llvm-6502/lib/Target/X86/X86InstrInfo.def

142 lines
7.8 KiB
Modula-2
Raw Normal View History

//===-- X86InstructionInfo.def - X86 Instruction Information ----*- C++ -*-===//
//
// This file describes all of the instructions that the X86 backend uses. It
// relys on an external 'I' macro being defined that takes the arguments
// specified below, and is used to make all of the information relevant to an
// instruction be in one place.
//
// Note that X86 Instructions always have the destination register listed as
// operand 0, unless it does not produce a value (in which case the TSFlags will
// include X86II::Void).
//
//===----------------------------------------------------------------------===//
// NOTE: No include guards desired
#ifndef I
#errror "Must define I macro before including X86/X86InstructionInfo.def!"
#endif
// Arguments to be passed into the I macro
// #1: Enum name - This ends up being the opcode symbol in the X86 namespace
// #2: Opcode name, as used by the gnu assembler
// #3: Instruction Flags - This should be a field or'd together that contains
// constants from the MachineInstrInfo.h file.
// #4: Target Specific Flags - Another bitfield containing X86 specific flags
// that we are interested in for each instruction. These should be flags
// defined in X86InstrInfo.h in the X86II namespace.
//
// The first instruction must always be the PHI instruction: (FIXME, not yet)
I(PHI , "phi", 0, 0)
// The second instruction must always be the noop instruction: (FIXME, not yet)
I(NOOP , "nop", 0, X86II::Void) // nop 90
// Flow control instructions
I(RET , "ret", M_RET_FLAG, X86II::Void) // ret CB
I(JMP , "jmp", M_BRANCH_FLAG, X86II::Void) // jmp foo EB|E9 cb|w
// Move instructions
I(MOVrr8 , "movb", 0, 0) // R8 = R8 88/r
I(MOVrr16 , "movw", 0, 0) // R16 = R16 89/r
I(MOVrr32 , "movl", 0, 0) // R32 = R32 89/r
I(MOVir8 , "movb", 0, 0) // R8 = imm8 B0+ rb
I(MOVir16 , "movw", 0, 0) // R16 = imm16 B8+ rw
I(MOVir32 , "movl", 0, 0) // R32 = imm32 B8+ rd
I(LEAVE , "leave", 0, 0) // leave C9
// Arithmetic instructions
I(ADDrr8 , "addb", 0, 0) // R8 += R8 00/r
I(ADDrr16 , "addw", 0, 0) // R16 += R16 01/r
I(ADDrr32 , "addl", 0, 0) // R32 += R32 01/r
I(SUBrr8 , "subb", 0, 0) // R8 -= R8 2A/r
I(SUBrr16 , "subw", 0, 0) // R16 -= R16 2B/r
I(SUBrr32 , "subl", 0, 0) // R32 -= R32 2B/r
I(MULrr8 , "mulb", 0, 0) // AX = AL*R8 F6/4
I(MULrr16 , "mulw", 0, 0) // DX:AX= AX*R16 F7/4
I(MULrr32 , "mull", 0, 0) // ED:EA= EA*R32 F7/4
// unsigned division/remainder
I(DIVrr8 , "divb", 0, 0) // AX/r8= AL&AH F6/6
I(DIVrr16 , "divw", 0, 0) // DA/r16=AX&DX F7/6
I(DIVrr32 , "divl", 0, 0) // DA/r32=EAX&DX F7/6
// signed division/remainder
I(IDIVrr8 , "idivb", 0, 0) // AX/r8= AL&AH F6/6
I(IDIVrr16 , "idivw", 0, 0) // DA/r16=AX&DX F7/6
I(IDIVrr32 , "idivl", 0, 0) // DA/r32=EAX&DX F7/6
// Logical operators
I(ANDrr8 , "andb", 0, 0) // R8 &= R8 20/r
