
///
/// A disconnected edge should not be removed from the graph, it should be
/// reconnected first.
///
/// A disconnected edge can be reconnected by calling the reconnectEdge
/// method.
void disconnectEdge(EdgeId EId, NodeId NId) {
if (Solver)
Solver->handleDisconnectEdge(EId, NId);
EdgeEntry &E = getEdge(EId);
E.disconnectFrom(*this, NId);
}
/// \brief Convenience method to disconnect all neighbours from the given
/// node.
void disconnectAllNeighborsFromNode(NodeId NId) {
for (auto AEId : adjEdgeIds(NId))
disconnectEdge(AEId, getEdgeOtherNodeId(AEId, NId));
}
/// \brief Re-attach an edge to its nodes.
///
/// Adds an edge that had been previously disconnected back into the
/// adjacency set of the nodes that the edge connects.
void reconnectEdge(EdgeId EId, NodeId NId) {
EdgeEntry &E = getEdge(EId);
E.connectTo(*this, EId, NId);
if (Solver)
Solver->handleReconnectEdge(EId, NId);
}
/// \brief Remove an edge from the graph.
/// @param EId Edge id.
void removeEdge(EdgeId EId) {
if (Solver)
Solver->handleRemoveEdge(EId);
EdgeEntry &E = getEdge(EId);
E.disconnect();
FreeEdgeIds.push_back(EId);
Edges[EId].invalidate();
}
/// \brief Remove all nodes and edges from the graph.
void clear() {
Nodes.clear();
FreeNodeIds.clear();
Edges.clear();
FreeEdgeIds.clear();
}
/// \brief Dump a graph to an output stream.
template <typename OStream>
void dump(OStream &OS) {
OS << nodeIds().size() << " " << edgeIds().size() << "\n";
for (auto NId : nodeIds()) {
const Vector& V = getNodeCosts(NId);
OS << "\n" << V.getLength() << "\n";
assert(V.getLength() != 0 && "Empty vector in graph.");
OS << V[0];
for (unsigned i = 1; i < V.getLength(); ++i) {
OS << " " << V[i];
}
OS << "\n";
}
for (auto EId : edgeIds()) {
NodeId N1Id = getEdgeNode1Id(EId);
NodeId N2Id = getEdgeNode2Id(EId);
assert(N1Id != N2Id && "PBQP graphs shound not have self-edges.");
const Matrix& M = getEdgeCosts(EId);
OS << "\n" << N1Id << " " << N2Id << "\n"
<< M.getRows() << " " << M.getCols() << "\n";
assert(M.getRows() != 0 && "No rows in matrix.");
assert(M.getCols() != 0 && "No cols in matrix.");
for (unsigned i = 0; i < M.getRows(); ++i) {
OS << M[i][0];
for (unsigned j = 1; j < M.getCols(); ++j) {
OS << " " << M[i][j];
}
OS << "\n";
}
}
}
/// \brief Print a representation of this graph in DOT format.
/// @param OS Output stream to print on.
template <typename OStream>
void printDot(OStream &OS) {
OS << "graph {\n";
for (auto NId : nodeIds()) {
OS << " node" << NId << " [ label=\""
<< NId << ": " << getNodeCosts(NId) << "\" ]\n";
}
OS << " edge [ len=" << nodeIds().size() << " ]\n";
for (auto EId : edgeIds()) {
OS << " node" << getEdgeNode1Id(EId)
<< " -- node" << getEdgeNode2Id(EId)
<< " [ label=\"";
const Matrix &EdgeCosts = getEdgeCosts(EId);
for (unsigned i = 0; i < EdgeCosts.getRows(); ++i) {
OS << EdgeCosts.getRowAsVector(i) << "\\n";
}
OS << "\" ]\n";
}
OS << "}\n";
}
};
}
#endif // LLVM_CODEGEN_PBQP_GRAPH_HPP