I(ANDrr16 , "andw", 0, 0) // R16 &= R16 21/r
I(ANDrr32 , "andl", 0, 0) // R32 &= R32 21/r
I(ORrr8 , "orb", 0, 0) // R8 |= R8 08/r
I(ORrr16 , "orw", 0, 0) // R16 |= R16 09/r
I(ORrr32 , "orl", 0, 0) // R32 |= R32 09/r
I(XORrr8 , "xorb", 0, 0) // R8 ^= R8 30/r
I(XORrr16 , "xorw", 0, 0) // R16 ^= R16 31/r
I(XORrr32 , "xorl", 0, 0) // R32 ^= R32 31/r
// Shift instructions
I(SHLrr8 , "shlb", 0, 0) // R8 <<= cl D2/4
I(SHLir8 , "shlb", 0, 0) // R8 <<= imm8 C0/4 ib
I(SHLrr16 , "shlw", 0, 0) // R16 <<= cl D3/4
I(SHLir16 , "shlw", 0, 0) // R16 <<= imm8 C1/4 ib
I(SHLrr32 , "shll", 0, 0) // R32 <<= cl D3/4
I(SHLir32 , "shll", 0, 0) // R32 <<= imm8 C1/4 ib
I(SHRrr8 , "shrb", 0, 0) // R8 >>>= cl D2/5
I(SHRir8 , "shrb", 0, 0) // R8 >>>= imm8 C0/5 ib
I(SHRrr16 , "shrw", 0, 0) // R16 >>>= cl D3/5
I(SHRir16 , "shrw", 0, 0) // R16 >>>= imm8 C1/5 ib
I(SHRrr32 , "shrl", 0, 0) // R32 >>>= cl D3/5
I(SHRir32 , "shrl", 0, 0) // R32 >>>= imm8 C1/5 ib
I(SARrr8 , "sarb", 0, 0) // R8 >>= cl D2/7
I(SARir8 , "sarb", 0, 0) // R8 >>= imm8 C0/7 ib
I(SARrr16 , "sarw", 0, 0) // R16 >>= cl D3/7
I(SARir16 , "sarw", 0, 0) // R16 >>= imm8 C1/7 ib
I(SARrr32 , "sarl", 0, 0) // R32 >>= cl D3/7
I(SARir32 , "sarl", 0, 0) // R32 >>= imm8 C1/7 ib
// Floating point loads
I(FLDr4 , "flds", 0, X86II::Void) // push float D9/0
I(FLDr8 , "fldl ", 0, X86II::Void) // push double DD/0
// Floating point compares
I(FUCOMPP , "fucompp", 0, X86II::Void) // compare+pop2x DA E9
// Floating point flag ops
I(FNSTSWr8 , "fnstsw", 0, X86II::Void) // AX = fp flags DF E0
// Condition code ops, incl. set if equal/not equal/...
I(SAHF , "sahf", 0, 0) // flags = AH 9E
I(SETA , "seta", 0, 0) // R8 = > unsign 0F 97
I(SETAE , "setae", 0, 0) // R8 = >=unsign 0F 93
I(SETB , "setb", 0, 0) // R8 = < unsign 0F 92
I(SETBE , "setbe", 0, 0) // R8 = <=unsign 0F 96
I(SETE , "sete", 0, 0) // R8 = == 0F 94
I(SETG , "setg", 0, 0) // R8 = > signed 0F 9F
I(SETGE , "setge", 0, 0) // R8 = >=signed 0F 9D
I(SETL , "setl", 0, 0) // R8 = < signed 0F 9C
I(SETLE , "setle", 0, 0) // R8 = <=signed 0F 9E
I(SETNE , "setne", 0, 0) // R8 = != 0F 95
// Integer comparisons
I(CMPrr8 , "cmpb", 0, 0) // compare R8,R8 38/r
I(CMPrr16 , "cmpw", 0, 0) // compare R16,R16 39/r
I(CMPrr32 , "cmpl", 0, 0) // compare R32,R32 39/r
// Sign extenders (first 3 are good for DIV/IDIV; the others are more general)
I(CBW , "cbw", 0, 0) // AX = signext(AL) 98
I(CWD , "cwd", 0, 0) // DX:AX = signext(AX) 99
I(CDQ , "cdq", 0, 0) // EDX:EAX = signext(EAX) 99
I(MOVSXr16r8 , "movsx", 0, 0) // R32 = signext(R8) 0F BE /r
I(MOVSXr32r8 , "movsx", 0, 0) // R32 = signext(R8) 0F BE /r
I(MOVSXr32r16 , "movsx", 0, 0) // R32 = signext(R16) 0F BF /r
I(MOVZXr16r8 , "movzx", 0, 0) // R32 = zeroext(R8) 0F B6 /r
I(MOVZXr32r8 , "movzx", 0, 0) // R32 = zeroext(R8) 0F B6 /r
I(MOVZXr32r16 , "movzx", 0, 0) // R32 = zeroext(R16) 0F B7 /r
// At this point, I is dead, so undefine the macro
#undef I